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This page lists certain open questions on probability. Any answers to these questions will greatly improve
my articles posted on this site. If you can answer any of them, post an issue in the GitHub issues page1.
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2 Additional Requests and Open Questions
Besides the requests and open questions found here, the following pages list others:

• Open Questions on the Bernoulli Factory Problem2

• Requests and Open Questions3

3 Probability distributions computable by pushdown automata
https://cstheory.stackexchange.com/questions/50826/probability-distributions-generated-by-
pushdown-automata

This question is about generating random variates, in the form of their binary expansions, on restricted
computing models. Specifically, the computing model is based on pushdown automata (finite-state machines
with a stack) that are driven by flips of a coin and generate the binary expansion of a real number. This
results in machines called pushdown generators, defined next.

1https://github.com/peteroupc/peteroupc.github.io/issues
2https://peteroupc.github.io/bernreq.html
3https://peteroupc.github.io/requests.html
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3.1 Pushdown Generators
A pushdown generator has a finite set of states and a finite set of stack symbols, one of which is called
EMPTY, and takes either a fair coin or a coin whose probability of heads is unknown. It starts with a given
state and its stack starts with EMPTY. On each iteration:

• The automaton flips the coin.
• Based on the coin flip (HEADS or TAILS), the current state, and the top stack symbol, it moves to a

new state (or keeps it unchanged), replaces the top stack symbol with zero, one, or two symbols, and
optionally outputs a base-N digit. Thus, there are three kinds of transition rules:

– (state, flip, symbol) → (digit, state2, {symbol2}): move to state2, write digit, replace top stack
symbol with same or different one.

– (state, flip, symbol) → (digit, state2, {symbol2, new}): move to state2, write digit, replace top
stack symbol with symbol2, then push a new symbol (new) onto the stack.

– (state, flip, symbol) → (digit, state2, {}): move to state2, write digit, pop the top symbol from the
stack.

In the transition rules above, digit is either a base-N digit or the empty string. Also, the machine terminates
with probability 0, and rules that would cause the stack to be empty are not allowed. The infinite “output” of
the machine is a real number 𝑋 in the interval [0, 1], in the form of the base-N digit expansion 0.dddddd...,
where dddddd... are the digits produced by the machine from left to right.

See also Yao 1985.

A finite-state generator (Knuth and Yao 1976) is the special case of a pushdown generator where the proba-
bility of heads is 1/2, each digit is either 0 or 1, rules can’t push stack symbols, and only one stack symbol
is used. (In other words, a finite-state generator is a finite automaton driven by unbiased random bits.)

3.2 Distributions Computable by Pushdown Generators
The question that interests me is which probability distributions of real numbers can be computed by
pushdown generators, and how they can be constructed.

For example, a pushdown generator with a loop that outputs 0 or 1 at an equal chance produces a uniform
distribution.

In this sense, there are existing results for finite-state generators. For example:

• Let 𝑋 be the random variable computable by a finite-state generator, and let 𝑃𝐷𝐹(𝑥) be the probability
density function of 𝑋. Then if 𝑃𝐷𝐹(𝑥) is infinitely differentiable on the open interval (0, 1), it must
be a polynomial with rational coefficients and not equal 0 at any irrational point on (0, 1) (Kindler
and Romik 2004).

Also, I believe that the following results4 are true:

1. Suppose a finite-state generator can generate a probability distribution that takes on finitely many
values. Then: Each value occurs with a rational probability; and each value is either rational or
transcendental. This belief is in view of the results of Adamczewski et al. 2020.

2. If the distribution function generated by a finite-state generator is continuous and algebraic on the
open interval (0, 1), then that function is a piecewise polynomial function.

3.3 Questions
The first question is whether the two results at the end of the previous section are true.

4https://peteroupc.github.io/bernsupp.html#Finite_State_and_Pushdown_Generators
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The following questions ask what kinds of distributions are possible with these generators (both when the
coin driving the generators is fair, and when it has an unknown probability):

1. Of the probability distributions that a finite-state generator can generate, what is the exact class of:

• Discrete distributions (those that cover a finite or countably infinite set of values)?
• Absolutely continuous distributions (those with a probability density function such as the uniform

or triangular distribution)?
• Singular distributions (covering an uncountable but measure-zero set)?
• Absolutely continuous distributions with continuous density functions?

2. Same question as 1, but for pushdown generators.

3. Of the probability distributions that a pushdown generator can generate, what is the exact class of
distributions with piecewise density functions whose pieces are infinitely differentiable? (The answer
is known for finite-state generators.)

4 Checking if a shape covers a box
https://math.stackexchange.com/questions/3882545/what-conditions-ensure-that-checking-
if-a-shape-covers-a-box-can-be-done-just-by

I have described an algorithm for generating random points inside an arbitrary shape5 (such as a
circle, polygon, or an arbitrary closed curve) contained within a box. It involves checking whether the box
is outside or partially or fully inside the shape, and then—

• generating a uniform random point inside the box if the box is inside the shape,
• rejecting the box and starting over if the box is outside the shape, and
• subdividing the box, choosing a random sub-box, and repeating this process for that sub-box otherwise.

This algorithm uses a function called InShape that determines whether a shape covers an axis-aligned
bounding box. It takes such a bounding box as input and returns—

• YES if the box is entirely inside the shape;
• NO if the box is entirely outside the shape; and
• MAYBE if the box is partly inside and partly outside the shape.

Now, take a particular implementation of InShape that has certain knowledge about a particular shape.
Assume the following:

• The shape is closed, has nonzero finite volume, and has a boundary of measure zero.
• The InShape implementation can determine only pointwise whether a point is either outside the shape,

or on or inside the shape.
• The InShape implementation has access to arbitrary-precision arithmetic, as well as interval arithmetic

using arbitrary-precision rational numbers. See my library6, for example.
• Other than this, it doesn’t matter how the shape is described – it could be described as a sequence of

line segments, curve segments, or both describing the shape’s outline; as a signed distance function; as
an inequality; as a union or intersection of multiple shapes; etc.

The InShape implementation is given an axis-aligned bounding box as input. The goal is to correctly
classify the box just by evaluating the shape pointwise.

Under certain conditions, this is trivial to do. For example, if the shape is enclosed by a 1x1 rectangle, the
point (0, 0) is on the shape, and every horizontal or vertical line crosses the shape (inside the rectangle) at

5https://peteroupc.github.io/exporand.html#Uniform_Distribution_Inside_N_Dimensional_Shapes
6https://github.com/peteroupc/peteroupc.github.io/blob/master/interval.py
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most once (think of one quarter of a circle centered at the origin), then the box can be correctly classified
just by checking the point’s corners. The algorithm (Algorithm 1) is thus to return—

• YES if all the box’s vertices are on or inside the shape;
• NO if none of the box’s vertices are on or inside the shape; and
• MAYBE in any other case.

More generally, I believe Algorithm 1 will work if—

• the shape is enclosed by a hypercube [0, 1] × [0, 1] × ... × [0, 1],
• the point (0, 0, ..., 0) is on or inside the shape, and
• every open axis-aligned line segment that begins in one face of the hypercube and ends in another face

crosses the shape at most once (an example is one quarter of a circular disk whose center is at (0, 0)),
Or if—

• the shape is enclosed by a 2-dimensional rectangle [0, 1] × [0, 1],
• the line segment ((0, 0), (1, 1)) is entirely on or inside the shape,
• the shape is convex and symmetric about that line segment, and
• the box being tested arose out of a recursive subdivision of the 2-dimensional rectangle into smaller

boxes with half the size, 1
4 the size, etc.

However, for more general convex shapes (which are the shapes that I care about most), this is not so easy.
For example, if the shape is convex and the point (0, 0) is on the shape, the correct algorithm to classify the
shape (Algorithm 2) is to return—

• YES if all the box’s vertices are on or inside the shape;
• NO if none of the box’s vertices are on or inside the shape and if the shape’s boundary does not intersect

the box’s boundary; and
• MAYBE in any other case.

This is not so easy because checking whether a box intersects a shape might not be robust especially if the
shape is described by an inequality (such as 𝑥2 + 𝑦2 − 1 <= 0). Under certain cases, the algorithm might
miss an intersection even though it’s present. But at least when the shape is convex and when InShape uses
interval arithmetic and builds one interval for each dimension of the box (here, [𝑥, 𝑥 + 𝜖] and [𝑦, 𝑦 + 𝜖]), and
evaluates the inequality only once with the intervals, InShape can still get robust results. In this algorithm
(Algorithm 3), InShape returns—

• YES if the result’s upper bound is less than 0;
• NO if the result’s lower bound is greater than 0; and
• MAYBE in any other case.

4.1 Questions
Thus my questions are:

1. What are necessary or sufficient conditions (such as convexity or regularity conditions, or other require-
ments on the shape) that allow Algorithm 1 to work correctly? Are the sufficient conditions I gave
above for this algorithm correct? If so, can they be relaxed?

2. What are necessary or sufficient conditions that allow Algorithm 2 to work correctly, if the InShape
method can only evaluate the shape point-by-point? In particular, how can Algorithm 2 robustly check
for intersections as required to determine whether to return NO or MAYBE?

3. What are other conditions that allow InShape to correctly classify whether a box is outside or on or
inside a shape when InShape can only evaluate the shape point-by-point, or when InShape proceeds
as in Algorithm 3?
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4. Is it possible (or what additional conditions make it possible) to correctly classify a bounding box as
NO or MAYBE, using only pointwise evaluation of the shape, if—

• the shape is enclosed by a hypercube [0, 1] × [0, 1] × ... × [0, 1],
• the point (0, 0, ..., 0) is on or inside the shape,
• the shape is convex, and
• the box being tested arose out of a recursive subdivision of the hypercube into smaller boxes with

half the size, 1
4 the size, etc.?

(Note that in this case, classifying a bounding box as YES is trivial; just check its four corners. On
the other hand, I know that it’s not enough to classify the box as NO or MAYBE this way.)

4.2 Examples
Take the following shapes, all of which are convex and equal 0 at the origin:

• 𝑣2 − (𝑢/𝑣)1.4−1 ∗ 𝑒𝑥𝑝(−(𝑢/𝑣)) ≤ 0 - Ratio-of-uniforms shape for the gamma(1.4) distribution
• 𝑣2 − 𝑒𝑥𝑝(−(𝑢/𝑣)2/2) ≤ 0 - Ratio-of-uniforms shape for the normal distribution
• 𝑣2 − (𝑢/𝑣)2 ∗ 𝑒𝑥𝑝(−(𝑢/𝑣)2/2) ≤ 0 - Ratio-of-uniforms shape for the Maxwell distribution

All three shapes don’t work under Algorithm 1, but they appear to give correct results under Algorithm 3,
even without the intersection checks required by Algorithm 2.

5 Probabilities arising from permutations
https://stats.stackexchange.com/questions/499864/probabilities-arising-from-permutations

Certain interesting probability functions can arise from permutations. For example, permutations that are
sorted or permutations that form a cycle.

Inspired by the so-called von Neumann schema given in a paper called “On Buffon machines and num-
bers7” by Flajolet and colleagues (2010), we can describe the following algorithm. To describe it, the
following definition is needed:

• A permutation class is a rule that describes how a sequence of numbers must be ordered. The ordering
of the numbers is called a permutation. Two examples of permutation classes cover permutations
sorted in descending order, and permutations whose highest number appears first. When checking
whether a sequence follows a permutation class, only less-than and greater-than comparisons between
two numbers are allowed.

The algorithm produces a discrete random variate based on a permutation class. Let 𝐷 and 𝐸 be absolutely
continuous distributions.

1. Create an empty list.
2. If the list is empty, generate a random variate distributed as 𝐷. Otherwise, generate a random variate

distributed as 𝐸. Either way, append the random variate to the end of the list.
3. Let 𝑛 be the number of items in the list minus 1. If the items in the list do not form a permutation

that meets the permutation class’s requirements, return 𝑛. Otherwise, go to step 2.

If 𝐷 and 𝐸 are both uniform(0, 1), this algorithm returns the number n with the following probability:

𝐺(𝑛) = (1 − 𝑉 (𝑛 + 1)
𝑉 (𝑛)(𝑛 + 1))(1 −

𝑛−1
∑
𝑗=0

𝐺(𝑗))

7https://arxiv.org/abs/0906.5560
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= 𝑉 (𝑛)(𝑛 + 1) − 𝑉 (𝑛 + 1)
𝑉 (0)(𝑛 + 1)! ,

where 𝑉 (𝑛) ∈ (0, 𝑛!] is the number of permutations of size n that meet the permutation class’s requirements.
𝑉 (𝑛) can be a sequence associated with an exponential generating function (EGF) for the kind of permutation
involved in the algorithm. (Examples of permutation classes include permutations whose numbers are sorted
in descending order, or permutations whose first number is highest.) For example, if we use the class of
permutations sorted in descending order, the EGF is exp(𝜆), so that 𝑉 (𝑛) = 1.

For this algorithm, if 𝐷 and 𝐸 are both uniform(0, 1), the probability that the generated n—

• Is odd is 1 − 1/𝐸𝐺𝐹(1), or
• is even is 1/𝐸𝐺𝐹(1), or
• is less than 𝑘 is 𝑉 (0)−𝑉 (𝑘)/𝑘!

𝑉 (0) .

Thus, for example, if we allow sorted permutations, the algorithm returns an odd number with probability
that is exactly 1 − exp(−1).
Depending on the permutation class, the distributions 𝐷 and 𝐸, and which values of 𝑛 we care about,
different probabilities and different distributions of numbers will arise. For example:

• If the class is sorted permutations, both 𝐷 and 𝐸 are the uniform distribution, and given that the
return value 𝑛 is odd, it is known since von Neumann’s 1951 algorithm that that number has an
exponential distribution limited to the interval [0, 1].

• If the class is sorted permutations, both 𝐷 and 𝐸 are arbitrary distributions, and given that the return
value 𝑛 is odd, then Forsythe (1972) and Monahan (1979) have characterized the distribution function
of the sequence’s first number.

See the tables in my section “Probabilities Arising from Certain Permutations8” for further examples.

5.1 Questions
For a given permutation class, a given distribution 𝐷, and a given distribution 𝐸—

• what is the probability that the algorithm will return a particular 𝑛?
• what is the probability that the algorithm will return an 𝑛 that belongs to a particular class of values

(such as odd numbers or even numbers)?
• what is the probability that the first number in the sequence is less than 𝑥 given that the algorithm

returns 𝑛 (or one of a particular class of values of 𝑛)?
• what is the probability that the last number in the sequence is less than 𝑥 given that the algorithm

returns 𝑛 (or one of a particular class of values of 𝑛)?

Note that the third part of the question is equivalent to: What is the CDF of the first number’s distribution
given that 𝑛 is returned? Similarly for the fourth part of the question.

6 Questions on Estimation Algorithms
https://stats.stackexchange.com/questions/522429/estimating-f-mathbbex-with-a-guaranteed-
error-performance

https://stats.stackexchange.com/questions/555066/a-generalized-randomized-mean-estimate-
based-on-the-chebyshev-inequality

8https://peteroupc.github.io/bernoulli.html#Probabilities_Arising_from_Certain_Permutations
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Let 𝑋 be a random variable that does not take on a single value with probability 1. Let “black-box” i.i.d.
sample access to the random variable 𝑋 be given. Let 𝑓(𝑥) be a known function belonging to a given class
of functions.

1. Suppose 𝑓(𝑥) is continuous, and suppose 𝑋 is unbounded and meets additional assumptions, such as—

• being unimodal (having one peak) and symmetric (mirrored on each side of the peak), or
• following a geometric distribution, or
• having decreasing or nowhere increasing probabilities,

or any combination of these. Then, is there an algorithm, besides the algorithm of Kunsch et
al. (2019)—

• whose output is within 𝜖 of 𝑓(𝔼[𝑋]) in terms of absolute error with probability at least 1 minus
𝛿, or

• whose output has an expected absolute error or mean squared error not more than 𝜖,
where 𝜖 and 𝛿 are user-specified values? (Relative error means | ̂𝜇/𝑓(𝔼[𝑋])−1| where ̂𝜇 is the estimate.)

Notice that merely having finite moments is not enough (Theorem 3.4, Kunsch et al.). My article on
estimation algorithms9 already gives a relative-error algorithm for the geometric distribution in a
note.

2. Let 𝑀𝑘 be an upper bound on the 𝑘th central absolute moment of 𝑋, for 𝑘 > 1. Based on the
Chebyshev inequality10 (as well as Hickernell et al. 2013; Kunsch et al. 2018), is the mean 𝔼[𝑋]
within 𝜖 of the mean of 𝑛 i.i.d. samples, where—

𝑛 = ⌈𝑀𝑘
𝛿𝜖𝑘 ⌉ ,

with probability at least 1 − 𝛿?

If so: Let 𝑓(𝑥) be uniformly continuous on the real line. Let 𝑚(𝜖) be an inverse modulus of continuity
of 𝑓 , that is, a function that satisfies |𝑓(𝑦)−𝑓(𝑧)| < 𝜖 whenever |𝑦 −𝑧| < 𝑚(𝜖). Then is 𝑓(𝔼[𝑋]) within
𝜖 of the mean of 𝑓 on 𝑛 i.i.d. samples, where—

𝑛 = ⌈ 𝑀𝑘
𝛿(𝑚(𝜖))𝑘 ⌉ ,

with probability at least 1 − 𝛿? In both questions, 𝜖 and 𝛿 are user-specified values.

3. Let 𝑔 be a known piecewise continuous function on [0, 1], and suppose 𝑋 lies on the interval [0, 1].
How can a Stack Exchange answer11 be adapted to 𝑔, so that the algorithm estimates 𝑔(𝔼[𝑋]) with
either a high probability of a “small” absolute error or one of a “small” relative error at all points in [0,
1] except at a “negligible” area around 𝑔’s discontinuities? Is it enough to replace 𝑔 with a continuous
function 𝑓 that equals 𝑔 everywhere except at that “negligible” area? Here, the accuracy tolerances
for small error, high probability, and “negligible” area are user-specified. Perhaps the tolerance could
be defined as the integral of absolute differences between 𝑓 and 𝑔 instead of “negligible area”; in that
case, how should the continuous 𝑓 be built?

4. If 𝑋 is Bernoulli with unknown mean 0 < 𝜆 ≤ 1, is the following algorithm an unbiased estimator of
1/ 𝜆 ? Take random variates i.i.d. until a 1 is taken, then count the number of variates taken this way.
This question is asked because the results of Jacob and Thiery (2015) don’t cover the case of whether
a nonnegative unbiased estimator of 𝑓(𝔼[𝑋]) exists when 𝑓 ∶ (𝑎, 𝑏] → [0, ∞) is unbounded, as opposed
to when 𝑓 is bounded or when 𝑓 ’s domain is unbounded or a closed interval.

9https://peteroupc.github.io/estimation.html
10https://stats.stackexchange.com/questions/555066/a-generalized-randomized-mean-estimate-based-on-the-chebyshev-

inequality
11https://stats.stackexchange.com/a/523355/296678
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