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2 About This Document
This is an open-source document; for an updated version, see the source code3 or its rendering
on GitHub4. You can send comments on this document on the GitHub issues page5.

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus.

I encourage readers to implement any of the algorithms given in this page, and report their implementation
experiences. In particular, I seek comments on the following aspects6:

• Are the algorithms in this article easy to implement? Is each algorithm written so that someone could
write code for that algorithm after reading the article?

• Does this article have errors that should be corrected?
• Are there ways to make this article more useful to the target audience?

Comments on other aspects of this document are welcome.

3 Samplers for Certain Discrete Distributions
The following are exact samplers for certain discrete distributions, or probability distributions that take on
values each mappable to a different integer.

3.1 On a Binomial Sampler
The binomial(n, p) distribution models the number of successful trials (“coin flips”) out of n of them, where
the trials are independent and have success probability p.

Take the following sampler of a binomial(n, 1/2) distribution, where n is even, which is equivalent to the
one that appeared in Bringmann et al. (2014)7, and adapted to be more programmer-friendly.

1. If n is less than 4, generate n unbiased random bits (each bit is zero or one with equal probability) and
return their sum. Otherwise, if n is odd8, set ret to the result of this algorithm with n = n − 1, then
add an unbiased random bit’s value to ret, then return ret.

2. Set m to floor(sqrt(n)) + 1.
3. (First, sample from an envelope of the binomial curve.) Generate unbiased random bits until a zero is

generated this way. Set k to the number of ones generated this way.
4. Set s to an integer in [0, m) chosen uniformly at random, then set i to k*m + s.
5. Generate an unbiased random bit. If that bit is 0, set ret to (n/2)+i. Otherwise, set ret to (n/2) − i

− 1.
6. (Second, accept or reject ret.) If ret < 0 or ret > n, go to step 3.
7. With probability choose(n, ret)*m*2 −−2 , return ret. Otherwise, go to step 3. (Here, choose(n, k) is

a binomial coefficient, or the number of ways to choose k out of n labeled items.9)
3https://github.com/peteroupc/peteroupc.github.io/raw/master/randmisc.md
4https://github.com/peteroupc/peteroupc.github.io/blob/master/randmisc.md
5https://github.com/peteroupc/peteroupc.github.io/issues
6https://github.com/peteroupc/peteroupc.github.io/issues/18
7K. Bringmann, F. Kuhn, et al., “Internal DLA: Efficient Simulation of a Physical Growth Model.” In: Proc. 41st Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP’14), 2014.
8“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer

and the least significant bit of abs(x) is 1.
9choose(n, k) = (1*2*3*…*n)/((1*…*k)*(1*…*(n − k))) = n!/(k! * (n − k)!) is a binomial coefficient, or the number of ways

to choose k out of n labeled items. It can be calculated, for example, by calculating i/(n − i+1) for each integer i satisfying n
− k+1 ≤ i ≤ n, then multiplying the results (Yannis Manolopoulos. 2002. “Binomial coefficient computation: recursion
or iteration?”, SIGCSE Bull. 34, 4 (December 2002), 65–67). Note that for every m>0, choose(m, 0) = choose(m, m) = 1
and choose(m, 1) = choose(m, m − 1) = m; also, in this document, choose(n, k) is 0 when k is less than 0 or greater than n.
https://doi.org/10.1145/820127.820168
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This algorithm has an acceptance rate of 1/16 regardless of the value of n. However, step 7 will generally
require a growing amount of storage and time to exactly calculate the given probability as n gets larger,
notably due to the inherent factorial in the binomial coefficient. The Bringmann paper suggests approximat-
ing this factorial via Spouge’s approximation; however, it seems hard to do so without using floating-point
arithmetic, which the paper ultimately resorts to. Alternatively, the logarithm of that probability can be
calculated, then 0 minus an exponential random variate can be generated and compared with that logarithm
to determine whether the step succeeds.

More specifically, step 7 can be changed as follows:

• (7.) Let p be loggamma(n+1) − loggamma(ret+1) − loggamma((n − ret)+1)+ln(m)+ln(2)*(k − n −
2) (where loggamma(x) is the logarithm of the gamma function).

• (7a.) Generate an exponential random variate with rate 1 (which is the negative natural logarithm of
a uniform(0,1) random variate). Set h to 0 minus that number.

• (7b.) If h is greater than p, go to step 3. Otherwise, return ret. (This step can be replaced by calculating
lower and upper bounds that converge to p. In that case, go to step 3 if h is greater than the upper
bound, or return ret if h is less than the lower bound, or compute better bounds and repeat this step
otherwise. See also chapter 4 of (Devroye 1986)10.)

My implementation of loggamma and the natural logarithm (betadist.py11) relies on so-called “construc-
tive reals” as well as a fast converging version of Stirling’s formula for the factorial’s natural logarithm
(Schumacher 2016)12.

Also, according to the Bringmann paper, m can be set such that m is in the interval [sqrt(n), sqrt(n)+3], so
I implement step 1 by starting with u = 2 𝑓𝑙𝑜𝑜𝑟((1+𝛽())/2) , then calculating v = floor((u+floor(n/u))/2), w
= u, u = v until v ≥ w, then setting m to w + 1. Here, 𝛽 (n) = ceil(ln(n+1)/ln(2)), or alternatively the
minimum number of bits needed to store n (with 𝛽 (0) = 0).

Notes:

• A binomial(n, 1/2) random variate, where n is odd13, can be generated by adding an un-
biased random bit’s value (either zero or one with equal probability) to a binomial(n − 1,
1/2) random variate.

• As pointed out by Farach-Colton and Tsai (2015)14, a binomial(n, p) random variate, where
p is in the interval (0, 1), can be generated using binomial(n, 1/2) numbers using a procedure
equivalent to the following:
1. Set k to 0 and ret to 0.
2. If the binary digit at position k after the point in p’s binary expansion (that is, 0.bbbb…

where each b is a zero or one) is 1, add a binomial(n, 1/2) random variate to ret and
subtract the same variate from n; otherwise, set n to a binomial(n, 1/2) random variate.

3. If n is greater than 0, add 1 to k and go to step 2; otherwise, return ret. (Positions start
at 0 where 0 is the most significant digit after the point, 1 is the next, etc.)

10Devroye, L., Non-Uniform Random Variate Generation, 1986.
11https://peteroupc.github.io/betadist.py
12R. Schumacher, “Rapidly Convergent Summation Formulas involving Stirling Series”, arXiv:1602.00336v1

[math.NT], 2016. https://arxiv.org/abs/1602.00336v1
13“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer

and the least significant bit of abs(x) is 1.
14Farach-Colton, M. and Tsai, M.T., 2015. Exact sublinear binomial sampling. Algorithmica 73(4), pp. 637-651.
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3.2 On Geometric Samplers
As used in Bringmann and Friedrich (2013)15, a geometric(p) random variate expresses the number of failing
trial before the first success, where each trial (“coin flip”) is independent and has success probability p,
satisfying 0 < p ≤ 1.

Note: The terms “geometric distribution” and “geometric random variate” have conflicting
meanings in academic works.

The following algorithm is equivalent to the geometric(px/py) sampler that appeared in that paper, but
adapted to be more programmer-friendly. The algorithm uses the rational number px/py, not an arbitrary
real number p; some of the notes in this section indicate how to adapt the algorithm to an arbitrary p.

1. Set pn to px, k to 0, and d to 0.
2. While pn*2 ≤ py, add 1 to k and multiply pn by 2. (Equivalent to finding the largest k ≥ 0 such that

p*2𝑘 ≤ 1. For the case when p need not be rational, enough of its binary expansion can be calculated
to carry out this step accurately, but in this case any k such that p is greater than 1/(2 +2 ) and less
than or equal to 1/(2𝑘) will suffice, as the Bringmann paper points out.)

3. With probability (1 − px/py) 2𝑘 , add 1 to d and repeat this step. (To simulate this probability, the
first sub-algorithm below can be used.)

4. Generate a uniform random integer in [0, 2𝑘), call it m, then with probability (1 − px/py)𝑚, return
d*2𝑘+m. Otherwise, repeat this step. (The Bringmann paper, though, suggests to simulate this
probability by sampling only as many bits of m as needed to do so, rather than just generating m in
one go, then using the first sub-algorithm on m. However, the implementation, given as the second
sub-algorithm below, is much more complicated and is not crucial for correctness.)

The first sub-algorithm returns 1 with probability (1 − px/py)𝑛, assuming that n*px/py ≤ 1. It implements
the approach from the Bringmann paper by rewriting the probability using the binomial theorem. (More
generally, to return 1 with probability (1 − p)𝑛, it’s enough to flip a coin that shows heads with probability
p, n times or until it shows heads, whichever comes first, and then return either 1 if all the flips showed tails,
or 0 otherwise. See also “Bernoulli Factory Algorithms16”.)

1. Set pnum, pden, and j to 1, then set r to 0, then set qnum to px, and qden to py, then set i to 2.
2. If j is greater than n, go to step 5.
3. If j is even17, set pnum to pnum*qden + pden*qnum*choose(n,j). Otherwise, set pnum to pnum*qden

− pden*qnum*choose(n,j).
4. Multiply pden by qden, then multiply qnum by px, then multiply qden by py, then add 1 to j.
5. If j is less than or equal to 2 and less than or equal to n, go to step 2.
6. Multiply r by 2, then add an unbiased random bit’s value (either 0 or 1 with equal probability) to r.
7. If r ≤ floor((pnum*i)/pden) − 2, return 1. If r ≥ floor((pnum*i)/pden) + 1, return 0. If neither is the

case, multiply i by 2 and go to step 2.

The second sub-algorithm returns either an integer m that satisfies 0 ≤ 𝑚 < 2𝑘, with probability (1 −
px/py)𝑚, or − 1 with the opposite probability. It assumes that 2𝑘(𝑝𝑥/𝑝𝑦) ≤ 1.

1. Set r and m to 0.
2. Set b to 0, then while b is less than k:

1. (Sum b+2 summands of the binomial equivalent of the desired probability. First, append an
additional bit to m, from most to least significant.) Generate an unbiased random bit (either 0
or 1 with equal probability). If that bit is 1, add 2 − to m.

15Bringmann, K., and Friedrich, T., 2013, July. Exact and efficient generation of geometric random variates and random
graphs, in International Colloquium on Automata, Languages, and Programming (pp. 267-278).

16https://peteroupc.github.io/bernoulli.html
17“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and

the least significant bit of abs(x) is 0.
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2. (Now build up the binomial probability.) Set pnum, pden, and j to 1, then set qnum to px, and
qden to py.

3. If j is greater than m or greater than b + 2, go to the sixth substep.
4. If j is even18, set pnum to pnum*qden + pden*qnum*choose(m,j). Otherwise, set pnum to

pnum*qden − pden*qnum*choose(m,j).
5. Multiply pden by qden, then multiply qnum by px, then multiply qden by py, then add 1 to j, then

go to the third substep.
6. (Now check the probability.) Multiply r by 2, then add an unbiased random bit’s value (either 0

or 1 with equal probability) to r.
7. If r ≤ floor((pnum*2𝑏)/pden) − 2, add a uniform random integer in [0, 2 ) to m and return m

(and, if requested, the number k − b − 1). If r ≥ floor((pnum*2𝑏)/pden) + 1, return − 1 (and, if
requested, an arbitrary value). If neither is the case, add 1 to b.

3. Add an unbiased random bit to m. (At this point, m is fully sampled.)
4. Run the first sub-algorithm with n = m, except in step 1 of that sub-algorithm, set r to the value of r

built up by this algorithm, rather than 0, and set i to 2𝑘, rather than 2. If that sub-algorithm returns
1, return m (and, if requested, the number − 1). Otherwise, return − 1 (and, if requested, an arbitrary
value).

3.2.1 Bounded Geometric Distribution

As used in the Bringmann paper, a bounded geometric(p, n) random variate is a geometric(p) random variate
or n (an integer greater than 0), whichever is less. The following algorithm is equivalent to the algorithm
given in that paper, but adapted to be more programmer-friendly.

1. Set pn to px, k to 0, d to 0, and m2 to the smallest power of 2 that is greater than n (or equivalently,
2𝑏𝑖𝑡𝑠 where bits is the minimum number of bits needed to store n).

2. While pn*2 ≤ py, add 1 to k and multiply pn by 2.
3. With probability (1 − px/py) 2𝑘 , add 1 to d and then either return n if d*2𝑘 is greater than or equal

to m2, or repeat this step if less. (To simulate this probability, the first sub-algorithm above can be
used.)

4. Generate a uniform random integer in [0, 2𝑘), call it m, then with probability (1 − px/py)𝑚, return
min(n, d*2𝑘+m). In the Bringmann paper, this step is implemented in a manner equivalent to the
following (this alternative implementation, though, is not crucial for correctness):
1. Run the second sub-algorithm above, except return two values, rather than one, in the situations

given in the sub-algorithm. Call these two values m and mbit.
2. If m < 0, go to the first substep.
3. If mbit ≥ 0, add 2𝑚𝑏𝑖𝑡 times an unbiased random bit to m and subtract 1 from mbit. If that bit

is 1 or mbit < 0, go to the next substep; otherwise, repeat this substep.
4. Return n if d*2𝑘 is greater than or equal to m2.
5. Add a uniform random integer in [0, 2 +1 ) to m, then return min(n, d*2𝑘+m).

3.2.2 Symmetric Geometric Distribution

Samples from the symmetric geometric distribution from (Ghosh et al. 2012)19, with parameter 𝜆 (a real
number satisfying 0 < 𝜆 ≤ 1), in the form of an input coin with unknown probability of heads of 𝜆 .

1. Flip the input coin until it returns 1. Set n to the number of times the coin returned 0 this way.
2. Run a Bernoulli factory algorithm for 1/(2 − 𝜆), using the input coin. If the run returns 1, return

n. Otherwise, return − 1 − n.
18“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and

the least significant bit of abs(x) is 0.
19Ghosh, A., Roughgarden, T., and Sundararajan, M., “Universally Utility-Maximizing Privacy Mechanisms”, SIAM Journal

on Computing 41(6), 2012.
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This is similar to an algorithm mentioned in an appendix in Li (2021)20, in which the input coin—

• has 𝜆 = 1 − exp(− 𝜀), where 𝜀 > 0, and
• can be built as follows using another input coin: “Run the ExpMinus algorithm with parameter 𝜀 ,

then return 1 minus the result.”

The algorithm of Li generates a variate from the discrete Laplace distribution with parameter 𝜀 , and Canonne
et al. (2020)21 likewise gave an exact algorithm for that distribution where 𝜀 = s/t is a rational number,
where s > 0 and t > 0 are integers, namely an algorithm equivalent to the following:

1. Generate a uniform random integer u that satisfies 0 ≤ u < t.
2. Run the ExpMinus algorithm with parameter u/t. If it returns 0, go to step 1.
3. Run the ExpMinus algorithm with parameter 1, until a run returns 0, then set n to the number of

times the algorithm returned 1 this way.
4. Set y to floor((u+n*t)/s).
5. Generate an unbiased random bit (either zero or one with equal probability). If the bit is 0, return y.

Otherwise, if y is 0, go to step 1. Otherwise, return − y.

3.3 Weighted Choice for Special Distributions
The following are algorithms to sample items whose “weights” (which are related to the probability of
sampling each item) are given in a special way. They supplement the section “Weighted Choice22” in my
article “Randomization and Sampling Methods”.

3.3.1 Weighted Choice with Weights Written as an Integer and Fraction

Suppose there is a list called weights. This is a list of n weights, with labels starting at 0 and ending at n −
1.

Each weight—

1. can store an integer part m and have 𝜈 represent a “coin” that implements an algorithm that returns 1
(or outputs heads) with probability exactly equal to the fractional part 𝜈 (m ≥ 0, and 0 ≤ 𝜈 ≤ 1), or

2. can store a partially-sampled random number23 (PSRN), with the integer part equal to m and
the fractional part equal to 𝜈 (m ≥ 0, and 0 ≤ 𝜈 ≤ 1), or

3. can store a rational number x/y, where x ≥ 0 and y>0 are integers, such that m = floor(x/y) and 𝜈 =
x/y − m.

Given this list of weights, the following algorithm chooses an integer in [0, n) with probability proportional
to its weight.

1. Create an empty list, then for each weight starting with weight 0, append the weight’s integer part
(m) plus 1 to that list. For example, if the weights are PSRNs written as [2.22…,0.001…,1.3…], in that
order, the list will be [3, 1, 2], corresponding to integers 0, 1, and 2, in that order. Call the list just
created the rounded weights list.

2. Choose an integer i with probability proportional to the weights in the rounded weights list. This can
be done, for example, by taking the result of WeightedChoice(list), where list is the rounded weights
list and WeightedChoice is given in “Randomization and Sampling Methods24”. Let w be the
original weight for integer i, and let rw be the rounded weight for integer i in the rounded weights list.

20Li, L., 2021. Bayesian Inference on Ratios Subject to Differentially Private Noise (Doctoral dissertation, Duke University).
21Canonne, C., Kamath, G., Steinke, T., “The Discrete Gaussian for Differential Privacy”, arXiv:2004.00010 [cs.DS],

2020. https://arxiv.org/abs/2004.00010
22https://peteroupc.github.io/randomfunc.html#Weighted_Choice
23https://peteroupc.github.io/exporand.html
24https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
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3. Generate j, a uniform random integer that is 0 or greater and less than rw. If j is less than rw − 1,
return i. Otherwise:

• If w is written as in case 1, above, flip the “coin” represented by 𝜈 (the weight’s fractional part).
If it returns 1, return i. Otherwise, go to step 2.

• If w is written as in case 2, run SampleGeometricBag on the PSRN. If the result is 1, return
i. Otherwise, go to step 2.

• If w is written as in case 3, let r = rem(x, y) = x − floor(x/y)*y, then with probability r/y, return
i. (For example, generate z, a uniform random integer satisfying 0 ≤ z<y, then if z<r, return i.)
Otherwise, go to step 2.

3.3.2 Distributions with nowhere increasing or nowhere decreasing weights

An algorithm for sampling an integer in the interval [a, b) with probability proportional to weights listed in
nowhere increasing order (example: [10, 3, 2, 1, 1] when a = 0 and b = 5) can be implemented as follows
(Chewi et al. 2022)25. It has a logarithmic time complexity in terms of setup and sampling.

• Setup: Let w[i] be the weight for integer i (with i starting at a).
1. (Envelope weights.) Build a list q as follows: The first item is w[a], then set j to 1, then while j <

b − a, append w[a + j] and multiply j by 2. The list q’s items should be rational numbers that
equal the true values, if possible, or overestimate them if not.

2. (Envelope chunk weights.) Build a list r as follows: The first item is q[0], then set j to 1 and m
to 1, then while j < b − a, append q[m]*min((b − a) − j, j) and multiply j by 2 and add 1 to m.

3. (Start and end points of each chunk.) Build a list D as follows: The first item is the list [a, a+1],
then set j to 1, then while j < n, append the list [j, j + min((b − a) − j, j)] and multiply j by 2.

• Sampling:
1. Choose an integer in [0, s) with probability proportional to the weights in r, where s is the number

of items in r. Call the chosen integer k.
2. Set x to an integer chosen uniformly at random such that x is greater than or equal to D[k][0] and

is less than D[k][1].
3. With probability w[x] / q[k], return x. Otherwise, go to step 1.

For nowhere decreasing rather than nowhere increasing weights, the algorithm is as follows instead:

• Setup: Let w[i] be the weight for integer i (with i starting at a).
1. (Envelope weights.) Build a list q as follows: The first item is w[b − 1], then set j to 1, then

while j < (b − a), append w[b − 1 − j] and multiply j by 2. The list q’s items should be rational
numbers that equal the true values, if possible, or overestimate them if not.

2. (Envelope chunk weights.) Build a list r as given in step 2 of the previous algorithm’s setup.
3. (Start and end points of each chunk.) Build a list D as follows: The first item is the list [b − 1,

b], then set j to 1, then while j < (b − a), append the list [(b − j) − min((b − a) − j, j), b − j]
and multiply j by 2.

• The sampling is the same as for the previous algorithm.

Notes:

1. The weights can be base- 𝛽 logarithms, especially since logarithms preserve order, but in
this case the algorithm requires changes. In the setup step 2, replace “q[m]*min((b − a)”
with “q[m]+ln(min((b − a))/ln(𝛽)” (which is generally inexact unless 𝛽 is 2); in sampling
step 1, use an algorithm that takes base- 𝛽 logarithms as weights; and replace sampling
step 3 with “Generate an exponential random variate with rate ln(𝛽) (that is, the variate
is E/ln(𝛽) where E is an exponential random variate with rate 1). If that variate is greater

25Chewi, Sinho, Patrik R. Gerber, Chen Lu, Thibaut Le Gouic, and Philippe Rigollet. “Rejection sampling from shape-
constrained distributions in sublinear time.” In International Conference on Artificial Intelligence and Statistics, pp. 2249-
2265. PMLR, 2022. https://proceedings.mlr.press/v151/chewi22a.html
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than q[k] minus w[x], return x. Otherwise, go to step 1.”Applying these modifications to
this section’s algorithms can introduce numerical errors unless care is taken (see note 2).
The same is true for running the unmodified algorithms with weights that are not rational
numbers.

2. If an algorithm will operate on potentially irrational numbers, then to avoid numerical errors,
it should store and operate on real numbers in the form of constructive reals or recursive
reals (see, e.g., Boehm 198726, 202027), or in the form of partially-sampled random numbers
(PSRNs) together with algorithms with desirable properties for PSRN samplers28.

3.3.3 Unimodal distributions of weights

The following is an algorithm for sampling an integer in the interval [a, b) with probability proportional to a
unimodal distribution of weights (that is, nowhere decreasing on the left and nowhere increasing on the right)
(Chewi et al. 2022)29. It assumes the mode (the point with the highest weight) is known. An example is [1,
3, 9, 4, 4] when a = 0 and b = 5, and the mode is 2, which corresponds to the weight 9. It has a logarithmic
time complexity in terms of setup and sampling.

• Setup:
1. Find the point with the highest weight, such as via binary search. Call this point mode.
2. Run the setup for nowhere decreasing weights on the interval [a, mode), then run the setup for

nowhere increasing weights on the interval [mode, b). Both setups are described in the previous
section. Then, concatenate the two q lists into one, the two r lists into one, and the two D lists
into one.

• The sampling is the same as for the algorithms in the previous section.

3.3.4 Weighted Choice with Log Probabilities

Huijben et al. (2022)30 reviews the Gumbel max trick and Gumbel softmax distributions.

Note: Because these algorithms involve adding one real number to another and calculating
exp of a real number, they can introduce numerical errors unless care is taken (see note 2 in
“Distributions with nowhere increasing or nowhere decreasing weights”, above).

Weighted choice with the Gumbel max trick. Let C>0 be an unknown number. Then, given—

• a vector of the form [p0, p1, …, p𝑛], where p𝑖 is a so-called “unnormalized log probability” of the form
ln(x)+C (where C is a constant and x is the probability of getting i),

an integer in the closed interval [0, n] can be sampled as follows:

1. (“Gumbel”.) For each p𝑖, generate a “Gumbel variate” G, then set q𝑖 to p𝑖+G. (A so-called “Gumbel
variate” is distributed as − ln(− ln(U)), where U is a uniform random variate greater than 0 and less
than 1.31)

2. (“Max”.) Return the integer i corresponding to the highest q𝑖 value.
26Hans-J. Boehm. 1987. Constructive Real Interpretation of Numerical Programs. In Proceedings of the SIGPLAN ’87

Symposium on Interpreters and Interpretive Techniques. 214-221
27Boehm, Hans-J. “Towards an API for the real numbers.” In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 562-576. 2020.
28https://peteroupc.github.io/exporand.html#Properties
29Chewi, Sinho, Patrik R. Gerber, Chen Lu, Thibaut Le Gouic, and Philippe Rigollet. “Rejection sampling from shape-

constrained distributions in sublinear time.” In International Conference on Artificial Intelligence and Statistics, pp. 2249-
2265. PMLR, 2022. https://proceedings.mlr.press/v151/chewi22a.html

30Huijben, I.A., Kool, W., Paulus, M.B. and Van Sloun, R.J., 2022. A Review of the Gumbel-max Trick and its Extensions
for Discrete Stochasticity in Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence. Also in
https://arxiv.org/pdf/2110.01515

31Or as − ln(E), where E is an exponential random variate with rate 1.
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Note: “Gumbel top k sampling” samples k items according to their “unnormalized log probabil-
ities” (see Fig. 7 of Huijben et al. (2022)32); this sampling works by doing step 1, then choosing
the k integers corresponding to the k highest q𝑖 values. With this sampling, though, the prob-
ability of getting i (if the plain Gumbel max trick were used) is not necessarily the probability
that i is included in the k-item sample (Tillé 2023)33.

Weighted choice with the Gumbel softmax trick. Given a vector described above as well as a “temper-
ature” parameter 𝜆 > 0, a “continuous relaxation” or “concrete distribution” (which transforms the vector
to a new one) can be sampled as follows:

1. (“Gumbel”.) For each p𝑖, generate a “Gumbel variate” G, then set q𝑖 to p𝑖+G.
2. (“Softmax”.) For each q𝑖, set it to exp(q𝑖/ 𝜆).
3. Set d to the sum of all values of q𝑖.
4. For each q𝑖, divide it by d.

The algorithm’s result is a vector q, which can be used only once to sample i with probability proportional
to q𝑖 (which is not a “log probability”). (In this case, steps 3 and 4 above can be omitted if that sampling
method can work with weights that need not sum to 1.)

3.4 Bernoulli Distribution for Cumulative Distribution Functions
Suppose a real number z is given (which might be a partially-sampled random number [PSRN] or a rational
number). If a probability distribution—

• has a probability density function (PDF) (as with the normal or exponential distribution), and
• has an arbitrary-precision sampler that returns a PSRN X,

then it’s possible to generate 1 with the same probability as the sampler returns an X that is less than or
equal to z, as follows:

1. Run the arbitrary-precision sampler to generate X, a uniform PSRN.
2. Run RandLess (if z is a PSRN) or RandLessThanReal (if z is a real number) with parameters X

and z, in that order, and return the result.

Specifically, the probability of returning 1 is the cumulative distribution function (CDF) for the distribution
of X.

Notes:

1. Although step 2 of the algorithm checks whether X is merely less than z, this is still correct;
because the distribution of X has a PDF, X is less than z with the same probability as X
is less than or equal to z.

2. All probability distributions have a CDF, not just those with a PDF, but also discrete ones
such as Poisson or binomial.

3.5 Bit Vectors with Random Bit Flips
Chakraborty and Vardeman (2021)34 describes distributions of bit vectors with a random number of bit flips.
Given three parameters — 𝜇 is a p-item vector (list) with only zeros and ones in any combination; p is the

32Huijben, I.A., Kool, W., Paulus, M.B. and Van Sloun, R.J., 2022. A Review of the Gumbel-max Trick and its Extensions
for Discrete Stochasticity in Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence. Also in
https://arxiv.org/pdf/2110.01515

33Tillé, Y., “Remarks on some misconceptions about unequal probability sampling without replacement”, Computer Science
Review 47 (Feb. 2023).

34Chakraborty, A., Vardeman, S. B., Modeling and inference for mixtures of simple symmetric exponential families of p-
dimensional distributions for vectors with binary coordinates, Stat Anal Data Min: The ASA Data Sci Journal. 2021; 14: 352–
365. https://doi.org/10.1002/sam.11528
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size of 𝜇 ; and 𝛼 is a spread parameter greater than 0 and less than 1 — do the following to generate such
a vector:

1. Generate a random integer c in the interval [0, p] in some way. (c need not be uniformly distributed.
This is the number of bit flips.)

2. Create a p-item list 𝜈 , where the first c items are ones and the rest are zeros. Shuffle35 the list.
3. Create a copy of 𝜇 , call it M. Then for each i where 𝜈 [i] = 1, set M [i] to 1 − M [i]. Then return M.

The paper describes two ways to establish the weights for c in step 1 (there are others as well):

• Generate c with probability proportional to the following weights: [ 𝛼 0, 𝛼 1, …, 𝛼 𝑝]. (Since each
weight is 1 or less, this can be implemented as follows, for example. Generate a uniform random integer
in [0, p], call it d, then flip a coin that shows heads with probability 𝛼 , d times, then either return d
if d is 0 or all the flips are heads, or repeat this process otherwise.)

• Generate c with probability proportional to the following weights: [ 𝛼 0*choose(p,0), 𝛼 1*choose(p,1),
…, 𝛼 𝑝*choose(p,p)]. (Since the sum of weights is no more than 2𝑝, each weight can be divided by 2𝑝

to get weights that are 1 or less, so that this can be implemented as follows, for example. Generate
a uniform random integer in [0, p], call it d, then flip a coin that shows heads with probability 𝛼 , d
times, and a coin that shows heads with probability choose(p, d)/2𝑝 once, then either return d if all the
flips are heads, or repeat this process otherwise. Note that the probability choose(p, d)/2𝑝 is simple to
simulate for being a rational number.)

3.6 Log-Uniform Distribution
Samples from the so-called “log uniform distribution” as used by the Abseil programming library. This
algorithm takes a maximum mx and a logarithmic base b, and chooses an integer in [0, mx] such that two
values are chosen with the same probability if their base-b logarithms are equal in their integer parts (which
roughly means that lower numbers occur with an exponentially greater probability). Although this algorithm
works, in principle, for every b > 0, Abseil supports only integer bases b.

1. Let L be ceil(ln(mx+1)/ln(b)). Choose a uniform random integer in the closed interval [0, L], call it u.
2. If u is 0, return 0.
3. Set st to min(mx, ceil(b −1 )).
4. Set en to min(mx, ceil(b𝑢) − 1).
5. Choose a uniform random integer in the closed interval [st, en], and return it.

4 Sampling Unbounded Monotone Density Functions
This section shows a preprocessing algorithm to generate a random variate in the closed interval [0, 1] from
a distribution whose probability density function (PDF)—

• is continuous in the interval [0, 1],
• is strictly decreasing in [0, 1], and
• has an unbounded peak at 0.

The trick here is to sample the peak in such a way that the result is either forced to be 0 or forced to belong
to the bounded part of the PDF. This algorithm does not require the area under the curve of the PDF in
[0, 1] to be 1; in other words, this algorithm works even if the PDF is known up to a normalizing constant.
The algorithm is as follows.

1. Set i to 1.
2. Calculate the cumulative probability of the interval [0, 2 − ] and that of [0, 2 −(−1) ], call them p and

t, respectively.
35https://peteroupc.github.io/randomfunc.html#Shuffling

10

https://peteroupc.github.io/randomfunc.html#Shuffling


3. With probability p/t, add 1 to i and go to step 2. (Alternatively, if i is equal to or higher than the
desired number of fractional bits in the result, return 0 instead of adding 1 and going to step 2.)

4. At this point, the PDF at [2 − , 2 −(−1) ) is less than or equal to a finite number, so sample a random
variate in this interval using any appropriate algorithm, including rejection sampling. Because the
PDF is strictly decreasing, the peak of the PDF at this interval is located at 2 − , so that rejection
sampling becomes trivial.

It is relatively straightforward to adapt this algorithm for strictly increasing PDFs with the unbounded peak
at 1, or to PDFs with a different domain than [0, 1].

This algorithm is similar to the “inversion–rejection” algorithm mentioned in section 4.4 of chapter 7 of
Devroye’s Non-Uniform Random Variate Generation (1986)36. I was unaware of that algorithm at the time
I started writing the text that became this section (Jul. 25, 2020). The difference here is that it assumes
the whole distribution has support [0, 1] (“support” is defined later), while the algorithm presented in this
article doesn’t make that assumption (for example, the interval [0, 1] can cover only part of the distribution’s
support).

By the way, this algorithm arose while trying to devise an algorithm that can generate an integer power
of a uniform random variate, with arbitrary precision, without actually calculating that power (a naïve
calculation that is merely an approximation and usually introduces bias); for more information, see the
article on partially-sampled random numbers37. Even so, the algorithm I have come up with in this
note may be of independent interest.

In the case of powers of a uniform random variate between 0 and 1, call the variate X, namely X𝑛, the
ratio p/t in this algorithm has a very simple form, namely (1/2) 1/ . Note that this formula is the same
regardless of i. (To return 1 with probability (1/2) 1/ , the algorithm for (a/b)𝑧 in “Bernoulli Factory
Algorithms38” can be used with a=1, b=2, and z=1/n.) This is found by taking the PDF f (x) = x 1/ /(x
* n) and finding the appropriate p/t ratios by integrating f over the two intervals mentioned in step 2 of the
algorithm.

5 Certain Families of Distributions
This section is a note on certain families of univariate (one-variable) probability distributions, with emphasis
on generating random variates from them. Some of these families are described in Ahmad et al. (2019)39,
Jones (2015)40.

The following mathematical definitions are used:

• A probability distribution’s quantile function (also known as inverse cumulative distribution function
or inverse CDF) is a nowhere decreasing function that maps uniform random variates greater than 0
and less than 1 to numbers that follow the distribution.

• A probability distribution’s support is the set of values the distribution can take on, plus that set’s
endpoints. For example, the beta distribution’s support is the closed interval [0, 1], and the normal
distribution’s support is the entire real line.

• The zero-truncated Poisson distribution: To generate a random variate that follows this distribution
(with parameter 𝜆 > 0), generate random variates from the Poisson distribution41 with parameter
𝜆 until a variate other than 0 is generated this way, then take the last generated variate.

36Devroye, L., Non-Uniform Random Variate Generation, 1986.
37https://peteroupc.github.io/exporand.html
38https://peteroupc.github.io/bernoulli.html
39Ahmad, Z. et al. “Recent Developments in Distribution Theory: A Brief Survey and Some New Generalized Classes of

distributions.” Pakistan Journal of Statistics and Operation Research 15 (2019): 87-110.
40Jones, M. C. “On families of distributions with shape parameters.” International Statistical Review 83, no. 2 (2015):

175-192.
41https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
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G families. In general, families of the form “X-G” (such as “beta-G” (Eugene et al., 2002)42) use two
distributions, X and G, where—

• X is a probability distribution whose support is the closed interval [0, 1], and
• G is a probability distribution that should have an easy-to-compute quantile function.

The following algorithm samples a random variate following a distribution from this kind of family:

1. Generate a random variate that follows the distribution X. (Or generate a uniform partially-sampled
random number (PSRN)43 that follows the distribution X.) Call the number x.

2. Calculate the quantile for G of x, and return that quantile. (If x is a uniform PSRN, see “Random
Variate Generation via Quantiles”, later.)

Certain special cases of the “X-G” families, such as the following, use a specially designed distribution for
X:

• The exp-G family (Barreto-Souza and Simas 2010/2013)44, where X is an exponential distribution,
truncated to the interval [0, 1], with parameter 𝜆 ≥ 0; step 1 is modified to read: “Generate U, a
uniform random variate between 0 and 1, then set x to − ln((exp(− 𝜆) − 1)*U + 1)/ 𝜆 if 𝜆 != 0, and
U otherwise.” (The alpha power or alpha power transformed family (Mahdavi and Kundu 2017)45 uses
the same distribution for X, but with 𝜆 = − ln(𝛼) where 𝛼 is in (0, 1]; see also Jones (2018)46.)

• One family uses a shape parameter a > 0; step 1 is modified to read: “Generate u, a uniform random
variate between 0 and 1, then set x to u 1/ .” This family is mentioned in Lehmann (1953)47, Durrans
(1992)48, and Mudholkar and Srivastava (1993)49, which called it exponentiated.

• The transmuted-G family (Shaw and Buckley 2007)50. The family uses a shape parameter 𝜂 satisfying
− 1 ≤ 𝜂 ≤ 1; step 1 is modified to read: “Generate a piecewise linear random variate between 0 and 1
with weight 1 − 𝜂 at 0 and weight 1+ 𝜂 at 1, call the number x. (It can be generated as follows, see
also (Devroye 1986, p. 71-72)51: With probability min(1 − 𝜂 , 1+ 𝜂), generate x, a uniform random
variate between 0 and 1. Otherwise, generate two uniform random variates between 0 and 1, set x to
the higher of the two, then if 𝜂 is less than 0, set x to 1 − x.)”. ((Granzotto et al. 2017)52 mentions
the same distribution, but with a parameter 𝜆 = 𝜂 + 1 satisfying 0 ≤ 𝜆 ≤ 2.)

• A cubic rank transmuted distribution (Granzotto et al. 2017)53 uses parameters 𝜆 0 and 𝜆 1 in the
interval [0, 1]; step 1 is modified to read: “Generate three uniform random variates between 0 and
1, then sort them in ascending order. Then, choose 1, 2, or 3 with probability proportional to these
weights: [ 𝜆 0, 𝜆 1, 3 − 𝜆 0 − 𝜆 1]. Then set x to the first, second, or third variate if 1, 2, or 3 is chosen
this way, respectively.”

42Eugene, N., Lee, C., Famoye, F., “Beta-normal distribution and its applications”, Commun. Stat. Theory Methods 31,
2002.

43https://peteroupc.github.io/exporand.html
44Barreto-Souza, Wagner and Alexandre B. Simas. “The exp-G family of probability distributions.” Brazilian Journal of

Probability and Statistics 27, 2013. Also in arXiv:1003.1727v1 [stat.ME], 2010.
45Mahdavi, Abbas, and Debasis Kundu. “A new method for generating distributions with an application to exponential

distribution.” Communications in Statistics – Theory and Methods 46, no. 13 (2017): 6543-6557.
46M. C. Jones. Letter to the Editor concerning “A new method for generating distributions with an application to exponential

distribution” and “Alpha power Weibull distribution: Properties and applications”, Communications in Statistics - Theory and
Methods 47 (2018).

47Lehmann, E.L., “The power of rank tests”, Annals of Mathematical Statistics 24(1), March 1953.
48Durrans, S.R., “Distributions of fractional order statistics in hydrology”, Water Resources Research 28 (1992).
49Mudholkar, G. S., Srivastava, D. K., “Exponentiated Weibull family for analyzing bathtub failure-rate data”, IEEE Trans-

actions on Reliability 42(2), 299-302, 1993.
50Shaw, W.T., Buckley, I.R.C., “The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-

kurtotic-normal distribution from a rank transmutation map”, 2007.
51Devroye, L., Non-Uniform Random Variate Generation, 1986.
52Granzotto, D.C.T., Louzada, F., et al., “Cubic rank transmuted distributions: inferential issues and applications”, Journal

of Statistical Computation and Simulation, 2017.
53Granzotto, D.C.T., Louzada, F., et al., “Cubic rank transmuted distributions: inferential issues and applications”, Journal

of Statistical Computation and Simulation, 2017.
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• Biweight distribution (Al-Khazaleh and Alzoubi 2021)54: Step 1 is modified to read: “Generate a
uniform random variate x in [0, 1], then with probability (1 − x2)2, go to the next step. Otherwise,
repeat this process.”; or “Create a uniform PSRN x with positive sign and integer part 0, then run
SampleGeometricBag on that PSRN four times. If the first two results are not both 1 and if the
last two results are not both 1, go to the next step; otherwise, repeat this process.”

Transformed–transformer family. In fact, the “X-G” families are a special case of the so-called
“transformed–transformer” family of distributions introduced by Alzaatreh et al. (2013)55 that uses two
distributions, X and G, where X (the “transformed”) is an arbitrary distribution with a probability density
function; G (the “transformer”) is a distribution with an easy-to-compute quantile function; and W is a
nowhere decreasing function that, among other conditions, maps a number in the closed interval [0, 1] to a
number with the same support as X. The following algorithm samples a random variate from this kind of
family:

1. Generate a random variate that follows the distribution X. (Or generate a uniform PSRN that follows
X.) Call the number x.

2. Calculate w = W −1 (x) (where W −1 (.) is the inverse of W ), then calculate the quantile for G of w
and return that quantile. (If x is a uniform PSRN, see “Random Variate Generation via Quantiles”,
later.)

The following are special cases of the “transformed–transformer” family:

• The “T-R{Y}” family (Aljarrah et al., 2014)56, in which T is an arbitrary distribution with a PDF
(X in the algorithm above), R is a distribution with an easy-to-compute quantile function (G in the
algorithm above), and W is the quantile function for the distribution Y, whose support must contain
the support of T (so that W −1 (x) is the cumulative distribution function for Y, or the probability
that a Y -distributed number is x or less).

• Several versions of W have been proposed for the case when distribution X’s support is [0, ∞), such
as the Rayleigh and gamma distributions. They include:

– W (x) = − ln(1 − x) (W −1 (x) = 1 − exp(− x)). Suggested in the original paper by Alzaatreh
et al.

– W (x) = x/(1 − x) (W −1 (x) = x/(1+x)). Suggested in the original paper by Alzaatreh et al. This
choice forms the so-called “odd X G” family, and one example is the “odd log-logistic G” family
(Gleaton and Lynch 2006)57.

Example: For the “generalized odd gamma-G” family (Hosseini et al. 2018)58, X is the gamma(𝛼)
distribution, W −1 (x) = (x/(1+x)) 1/𝛽 , G is arbitrary, 𝛼 >0, and 𝛽 >0.

A family very similar to the “transformed–transformer” family uses a decreasing W.

• When distribution X’s support is [0, ∞), one such W that has been proposed is W (x) = − ln(x) (W
−1 (x) = exp(− x); examples include the “Rayleigh-G” family or “Rayleigh–Rayleigh” distribution (Al
Noor and Assi 2020)59, as well as the “generalized gamma-G” family, where “generalized gamma” refers

54Grassia, A., “On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and
derived compound distributions”, Australian Journal of Statistics, 1977.

55Alzaatreh, A., Famoye, F., Lee, C., “A new method for generating families of continuous distributions”, Metron 71:63–79
(2013).

56Aljarrah, M.A., Lee, C. and Famoye, F., “On generating T-X family of distributions using quantile functions”, Journal of
Statistical Distributions and Applications,1(2), 2014.

57Gleaton, J.U., Lynch, J. D., “Properties of generalized log-logistic families of lifetime distributions”, Journal of Probability
and Statistical Science 4(1), 2006.

58Hosseini, B., Afshari, M., “The Generalized Odd Gamma-G Family of Distributions: Properties and Applications”, Austrian
Journal of Statistics vol. 47, Feb. 2018.

59N.H. Al Noor and N.K. Assi, “Rayleigh-Rayleigh Distribution: Properties and Applications”, Journal of Physics: Conference
Series 1591, 012038 (2020). The underlying Rayleigh distribution uses a parameter � (or 𝜆), which is different from Mathematica’s
parameterization with 𝜎 = sqrt(1/�2) = sqrt(1/ 𝜆 2). The first Rayleigh distribution uses � and the second, 𝜆 .
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to the Stacy distribution (Boshi et al. 2020)60).

Minimums, maximums, and sums. Some distributions are described as a minimum, maximum, or sum
of N independent random variates distributed as X, where N ≥ 1 is an independent integer distributed as
the discrete distribution Y.

• Tahir and Cordeiro (2016)61 calls a distribution of minimums a compound distribution, and a distribu-
tion of maximums a complementary compound distribution.

• Pérez-Casany et al. (2016)62 calls a distribution of minimums or of maximums a random-stopped extreme
distribution.

• Let S be a sum of N variates as described above. Then Amponsah et al. (2021)63 describe the
distribution of (S, N), a two-variable random variate often called an episode.

• A distribution of sums can be called a stopped-sum distribution (Johnson et al. 2005)64. (In this case,
N can be 0 so that N ≥ 0 is an integer distributed as Y.)

A variate following a distribution of minimums or of maximums can be generated as follows (Duarte-López
et al. 2021)65:

1. Generate a uniform random variate between 0 and 1. (Or generate a uniform PSRN with integer part
0, positive sign, and empty fractional part.) Call the number x.

2. For minimums, calculate the quantile for X of 1 − W −1 (x) (where W −1 (.) is the inverse of Y ’s
probability generating function), and return that quantile.66 (If x is a uniform PSRN, see “Random
Variate Generation via Quantiles”, later. Y ’s probability generating function is W (z) = a[0]*z0 +
a[1]*z1 + …, where 0 < z < 1 and a[i] is the probability that a Y -distributed variate equals i. See
example below.)

3. For maximums, calculate the quantile for X of W −1 (x), and return that quantile.

Examples:

This distribution: Is a distribution of: Where X is: And Y is:
Geometric zero-truncated
Poisson (Akdoğan et al.,
2020)67.

Maximums. 1 plus the number of
failures before the first
success, with each
success having the
same probability.

Zero-truncated
Poisson.

GMDP(𝛼 , 𝛽 , 𝛿 , p)
(Amponsah et al. 2021)68 (𝛼
>0, 𝛽 >0, 𝛿 >0, 0<p<1).

(S, N) episodes. Gamma(𝛼) variate
divided by 𝛽 .

Discrete Pareto(𝛿 , p)
(see “Certain
Distributions”).

Bivariate gamma geometric(𝛼
, 𝛽 , p) (Barreto-Souza
2012)69 (𝛼 >0, 𝛽 >0, 0<p<1).

(S, N) episodes. Gamma(𝛼) variate
divided by 𝛽 .

1 plus the number of
failures before the first
success, with each
success having
probability p.

60Boshi, M.A.A., et al., “Generalized Gamma – Generalized Gompertz Distribution”, Journal of Physics: Conference Series
1591, 012043 (2020).

61Tahir, M.H., Cordeiro, G.M., “Compounding of distributions: a survey and new generalized classes”, Journal of Statistical
Distributions and Applications 3(13), 2016.

62Pérez-Casany, M., Valero, J., and Ginebra, J. (2016). Random-Stopped Extreme distributions. International Conference
on Statistical Distributions and Applications.

63Amponsah, C.K., Kozubowski, T.J. & Panorska, A.K. A general stochastic model for bivariate episodes driven by a gamma
sequence. J Stat Distrib App 8, 7 (2021). https://doi.org/10.1186/s40488-021-00120-5

64Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate discrete distributions.
65Duarte-López, A., Pérez-Casany, M. and Valero, J., 2021. Randomly stopped extreme Zipf extensions. Extremes, pp.1-34.
66This is simplified from the paper because Y can take on only values greater than 0 so that the probability of getting 0 is 0.
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This distribution: Is a distribution of: Where X is: And Y is:
Exponential Poisson (Kuş
2007)70.

Minimums. Exponential. Zero-truncated
Poisson.

Poisson exponential (Cancho
et al. 2011)71.

Maximums. Exponential. Zero-truncated
Poisson.

Right-truncated Weibull(a, b,
c) (Jodrá 2020)72 (a, b, and c
are greater than 0).

Minimums. Power function(b, c). Zero-truncated
Poisson(a*c𝑏).

Example: If Y is zero-truncated Poisson with parameter 𝜆 , its probability generating function
is 𝑊(𝑧) = 1−exp(𝑧𝜆)

1−exp(𝜆) , and solving for x leads to its inverse: 𝑊 −1(𝑥) = ln(1 − 𝑥 + 𝑥 × exp(𝜆))/𝜆.

Note: Bivariate exponential geometric (Barreto-Souza 2012)73 is a special case of bivariate
gamma geometric with 𝛼 =1.

Inverse distributions. An inverse X distribution (or inverted X distribution) is generally the distribution
of 1 divided by a random variate distributed as X. For example, an inverse exponential random variate
(Keller and Kamath 1982)74 is 1 divided by an exponential random variate with rate 1 (and so is distributed
as − 1/ln(U) where U is a uniform random variate between 0 and 1) and may be multiplied by a parameter
� > 0.

Weighted distributions. A weighted X distribution uses a distribution X and a weight function w(x) whose
values lie in [0, 1] everywhere in X’s support. The following algorithm samples from a weighted distribution
(see also (Devroye 1986, p. 47)75):

1. Generate a random variate that follows the distribution X. (Or generate a uniform PSRN that follows
X.) Call the number x.

2. With probability w(x), return x. Otherwise, go to step 1.

Some weighted distributions allow any weight function w(x) whose values are nonnegative everywhere in X’s
support (Rao 1985)76. (If w(x) = x, the distribution is often called a length-biased or size-biased distribution;
if w(x) = x2, area-biased.) Their probability density functions (PDFs) are proportional to the original PDFs
multiplied by w(x).

Inflated distributions. To generate an inflated X (also called c-inflated X or c-adjusted X) random variate
with parameters c and 𝛼 , generate—

• c with probability 𝛼 , and
• a random variate distributed as X otherwise.

67Akdoğan, Y., Kus, C., et al., “Geometric-Zero Truncated Poisson Distribution: Properties and Applications”, Gazi Univer-
sity Journal of Science 32(4), 2019.

68Amponsah, C.K., Kozubowski, T.J. & Panorska, A.K. A general stochastic model for bivariate episodes driven by a gamma
sequence. J Stat Distrib App 8, 7 (2021). https://doi.org/10.1186/s40488-021-00120-5

69Barreto-Souza, W.: “Bivariate gamma-geometric law and its induced Lévy process”, Journal of Multivariate Analysis 109
(2012).

70Kuş, C., “A new lifetime distribution”, Computational Statistics & Data Analysis 51 (2007).
71Cancho, Vicente G., Franscisco Louzada-Neto, and Gladys DC Barriga. “The Poisson-exponential lifetime distribution.”

Computational Statistics & Data Analysis 55, no. 1 (2011): 677-686.
72Jodrá, P., “A note on the right truncated Weibull distribution and the minimum of power function distributions”, 2020.
73Barreto-Souza, W.: “Bivariate gamma-geometric law and its induced Lévy process”, Journal of Multivariate Analysis 109

(2012).
74Keller, A.Z., Kamath A.R., “Reliability analysis of CNC machine tools”, Reliability Engineering 3 (1982).
75Devroye, L., Non-Uniform Random Variate Generation, 1986.
76Rao, C.R., “Weighted distributions arising out of methods of ascertainment”, 1985.
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For example, a zero-inflated beta random variate is 0 with probability 𝛼 and a beta random variate otherwise
(the parameter c is 0) (Ospina and Ferrari 2010)77 A zero-and-one inflated X distribution is 0 or 1 with
probability 𝛼 and distributed as X otherwise. For example, to generate a zero-and-one-inflated unit Lindley
random variate (with parameters 𝛼 , �, and p) (Chakraborty and Bhattacharjee 2021)78:

1. With probability 𝛼 , return a number that is 0 with probability p and 1 otherwise.
2. Generate a unit Lindley(�) random variate, that is, generate x/(1+x) where x is a Lindley(�) random

variate79.

Note: A zero-inflated X distribution where X takes on 0 with probability 0 is also called a hurdle
distribution (Mullahy 1986)80.

Unit distributions. To generate a unit X random variate (where X is a distribution whose support is the
positive real line), generate a random variate distributed as X, call it x, then return exp(− x) or 1 − exp(− x)
(also known as “Type I” or “Type II”, respectively). For example, a unit gamma distribution is also known
as the Grassia distribution (Grassia 1977)81.

CDF–quantile family. Given two distributions X and Y (which can be the same), a location parameter 𝜇
≥ 0, and a dispersion parameter 𝜎 >0, a variate from this family of distributions can be generated as follows
(Smithson and Shou 2019)82:

1. Generate a random variate that follows the distribution X. (Or generate a uniform PSRN that follows
X.) Call the number x.

2. If distribution X’s support is the positive real line, calculate x as ln(x).
3. Calculate z as 𝜇 + 𝜎 *x.
4. If distribution Y’s support is the positive real line, calculate z as exp(z).
5. Return H(z).

In this algorithm:

• X and Y are distributions that each have support on either the whole real line or the positive real line.
However, the book intends X to have an easy-to-compute quantile function.

• H(z) is Y’s cumulative distribution function, or the probability that a Y-distributed random variate is
z or less. The book likewise intends H to be easy to compute.

Note: An important property for use in statistical estimation is identifiability. A family of dis-
tributions is identifiable if it has the property that if two parameter vectors (�1 and �2) determine
the same distribution, then �1 must equal �2.

6 Certain Distributions
In the table below, U is a uniform random variate between 0 and 1, and all random variates are independently
generated.

This distribution: Is distributed as: And uses these parameters:
Power function(a, c). c*U 1/ . a > 0, c > 0.

77Ospina, R., Ferrari, S.L.P., “Inflated Beta Distributions”, 2010.
78Chakraborty, S., Bhattacharjee, S., “Modeling proportion of success in high school leaving examination- A

comparative study of Inflated Unit Lindley and Inflated Beta distribution”, arXiv:2103.08916 [stat.ME], 2021.
https://arxiv.org/abs/2103.08916

79https://peteroupc.github.io/exporand.html#Lindley_Distribution_and_Lindley_Like_Mixtures
80Mullahy, J., “Specification and testing of some modified count data models”, 1986.
81Grassia, A., “On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and

derived compound distributions”, Australian Journal of Statistics, 1977.
82Akdoğan, Y., Kus, C., et al., “Geometric-Zero Truncated Poisson Distribution: Properties and Applications”, Gazi Univer-

sity Journal of Science 32(4), 2019.
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This distribution: Is distributed as: And uses these parameters:
Lehmann Weibull(a1, a2, 𝛽)
(Elgohari and Yousof 2020)83.

(ln(1/U)/ 𝛽) 1/ /a2 or (E/ 𝛽) 1/

/a2
a1, a2, 𝛽 > 0. E is an exponential
random variate with rate 1.

Marshall–Olkin(𝛼) (Marshall and
Olkin 1997)84

(1 − U)/(U*(𝛼 − 1) + 1). 𝛼 in [0, 1].

Lomax(𝛼). (1 − U) −1/𝛼 − 1. 𝛼 > 0.
Power Lomax(𝛼 , 𝛽) (Rady et
al. 2016)85.

L 1/𝛽 𝛽 > 0; L is Lomax(𝛼).

Topp–Leone(𝛼). 1 − sqrt(1 − U 1/𝛼 ). 𝛼 > 0.
Bell–Touchard(a, b) (Castellares
et al. 2020)86.

Sum of N zero-truncated
Poisson(a) random variates,
where N is Poisson with
parameter b*exp(a) − b.87

a>0, b>0.

Bell(a) (Castellares et al. 2020)88. Bell–Touchard(a, 0). a>0.
Discrete Pareto(𝛿 , p) (Buddana
and Kozubowski 2014)89

1 plus the number of failures
before the first success, with each
success having probability 1 −
exp(− Z), where Z is a gamma(1/
𝛿) variate times − 𝛿 *ln(1 − p).

𝛿 > 0, and 0<p<1.

Neyman type A(𝛿 , 𝜏) (Batsidis
and Lemonte 2021)90

Bell–Touchard(𝜏 , 𝛿 *exp(− 𝜏)). 𝛿 >0, 𝜏 >0.

Gamma exponential
(Kudryavtsev 2019)91.

𝛿 *Gamma(t) 1/𝜈 /Gamma(s) /𝜈 ,
where Gamma(x) is a gamma(x)
variate.

0 ≤ r < 1; 𝜈 ≠ 0; s>0; t>0; 𝛿 >0.

Extended xgamma (Saha et
al. 2019)92

Gamma(𝛼 + c) variate divided
by �, where c is either 0 with
probability �/(�+ 𝛽), or 2
otherwise.

�>0, 𝛼 >0, 𝛽 ≥ 0.

Generalized Pareto(a, b) (McNeil
et al. 2010)93

a*((1/(1 − U))𝑏 − 1)/b. a>0; b>0.

Skew symmetric or
symmetry-modulated (Azzalini
and Capitanio 2003)94, (Azzalini
2022)95.

Z if T ≤ w(Z), or − Z otherwise. Z follows a symmetric
distribution around 0; T follows a
symmetric distribution (not
necessarily around 0). w(x)
satisfies − w(x) = w(− x).

Skew normal (Azzalini 1985)96. Skew symmetric with Z and T
both separate Normal(0, 1)
variates, and w(x) = x* 𝛼 .

𝛼 is a real number.

Logarithmic skew normal
(Gómez-Déniz et al. 2020)97

exp(SNE(𝜆 , 𝜆)* 𝜎 + 𝜇). 𝜇 and 𝜆 are real numbers; 𝜎 > 0.
SNE is described later.

Tilted beta binomial (Hahn
2022)98

Binomial(n, Tilted-beta(�, v, 𝛼 ,
𝛽)) variate.

0 ≤ � ≤ 1; 0 ≤ v ≤ 1; 𝛼 >0, 𝛽 >0;
n ≥ 0 is an integer.

Two-piece distribution (Rubio
and Steel 2020)99.

𝜇 − abs(Z)*sigma1 with
probability
sigma1/(sigma1+sigma2), or 𝜇 +
abs(Z)*sigma2 otherwise.

𝜇 is a real number; sigma1>0;
sigma2>0; Z follows a symmetric
distribution around 0.

Asymmetric generalized Gaussian
(Tesei and Regazzoni 1996)100

Two-piece distribution where Z is
exponential-power(𝛼).

𝛼 >0; 𝜇 is a real number;
sigma1>0; sigma2>0.

83Elgohari, Hanaa, and Haitham Yousof. “New Extension of Weibull Distribution: Copula, Mathematical Properties and
Data Modeling.” Stat., Optim. Inf. Comput., Vol.8, December 2020.
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This distribution:
Can be sampled with the
following algorithms: And uses these parameters:

Offset-symmetric Gaussian
(Sadeghi and Korki 2021)101

(1) Generate an unbiased random
bit b (either 0 or 1 with equal
probability); (2) generate Y, a
Normal(0, 𝜎) random variate
(standard deviation 𝜎), and if Y
< m, repeat this step; (3) return
(Y − m)*(b*2 − 1).

m>0; 𝜎 >0.

Generalized skew normal (SNE(𝜆
,�)) (Henze 1986)102

First algorithm: (1) Generate
Y and Z, two Normal(0,1)
variates; (2) if Z<Y* 𝜆 +�,
return Y ; else go to 1. Second
algorithm: (1) Let il=1/sqrt(1+
𝜆 2); (2) Generate Y and Z, two
Normal(0,1) variates; (3) if Y> −
�*il, return Y* 𝜆 *il + Z ; else go
to 2.

𝜆 and � are real numbers.

Generalized geometric
(Francis-Staite and White
2022)103

(1) Set ret to 1; (2) with
probability 𝜌 (ret), add 1 to ret
and repeat this step; otherwise,
return ret.

0 ≤ 𝜌 (k) ≤ 1 for each k.

84Marshall, A.W. and Olkin, I., 1997. A new method for adding a parameter to a family of distributions with application to
the exponential and Weibull families. Biometrika, 84(3), pp.641-652.

85Rady, E.H.A., Hassanein, W.A., Elhaddad, T.A., “The power Lomax distribution with an application to bladder cancer
data”, (2016).

86Castellares, F., Lemonte, A.J., Moreno, G., “On the two-parameter Bell-Touchard discrete distribution”, Communications
in Statistics - Theory and Methods 4, (2020).

87The similar Bell–Touchard process is the sum of the first N variates from an infinite sequence of zero-truncated Poisson(a)
random variates, where N is the number of events of a Poisson process with rate b*exp(a) − b (Freud, T., Rodriguez, P.M.,
“The Bell-Touchard counting process”, arXiv:2203.16737v2 [math.PR], 2022). https://arxiv.org/abs/2203.16737v2

88Castellares, F., Lemonte, A.J., Moreno, G., “On the two-parameter Bell-Touchard discrete distribution”, Communications
in Statistics - Theory and Methods 4, (2020).

89Buddana, Amrutha, and Tomasz J. Kozubowski. “Discrete Pareto distributions.” Economic Quality Control 29, no. 2
(2014): 143-156.

90Batsidis, A., Lemonte, A.J., “On Goodness-of-Fit Tests for the Neyman Type A Distribution”, REVSTAT-Statistical
Journal (accepted Nov. 2021).

91Kudryavtsev, A.A., “On the representation of gamma-exponential and generalized negative binomial distributions”, Inform.
Appl. 13 (2019)

92Saha, M., et al., “The extended xgamma distribution”, arXiv:1909.01103 [math.ST], 2019. https://arxiv.org/abs/19
09.01103

93McNeil, et al., “Quantitative risk management”, 2010.
94Azzalini, A., Capitanio, A., “Distributions generated by perturbation of symmetry with emphasis on a multivariate skew

t‐distribution.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, no. 2 (2003): 367-389.
95Azzalini, A., “An overview on the progeny of the skew-normal family— A personal perspective”, Journal of Multivariate

Analysis 188, March 2022.
96Azzalini, Adelchi. “A class of distributions which includes the normal ones.” Scandinavian journal of statistics (1985):

171-178.
97Gómez-Déniz, Emilio, and E. Calderín-Ojeda. “On the usefulness of the logarithmic skew normal distribution for

describing claims size data.” Mathematical Problems in Engineering 2020 (2020). Lin and Stoyanov (2009, “The logarithmic
skew-normal distributions are moment-indeterminate”, Journal of Applied Probability 46) studied the logarithmic skew normal
distribution with 𝜇 =0 and 𝜎 =1. https://www.hindawi.com/journals/mpe/2020/1420618/

98Hahn, Eugene D. “The Tilted Beta-Binomial Distribution in Overdispersed Data: Maximum Likelihood and Bayesian
Estimation.” Journal of Statistical Theory and Practice 16, no. 3 (2022): 1-22.

99Rubio, F.J. and Steel, M.F.J. (2020), The family of two-piece distributions. Significance, 17: 12-13.
https://doi.org/10.1111/j.1740-9713.2020.01352.x
100A. Tesei and C. S. Regazzoni, “The asymmetric generalized Gaussian function: a new HOS-based model for generic noise
PDFs,” in Proceedings of 8th Workshop on Statistical Signal and Array Processing, Corfu, Greece, Jun. 1996, pp. 210-213
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This distribution:
Can be sampled with the
following algorithms: And uses these parameters:

Generalized Sibuya (Kozubowski
and Podgórski 2018)104

(1) Set ret to 1; (2) with
probability 𝛼 /(𝜈 +ret), return
ret; otherwise, add 1 to ret and
repeat this step.

𝛼 < 𝜈 + 1, and 𝜈 ≥ 0.105

Himanshu (Agarwal and Pandey
2022)106

(1) Set ret to 0; (2) flip coin that
shows heads with probability p, n
times; (3) if any flip shows 0
(tails), add 1 to ret and go to 2;
otherwise, return ret.

0 ≤ p ≤ 1; n ≥ 1 is an integer.

Tilted beta (Hahn and López
Martín 2005)107

(1) With probability �, return a
beta(𝛼 , 𝛽) variate; (2) Generate
a uniform variate in (0, 1), call it
x; (3) Flip coin that returns 1
with probability x, and another
that returns 1 with probability v;
(4) If both coins return 1 or both
return 0, return x; otherwise go
to step 2.

0 ≤ � ≤ 1; 0 ≤ v ≤ 1; 𝛼 >0; 𝛽 >0.

7 Random Variate Generation via Quantiles
This note is about generating random variates from a non-discrete distribution via inverse transform sampling,
using uniform partially-sampled random numbers (PSRNs)108.

In this section:

• A distribution’s quantile function (also known as inverse cumulative distribution function or inverse
CDF) is a nowhere decreasing function that maps uniform random variates greater than 0 and less
than 1 to numbers that follow the distribution.

• A uniform PSRN is ultimately a number that lies in an interval; it contains a sign, an integer part,
and a fractional part made up of digits sampled on demand.

Take the following situation:

• Let f (.) be a function applied to a or b before calculating the quantile.
• Let Q(z) be the quantile function for the desired distribution.
• Let x be a random variate in the form of a uniform PSRN, so that this PSRN will lie in the interval

[a, b]. If f (t) = t (the identity function), the PSRN x must have a positive sign and an integer part of
101Sadeghi, Parastoo, and Mehdi Korki. “Offset-Symmetric Gaussians for Differential Privacy.” arXiv preprint
arXiv:2110.06412 (2021).
102Henze, Norbert. “A probabilistic representation of the ‘skew-normal’ distribution.” Scandinavian journal of statistics (1986):
271-275. SNE(𝜆 ,0) is distributed as Azzalini’s skew normal distribution.
103Francis-Staite, Kelli, and Langford White. “Analysis of sojourn time distributions for semi-Markov models”,
arXiv:2206.10865 (2022). https://arxiv.org/abs/2206.10865
104Kozubowski, Tomasz J., and Krzysztof Podgórski. “A generalized Sibuya distribution.” Annals of the Institute of Statistical
Mathematics 70, no. 4 (2018): 855-887.
105If 𝜈 = 0, this is the ordinary Sibuya distribution.
106Agarwal, A., Pandey, H., “Himanshu distribution and its applications”, Bulletin of Mathematics and Statistics Research
10(4), 2022.
107Hahn, E.D., López Martín, M.d.M., “Robust project management with the tilted beta distribution”, 2015.
108https://peteroupc.github.io/exporand.html
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0, so that the interval [a, b] is either the interval [0, 1] or a closed interval in [0, 1], depending on the
PSRN’s fractional part. For example, if the PSRN is 2.147…, then the interval is [2.147, 2.148].

• Let 𝛽 be the digit base of digits in x’s fractional part (such as 2 for binary).
• Suppose Q(z) is continuous on the open interval (a, b).

Then the following algorithm transforms that number to a random variate for the desired distribution, which
comes within the desired error tolerance of 𝜀 with probability 1 (see (Devroye and Gravel 2020)109):

1. Generate additional digits of x uniformly at random—thus shortening the interval [a, b]—until a lower
bound of Q(f (a)) and an upper bound of Q(f (b)) differ by no more than 2* 𝜀 . Call the two bounds
low and high, respectively.

2. Return low+(high − low)/2.

In some cases, it may be possible to calculate the needed digit size in advance.

As one example, if f (t) = t (the identity function) and the quantile function is Lipschitz continuous with
Lipschitz constant L or less on the interval [a, b]110, then the following algorithm generates a quantile with
error tolerance 𝜀 :

1. Let d be ceil((ln(max(1,L)) − ln(𝜀)) / ln(𝛽)). For each digit among the first d digits in x’s fractional
part, if that digit is unsampled, set it to a digit chosen uniformly at random.

2. The PSRN x now lies in the interval [a, b]. Calculate lower and upper bounds of Q(a) and Q(b),
respectively, that are within 𝜀 /2 of the true quantiles, call the bounds low and high, respectively.

3. Return low+(high − low)/2.

This algorithm chooses a random interval of size equal to 𝛽 𝑑, and because the quantile function is Lipschitz
continuous, the values at the interval’s bounds are guaranteed to vary by no more than 2* 𝜀 (actually 𝜀 ,
but the calculation in step 2 adds an additional error of at most 𝜀), which is needed to meet the tolerance 𝜀
(see also Devroye and Gravel 2020111).

A similar algorithm can exist even if the quantile function Q is not Lipschitz continuous on the interval [a,
b].

Specifically, if—

• f (t) = t (the identity function),
• Q on the interval [a, b] is continuous and has a minimum and maximum, and
• Q on [a, b] admits a continuous and strictly increasing function 𝜔 (𝛿) as a modulus of continuity,

then d in step 1 above can be calculated as— max(0, ceil(− ln(𝜔 −1 (𝜀))/ln(𝛽))),where 𝜔 −1 (𝜀) is the inverse
of the modulus of continuity. (Loosely speaking, a modulus of continuity 𝜔 (𝛿) gives the quantile function’s
maximum-minus-minimum in a window of size 𝛿 , and the inverse modulus 𝜔 −1 (𝜀) finds a window small
enough that the quantile function differs by no more than 𝜀 in the window.112).113

109Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and
identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
110A Lipschitz continuous function, with Lipschitz constant L, is a continuous function such that f (x) and f (y) are no more
than L* 𝜀 apart whenever x and y are points in the domain that are no more than 𝜀 apart. Roughly speaking, the function’s
slope is no “steeper” than that of L*x.
111Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
112Ker-I Ko makes heavy use of the inverse modulus of continuity in his complexity theory, for example, “Computational
complexity of roots of real functions.” In 30th Annual Symposium on Foundations of Computer Science, pp. 204-209. IEEE
Computer Society, 1989.
113Here is a sketch of the proof: Because the quantile function Q(x) is continuous on a closed interval, it’s uniformly continuous
there. For this reason, there is a positive function 𝜔 −1 (𝜀) such that Q(x) is less than 𝜀 -away from Q(y), for every 𝜀 >0,
whenever x and y lie in that interval and whenever x is less than 𝜔 −1 (𝜀)-away from y. The inverse modulus of continuity is
one such function, which is formed by inverting a modulus of continuity admitted by Q, as long as that modulus is continuous
and strictly increasing on that interval to make that modulus invertible. Finally, max(0, ceil(− ln(z)/ln(𝛽))) is an upper bound
on the number of base- 𝛽 fractional digits needed to store 1/z with an error of at most 𝜀 .
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For example—

• if Q is Lipschitz continuous114 with Lipschitz constant L or less on [a, b], then the function is no
“steeper” than that of 𝜔 (𝛿) = L* 𝛿 , so 𝜔 −1 (𝜀) = 𝜀 /L, and

• if Q is Hölder continuous with Hölder constant M or less and Hölder exponent 𝛼 on that interval 115,
then the function is no “steeper” than that of 𝜔 (𝛿) = M* 𝛿 𝛼, so 𝜔 −1 (𝜀) = (𝜀 /M) 1/𝛼 .

The algorithms given earlier in this section have a disadvantage: the desired error tolerance has to be
made known to the algorithm in advance. (Indeed, for this reason, the algorithms don’t satisfy desirable
properties for PSRN samplers116.) To generate a quantile to any error tolerance (even if the tolerance
is not known in advance), a rejection sampling approach is needed. For this to work:

• The target distribution must have a probability density function (PDF), as is the case with the normal
and exponential distributions.

• That PDF, or a function proportional to it, must be known, must be less than or equal to a finite
number, and must be continuous “almost everywhere” (the set of discontinuous points is “zero-volume”,
that is, has Lebesgue measure zero) (see also (Devroye and Gravel 2020)117).

Here is a sketch of how this rejection sampler might work:

1. After using one of the algorithms given earlier in this section to sample digits of x as needed, let a and
b be x’s upper and lower bounds. Calculate lower and upper bounds of the quantiles of f (a) and f (b)
(the bounds are [alow, ahigh] and [blow, bhigh] respectively).

2. Given the target function’s PDF or a function proportional to it, sample a uniform PSRN, y, in
the interval [alow, bhigh] using an arbitrary-precision rejection sampler such as Oberhoff’s method
(described in an appendix to the PSRN article118).

3. Accept y (and return it) if it clearly lies in [ahigh, blow]. Reject y (and go to the previous step) if
it clearly lies outside [alow, bhigh]. If y clearly lies in [alow, ahigh] or in [blow, bhigh], generate more
digits of x, uniformly at random, and go to the first step.

4. If y doesn’t clearly fall in any of the cases in the previous step, generate more digits of y, uniformly at
random, and go to the previous step.

8 Batching Random Samples via Randomness Extraction
Devroye and Gravel (2020)119 suggest the following randomness extractor to reduce the number of random
bits needed to produce a batch of samples by a sampling algorithm. The extractor works based on the
probability that the algorithm consumes X random bits given that it produces a specific output Y (or P(X
| Y ) for short):

1. Start with the interval [0, 1].
2. For each pair (X, Y ) in the batch, the interval shrinks from below by P(X − 1 | Y ) and from above

by P(X | Y ). (For example, if [0.2, 0.8] (range 0.6) shrinks from below by 0.1 and from above by 0.8,
114A Lipschitz continuous function, with Lipschitz constant L, is a continuous function such that f (x) and f (y) are no more
than L* 𝜀 apart whenever x and y are points in the domain that are no more than 𝜀 apart. Roughly speaking, the function’s
slope is no “steeper” than that of L*x.
115A Hölder continuous function (with M being the Hölder constant and 𝛼 being the Hölder exponent) is a continuous
function f such that f (x) and f (y) are no more than M* 𝛿 𝛼 apart whenever x and y are in the function’s domain and no
more than 𝛿 apart.Here, 𝛼 satisfies 0 < 𝛼 ≤ 1.Roughly speaking, the function’s “steepness” is no greater than that of M*x𝛼.
https://en.wikipedia.org/wiki/Hölder_condition
116https://peteroupc.github.io/exporand.html#Properties
117Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
118https://peteroupc.github.io/exporand.html#Oberhoff_s_Exact_Rejection_Sampling_Method
119Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
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the new interval is [0.2+0.1*0.6, 0.2+0.8*0.6] = [0.26, 0.68]. For correctness, though, the interval is
not allowed to shrink to a single point, since otherwise step 3 would run forever.)

3. Extract the bits, starting from the binary point, that the final interval’s lower and upper bound have in
common (or 0 bits if the upper bound is 1). (For example, if the final interval is [0.101010…, 0.101110…]
in binary, the bits 1, 0, 1 are extracted, since the common bits starting from the point are 101.)

After a sampling method produces an output Y, both X (the number of random bits the sampler consumed)
and Y (the output) are added to the batch and fed to the extractor, and new bits extracted this way are
added to a queue for the sampling method to use to produce future outputs. (Notice that the number of
bits extracted by the algorithm above grows as the batch grows, so only the new bits extracted this way are
added to the queue this way.)

The issue of finding P(X | Y ) is now discussed. Generally, if the sampling method implements a random
walk on a binary tree that is driven by unbiased random bits and has leaves labeled with one outcome each
(Knuth and Yao 1976)120, P(X | Y ) is found as follows (and Claude Gravel clarified to me that this is the
intention of the extractor algorithm): Take a weighted count of all leaves labeled Y up to depth X (where
the weight for depth z is 1/2𝑧), then divide it by a weighted count of all leaves labeled Y at all depths (for
instance, if the tree has two leaves labeled Y at z=2, three at z=3, and three at z=4, and X is 3, then P(X |
Y ) is (2/22+3/23) / (2/22+3/23+3/24)). In the special case where the tree has at most 1 leaf labeled Y at
every depth, this is implemented by finding P(Y ), or the probability to output Y, then chopping P(Y ) up
to the X 𝑡ℎ binary digit after the point and dividing by the original P(Y ) (for instance, if X is 4 and P(Y )
is 0.101011…, then P(X | Y ) is 0.1010 / 0.101011…).

Unfortunately, P(X | Y ) is not easy to calculate when the number of values Y can take on is large or
even unbounded. In this case, I can suggest the following ad hoc algorithm, which uses a randomness
extractor that takes bits as input, such as the von Neumann, Peres, or Zhou–Bruck extractor (see “Notes
on Randomness Extraction121”). The algorithm counts the number of bits it consumes (X) to produce
an output, then feeds X to the extractor as follows.

1. Let z be abs(X − lastX), where lastX is either the last value of X fed to this extractor for this batch
or 0 if there is no such value.

2. If z is greater than 0, feed the bits of z from most significant to least significant to a queue of extractor
inputs.

3. Now, when the sampler consumes a random bit, it checks the input queue. As long as 64 bits or more
are in the input queue, the sampler dequeues 64 bits from it, runs the extractor on those bits, and
adds the extracted bits to an output queue. (The number 64 can instead be any even number greater
than 2.) Then, if the output queue is not empty, the sampler dequeues a bit from that queue and uses
that bit; otherwise it generates an unbiased random bit as usual.

9 Sampling Distributions Using Incomplete Information
The Bernoulli factory problem (the problem of turning one biased coin into another biased coin; see
“Bernoulli Factory Algorithms122”) is a special case of the problem of sampling a probability distri-
bution with unknown parameters. This problem can be described as sampling from a new distribution
using an endless stream of random variates from an incompletely known distribution. The problem is de-
scribed in more detail in “The Sampling Problem123”.

In this section:
120Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
121https://peteroupc.github.io/randextract.html
122https://peteroupc.github.io/bernoulli.html
123https://peteroupc.github.io/sampling.html
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• An oracle (or black box) is an endless stream of independent random variates of an incompletely known
probability distribution. In the Bernoulli factory problem, this oracle is a coin that shows heads or
tails where the probability of heads is unknown.

The rest of this section deals with oracles that go beyond coins.

Algorithm 1. Suppose the oracle produces random variates on a closed interval [a, b], with an unknown
mean of 𝜇 . The goal is now to produce nonnegative random variates whose expected value (“long-run
average”) is f (𝜇). Unless f is constant, this is possible if and only if—

• f is continuous on the closed interval, and
• f (𝜇) is greater than or equal to 𝜀 *min((𝜇 − a)𝑛, (b − 𝜇)𝑛) for some integer n and some 𝜀 greater than

0 (loosely speaking, f is nonnegative and neither touches 0 in the interior of the interval nor moves
away from 0 more slowly than a polynomial)

(Jacob and Thiery 2015)124. (Here, a and b are both rational numbers and may be less than 0.)

In the algorithm below, let K be a rational number greater than the maximum value of f on the closed
interval [a, b], and let g(𝜆) = f (a + (b − a)* 𝜆)/K.

1. Create a 𝜆 input coin that does the following: “Take a number from the oracle, call it x. With
probability (x − a)/(b − a) (see note below), return 1. Otherwise, return 0.”

2. Run a Bernoulli factory algorithm for g(𝜆), using the 𝜆 input coin. Then return K times the result.

Note: The check “With probability (x − a)/(b − a)” is exact if the oracle produces only rational
numbers. Otherwise, calculating the probability can lead to numerical errors unless care is taken
(see note 2 in “Distributions with nowhere increasing or nowhere decreasing weights”, above).
With uniform partially-sampled random numbers (PSRNs), the check can be implemented as
follows. Let x be a uniform PSRN representing a number generated by the oracle. Set y to
RandUniformFromReal(b − a), then the check succeeds if RandLess(y, UniformAddRa-
tional(x, − a)) returns 1, and fails otherwise.

Example: Suppose an oracle produces random variates in the interval [3, 13] with unknown
mean 𝜇 , and the goal is to use the oracle to produce nonnegative random variates with mean
f (𝜇) = − 319/100 + 𝜇 *103/50 − 𝜇 2*11/100, which is a polynomial with Bernstein coefficients
[2, 9, 5] in the given interval. Then since 8 is greater than the maximum of f in that interval, g(𝜆)
is a degree-2 polynomial in the interval [0, 1] that has Bernstein coefficients [2/8, 9/8, 5/8]. g
can’t be simulated as is, though, but increasing g’s degree to 3 leads to the Bernstein coefficients
[1/4, 5/6, 23/24, 5/8], which are all less than 1 so that the following algorithm can be used (see
“Certain Polynomials125”):

1. Set heads to 0.
2. Generate three random variates from the oracle (which must produce random variates in

the interval [3, 13]). For each number x: With probability (x − 3)/(10 − 3), add 1 to heads.
3. Depending on heads, return 8 (that is, 1 times the upper bound) with the given probability,

or 0 otherwise: heads=0 → probability 1/4; 1 → 5/6; 2 → 23/24; 3 → 5/8.

Algorithm 2. Suppose the oracle is in the form of a fair die. The number of faces of the die, n, is at least 2
but otherwise unknown. Each face shows a different integer 0 or greater and less than n. The question arises:
Which probability distributions based on the number of faces can be sampled with this oracle? This question
was studied in the French-language dissertation of R. Duvignau (2015, section 5.2)126, and the following are
four of these distributions.
124Jacob, P.E., Thiery, A.H., “On nonnegative unbiased estimators”, Ann. Statist., Volume 43, Number 2 (2015), 769-784.
125https://peteroupc.github.io/bernoulli.html#Certain_Polynomials
126Duvignau, R., 2015. Maintenance et simulation de graphes aléatoires dynamiques (Doctoral dissertation, Université de
Bordeaux).
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Bernoulli 1/n. It’s trivial to generate a Bernoulli variate that is 1 with probability 1/n and 0 otherwise:
just take a number from the oracle and return either 1 if that number is 0, or 0 otherwise. Alternatively,
take two numbers from the oracle and return either 1 if both are the same, or 0 otherwise (Duvignau 2015,
p. 153)127.

Random variate with mean n. Likewise, it’s trivial to generate variates with a mean of n: Do “Bernoulli
1/n” trials as described above until a trial returns 0, then return the number of trials done this way. (This
is related to the ambiguously defined “geometric” random variates.)

Binomial with parameters n and 1/n. Using the oracle, the following algorithm generates a binomial
variate of this kind (Duvignau 2015, Algorithm 20)128:

1. Take items from the oracle until the same item is taken twice.
2. Create a list consisting of the items taken in step 1, except for the last item taken, then shuffle that

list.
3. In the shuffled list, count the number of items that didn’t change position after being shuffled, then

return that number.

Binomial with parameters n and k/n. Duvignau 2015 also includes an algorithm (Algorithm 25) to
generate a binomial variate of this kind using the oracle (where k is a known integer such that 0 < k and k
≤ n):

1. Take items from the oracle until k different items were taken this way. Let U be a list of these k items,
in the order in which they were first taken.

2. Create an empty list L.
3. For each integer i satisfying 0 ≤ i < k:

1. Create an empty list M.
2. Take an item from the oracle. If the item is in U at a position less than i (positions start at

0), repeat this substep. Otherwise, if the item is not in M, add it to M and repeat this substep.
Otherwise, go to the next substep.

3. Shuffle the list M, then add to L each item that didn’t change position after being shuffled (if not
already present in L).

4. For each integer i satisfying 0 ≤ i < k:
1. Let P be the item at position i in U.
2. Take an item from the oracle. If the item is in U at position i or less (positions start at 0),

repeat this substep.
3. If the last item taken in the previous substep is in U at a position greater than i, add P to L

(if not already present).
5. Return the number of items in L.

Note: Duvignau proved a result (Theorem 5.2) that answers the question: Which probability
distributions based on the unknown n can be sampled with the oracle?129 The result applies to a
family of (discrete) distributions with the same unknown parameter n, starting with either 1 or
a greater integer. Let Supp(m) be the set of values taken on by the distribution with parameter
equal to m. Then that family can be sampled using the oracle (with or without additional
randomness) if and only if:

• There is a computable function f (k) that outputs a positive number.
127Duvignau, R., 2015. Maintenance et simulation de graphes aléatoires dynamiques (Doctoral dissertation, Université de
Bordeaux).
128Duvignau, R., 2015. Maintenance et simulation de graphes aléatoires dynamiques (Doctoral dissertation, Université de
Bordeaux).
129There are many distributions that can be sampled using the oracle, by first generating unbiased random bits via randomness
extraction methods, but then these distributions won’t use the unknown number of faces in general. Duvignau proved Theorem
5.2 for an oracle that outputs arbitrary but still distinct items, as opposed to integers, but this case can be reduced to the
integer case (see section 4.1.3).
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• For each n, Supp(n) is included in Supp(n+1).
• For every k and for every n ≥ 2 starting with the first n for which k is in Supp(n), the

probability of seeing k given parameter n is at least (1/n) () .

Moreover, by Proposition 5.5 of Duvignau, a family meeting the conditions above can be sampled
without additional randomness (besides the oracle) if and only if Supp(1) has no more than one
element.

Example: Let n ≥ 2 be an integer.The family of Bernoulli distributions, taking on 1 with
probability exp(− n) and 0 otherwise, cannot be simulated this way, because that probability
decays faster than the rate (1/n) (1) for any f. This is consistent with the results for Bernoulli
factories (Keane and O’Brien 1994)130, where a coin that shows heads with unknown probability
𝜆 = 1/n cannot be turned into a coin that shows heads with probability g(𝜆) = exp(− 1/ 𝜆) =
exp(− n) since g is not polynomially bounded (away from 0).However, a Bernoulli family, taking
on 1 with probability h(n) = (1+ln(n))/n and 0 with probability 1 − h(n), can be simulated,
because min(h(n), 1 − h(n)) ≥ (1/n)3.

9.1 Additional Algorithms
The following algorithms are included here because they require applying an arbitrary function (such as f (𝜆))
to a potentially irrational number.

Algorithm 3. Suppose the oracle produces random variates with a known or unknown expected value
(“long-run average” or mean). The goal is now to produce nonnegative random variates whose expected
value is the mean of f (X), where X is a number produced by the oracle. This is possible whenever—

• f has a finite lower bound and a finite upper bound on its domain, and
• the mean of f (X) is not less than 𝛿 , where 𝛿 is a known rational number greater than 0.

The algorithm to achieve this goal follows (see Lee et al. 2014131):

1. Let m be a rational number equal to or greater than the maximum value of abs(f (𝜇)) anywhere. Create
a 𝜈 input coin that does the following: “Take a number from the oracle, call it x. With probability
abs(f (x))/m, return a number that is 1 if f (x) < 0 and 0 otherwise. Otherwise, repeat this process.”

2. Use one of the linear Bernoulli factories132 to simulate 2* 𝜈 (2 times the 𝜈 coin’s probability of
heads), using the 𝜈 input coin, with 𝜖 = 𝛿 /m. If the factory returns 1, return 0. Otherwise, take a
number from the oracle, call it �, and return abs(f (�)).

Example: An example from Lee et al. (2014)133. Say the oracle produces uniform random
variates in [0, 3* 𝜋 ], and let f (𝜈) = sin(𝜈). Then the mean of f (X) is 2/(3* 𝜋), which is greater
than 0 and found in SymPy by sympy.stats.E(sin(sympy.stats.Uniform('U',0,3*pi))),
so the algorithm can produce nonnegative random variates whose expected value (“long-run
average”) is that mean.

Notes:

1. Averaging to the mean of f (X) (that is, E[f (X)] where E[.] means expected value or “long-
run average”) is not the same as averaging to f (𝜇) where 𝜇 is the mean of the oracle’s
numbers (that is, f (E[X])). For example, if X is 0 or 1 with equal probability, and f (𝜈) =

130Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),
1994.
131Lee, A., Doucet, A. and Łatuszyński, K., 2014. “Perfect simulation using atomic regeneration with application to

Sequential Monte Carlo”, arXiv:1407.5770v1 [stat.CO]. https://arxiv.org/abs/1407.5770v1
132https://peteroupc.github.io/bernoulli.html#lambda__x_y__linear_Bernoulli_factories
133Lee, A., Doucet, A. and Łatuszyński, K., 2014. “Perfect simulation using atomic regeneration with application to

Sequential Monte Carlo”, arXiv:1407.5770v1 [stat.CO]. https://arxiv.org/abs/1407.5770v1
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exp(− 𝜈), then E[f (X)] = exp(0) + (exp(− 1) − exp(0))*(1/2), and f (E[X]) = f (1/2) =
exp(− 1/2).

2. (Lee et al. 2014, Corollary 4)134: If f (𝜇) is known to return only values in the interval [a, c],
the mean of f (X) is not less than 𝛿 , 𝛿 > b, and 𝛿 and b are known numbers, then Algorithm
2 can be modified as follows:

• Use f (𝜈) = f (𝜈) − b, and use 𝛿 = 𝛿 − b.
• m is taken as max(b − a, c − b).
• When Algorithm 2 finishes, add b to its return value.

3. The check “With probability abs(f (x))/m” is exact if the oracle produces only rational num-
bers and if f (x) outputs only rational numbers. If the oracle or f can produce irrational
numbers (such as numbers that follow a beta distribution or another non-discrete distribu-
tion), then calculating the probability can lead to numerical errors unless care is taken (see
note 2 in “Distributions with nowhere increasing or nowhere decreasing weights”, above).

Algorithm 4. Suppose the oracle produces random variates all greater than or equal to a (which is a known
rational number), and with an unknown mean (𝜇). The goal is to use the oracle to produce nonnegative
random variates with mean f (𝜇). This is possible only if f is 0 or greater everywhere in the interval [a, ∞)
and is nowhere decreasing in that interval (Jacob and Thiery 2015)135. This can be done using the algorithm
below. In the algorithm:

• f (𝜇) must be a function that can be written as—c[0]*z0 + c[1]*z1 + …,which is an infinite series where
z = 𝜇 − a and all c[i] are 0 or greater.

• � is a rational number close to 1, such as 95/100. (The exact choice is arbitrary and can be less or
greater for efficiency purposes, but must be greater than 0 and less than 1.)

The algorithm follows.

1. Set ret to 0, prod to 1, k to 0, and w to 1. (w is the probability of taking k or more numbers from the
oracle in a single run of the algorithm.)

2. If k is greater than 0: Take a number from the oracle, call it x, and multiply prod by x − a.
3. Add c[k]*prod/w to ret.
4. Multiply w by � and add 1 to k.
5. With probability �, go to step 2. Otherwise, return ret.

Now, assume the oracle’s numbers are all less than or equal to b (rather than greater than or equal to a), where
b is a known rational number. Then f must be 0 or greater everywhere in (− ∞, b] and be nowhere increasing
there (Jacob and Thiery 2015)136, and the algorithm above can be used with the following modifications: (1)
In the note on the infinite series, z = b − 𝜇 ; (2) in step 2, multiply prod by b − x rather than x − a.

Note: This algorithm is exact if the oracle produces only rational numbers and if all c[i] are
rational numbers. Otherwise, the algorithm can introduce numerical errors unless care is taken
(see note 2 in “Distributions with nowhere increasing or nowhere decreasing weights”, above).
See also note 3 on the previous algorithm.

Algorithm 5. Suppose there is a coin that shows heads (or 1) with the unknown probability 𝜆 , where
0 < 𝜆 < 1. The goal is now to produce random variates whose expected value is f (𝜆), where 𝑓(𝜆) is
a function on the closed unit interval and need not be continuous. This can be done with the following
algorithm (Akahira and Koike 1998)137, (Akahira et al. 1992)138.
134Lee, A., Doucet, A. and Łatuszyński, K., 2014. “Perfect simulation using atomic regeneration with application to

Sequential Monte Carlo”, arXiv:1407.5770v1 [stat.CO]. https://arxiv.org/abs/1407.5770v1
135Jacob, P.E., Thiery, A.H., “On nonnegative unbiased estimators”, Ann. Statist., Volume 43, Number 2 (2015), 769-784.
136Jacob, P.E., Thiery, A.H., “On nonnegative unbiased estimators”, Ann. Statist., Volume 43, Number 2 (2015), 769-784.
137Akahira, M., & Koike, K. (1998). On the properties of statistical sequential decision procedures. Sugaku expositions, 11(2).
138AKAHIRA, Masafumi, Kei TAKEUCHI, and Ken-ichi KOIKE. “Unbiased estimation in sequential binomial sampling”,
Rep. Stat. Appl. Res., JUSE 39 1-13, 1992.

26

https://arxiv.org/abs/1407.5770v1


• First, define a sequence 𝑔1(𝜆), 𝑔2(𝜆), 𝑔3(𝜆), ... of polynomials in Bernstein form, where the number after
𝑔 is the degree of the polynomial. For every point 𝜆 satisfying 0 ≤ 𝜆 ≤ 1, 𝑔𝑛(𝜆) must approach 𝑓(𝜆) with
increasing 𝑛 (that is, 𝑔𝑛 must converge pointwise to 𝑓). Denote 𝑔𝑛[𝑘] as the 𝑘-th Bernstein coefficient of
the polynomial 𝑔𝑛, where 0 ≤ 𝑘 ≤ 𝑛. See also my article “Approximations in Bernstein Form139”.

• Second, define probabilities 𝑝0, 𝑝1, 𝑝2, ... that are positive and sum to 1 (except 𝑝0 can be 0). An
example is 𝑝𝑛 = 𝑝(1 − 𝑝)𝑛, where 0 < 𝑝 < 1.

1. Generate at random an integer (which is 0 or greater) that equals 𝑖 with probability 𝑝𝑖. Call the integer
𝑛.

2. Flip the input coin 𝑛 times, then set 𝑘 to the number of times 1 is returned this way.
3. If 𝑛 is 0, define 𝐸(𝑛, 𝑘) as 0. Otherwise, define 𝐸(𝑛, 𝑘) as (𝑔𝑛[𝑘]−𝑘⋅𝑔𝑛−1[𝑘−1]/𝑛−(𝑛−𝑘)𝑔𝑛−1[𝑘]/𝑛)/𝑝𝑛

(letting 𝑔0[𝑘] = 0 letting 𝑔𝑚[𝑗] = 0 whenever 𝑗 < 0 or 𝑗 > 𝑚). (Note: This implies that if 𝑔𝑛 = 𝑔𝑛−1,
then 𝐸(𝑛, 𝑘) is 0.)

4. Return 𝐸(𝑛, 𝑘).
The output returned in step 4 will have expected value 𝑓(𝜆) if the following condition is met: The sum of
the polynomials—

𝑝𝑛|𝐸(𝑛, 0)|(𝑛
0)𝜆0(1 − 𝜆)𝑛−0 + ... + 𝑝𝑛|𝐸(𝑛, 𝑛)|(𝑛

𝑛)𝜆𝑛(1 − 𝜆)𝑛−𝑛,

over all integers 𝑛 ≥ 0, is finite whenever 0 < 𝜆 < 1 (Akahira et al. 1992)140. It can be shown that this
condition is the same as: 𝑔1(𝜆) + |𝑔2(𝜆) − 𝑔1(𝜆)| + |𝑔3(𝜆) − 𝑔2(𝜆)| + ... is finite whenever 0 < 𝜆 < 1. 141

Note: It can be shown that Algorithm 5 works even if 𝜆 is 0 or 1 (that is, if the coin shows
tails every time or heads every time, respectively).
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139https://peteroupc.github.io/bernapprox.html
140AKAHIRA, Masafumi, Kei TAKEUCHI, and Ken-ichi KOIKE. “Unbiased estimation in sequential binomial sampling”,
Rep. Stat. Appl. Res., JUSE 39 1-13, 1992.
141Singh (1964, “Existence of unbiased estimates”, Sankhyā A 26) claimed that an estimation algorithm with expected value

𝑓(𝜆) exists given an oracle of variates with unknown mean 𝜆 if there are polynomials that converge pointwise to 𝑓, and
Bhandari and Bose (1990, “Existence of unbiased estimates in sequential binomial experiments”, Sankhyā A 52) claimed
necessary conditions for those algorithms. However, Akahira et al. (1992) questioned the claims of both papers, and the latter
paper underwent a correction, which I haven’t seen (Sankhyā A 55, 1993).
142https://creativecommons.org/publicdomain/zero/1.0/
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