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2	About	This	Document

This	is	an	open-source	document;	for	an	updated	version,	see
the	source	code	or	its	rendering	on	GitHub.	You	can	send
comments	on	this	document	on	the	GitHub	issues	page.

My	audience	for	this	article	is	computer	programmers	with
mathematics	knowledge,	but	little	or	no	familiarity	with
calculus.

I	encourage	readers	to	implement	any	of	the	algorithms	given	in	this
page,	and	report	their	implementation	experiences.	In	particular,	I
seek	comments	on	the	following	aspects:

Are	the	algorithms	in	this	article	easy	to	implement?	Is	each
algorithm	written	so	that	someone	could	write	code	for	that
algorithm	after	reading	the	article?
Does	this	article	have	errors	that	should	be	corrected?
Are	there	ways	to	make	this	article	more	useful	to	the	target
audience?

Comments	on	other	aspects	of	this	document	are	welcome.

3	Samplers	for	Certain	Discrete
Distributions

The	following	are	exact	samplers	for	certain	discrete	distributions,	or
probability	distributions	that	take	on	values	each	mappable	to	a
different	integer.

3.1	On	a	Binomial	Sampler
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The	binomial(n,	p)	distribution	models	the	number	of	successful	trials
("coin	flips")	out	of	n	of	them,	where	the	trials	are	independent	and
have	success	probability	p.

Take	the	following	sampler	of	a	binomial(n,	1/2)	distribution,	where	n
is	even,	which	is	equivalent	to	the	one	that	appeared	in	Bringmann	et
al.	(2014)1,	and	adapted	to	be	more	programmer-friendly.

1.	 If	n	is	less	than	4,	generate	n	unbiased	random	bits	(each	bit	is
zero	or	one	with	equal	probability)	and	return	their	sum.
Otherwise,	if	n	is	odd2,	set	ret	to	the	result	of	this	algorithm	with	n
=	n	−	1,	then	add	an	unbiased	random	bit's	value	to	ret,	then
return	ret.

2.	 Set	m	to	floor(sqrt(n))	+	1.
3.	 (First,	sample	from	an	envelope	of	the	binomial	curve.)	Generate

unbiased	random	bits	until	a	zero	is	generated	this	way.	Set	k	to
the	number	of	ones	generated	this	way.

4.	 Set	s	to	an	integer	in	[0,	m)	chosen	uniformly	at	random,	then	set	i
to	k*m	+	s.

5.	 Generate	an	unbiased	random	bit.	If	that	bit	is	0,	set	ret	to	(n/2)+i.
Otherwise,	set	ret	to	(n/2)−i−1.

6.	 (Second,	accept	or	reject	ret.)	If	ret	<	0	or	ret	>	n,	go	to	step	3.
7.	 With	probability	choose(n,	ret)*m*2k−n−2,	return	ret.	Otherwise,

go	to	step	3.	(Here,	choose(n,	k)	is	a	binomial	coefficient,	or	the
number	of	ways	to	choose	k	out	of	n	labeled	items.3)

This	algorithm	has	an	acceptance	rate	of	1/16	regardless	of	the	value
of	n.	However,	step	7	will	generally	require	a	growing	amount	of
storage	and	time	to	exactly	calculate	the	given	probability	as	n	gets
larger,	notably	due	to	the	inherent	factorial	in	the	binomial	coefficient.
The	Bringmann	paper	suggests	approximating	this	factorial	via
Spouge's	approximation;	however,	it	seems	hard	to	do	so	without
using	floating-point	arithmetic,	which	the	paper	ultimately	resorts	to.
Alternatively,	the	logarithm	of	that	probability	can	be	calculated,	then
0	minus	an	exponential	random	variate	can	be	generated	and
compared	with	that	logarithm	to	determine	whether	the	step
succeeds.

More	specifically,	step	7	can	be	changed	as	follows:

(7.)	Let	p	be
loggamma(n+1)−loggamma(ret+1)−loggamma((n−ret)+1)+ln(m)
+ln(2)*(k−n−2)	(where	loggamma(x)	is	the	logarithm	of	the
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gamma	function).
(7a.)	Generate	an	exponential	random	variate	with	rate	1	(which	is
the	negative	natural	logarithm	of	a	uniform(0,1)	random	variate).
Set	h	to	0	minus	that	number.
(7b.)	If	h	is	greater	than	p,	go	to	step	3.	Otherwise,	return	ret.
(This	step	can	be	replaced	by	calculating	lower	and	upper	bounds
that	converge	to	p.	In	that	case,	go	to	step	3	if	h	is	greater	than	the
upper	bound,	or	return	ret	if	h	is	less	than	the	lower	bound,	or
compute	better	bounds	and	repeat	this	step	otherwise.	See	also
chapter	4	of	(Devroye	1986)4.)

My	implementation	of	loggamma	and	the	natural	logarithm
(betadist.py)	relies	on	so-called	"constructive	reals"	as	well	as	a	fast
converging	version	of	Stirling's	formula	for	the	factorial's	natural
logarithm	(Schumacher	2016)5.

Also,	according	to	the	Bringmann	paper,	m	can	be	set	such	that	m	is
in	the	interval	[sqrt(n),	sqrt(n)+3],	so	I	implement	step	1	by	starting
with	u	=	2floor((1+β(n))/2),	then	calculating	v	=	floor((u+floor(n/u))/2),	w
=	u,	u	=	v	until	v	≥	w,	then	setting	m	to	w	+	1.	Here,	β(n)	=
ceil(ln(n+1)/ln(2)),	or	alternatively	the	minimum	number	of	bits
needed	to	store	n	(with	β(0)	=	0).

Notes:

A	binomial(n,	1/2)	random	variate,	where	n	is	odd6,	can	be
generated	by	adding	an	unbiased	random	bit's	value	(either
zero	or	one	with	equal	probability)	to	a	binomial(n−1,	1/2)
random	variate.
As	pointed	out	by	Farach-Colton	and	Tsai	(2015)7,	a
binomial(n,	p)	random	variate,	where	p	is	in	the	interval	(0,
1),	can	be	generated	using	binomial(n,	1/2)	numbers	using	a
procedure	equivalent	to	the	following:
1.	 Set	k	to	0	and	ret	to	0.
2.	 If	the	binary	digit	at	position	k	after	the	point	in	p's	binary

expansion	(that	is,	0.bbbb...	where	each	b	is	a	zero	or	one)
is	1,	add	a	binomial(n,	1/2)	random	variate	to	ret	and
subtract	the	same	variate	from	n;	otherwise,	set	n	to	a
binomial(n,	1/2)	random	variate.

3.	 If	n	is	greater	than	0,	add	1	to	k	and	go	to	step	2;
otherwise,	return	ret.	(Positions	start	at	0	where	0	is	the
most	significant	digit	after	the	point,	1	is	the	next,	etc.)
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3.2	On	Geometric	Samplers

As	used	in	Bringmann	and	Friedrich	(2013)8,	a	geometric(p)	random
variate	expresses	the	number	of	failing	trial	before	the	first	success,
where	each	trial	("coin	flip")	is	independent	and	has	success
probability	p,	satisfying	0	<	p	≤	1.

Note:	The	terms	"geometric	distribution"	and	"geometric
random	variate"	have	conflicting	meanings	in	academic	works.

The	following	algorithm	is	equivalent	to	the	geometric(px/py)	sampler
that	appeared	in	that	paper,	but	adapted	to	be	more	programmer-
friendly.	The	algorithm	uses	the	rational	number	px/py,	not	an
arbitrary	real	number	p;	some	of	the	notes	in	this	section	indicate	how
to	adapt	the	algorithm	to	an	arbitrary	p.

1.	 Set	pn	to	px,	k	to	0,	and	d	to	0.
2.	 While	pn*2	≤	py,	add	1	to	k	and	multiply	pn	by	2.	(Equivalent	to

finding	the	largest	k	≥	0	such	that	p*2k	≤	1.	For	the	case	when	p
need	not	be	rational,	enough	of	its	binary	expansion	can	be
calculated	to	carry	out	this	step	accurately,	but	in	this	case	any	k
such	that	p	is	greater	than	1/(2k+2)	and	less	than	or	equal	to	1/(2k)
will	suffice,	as	the	Bringmann	paper	points	out.)

3.	 With	probability	(1−px/py)2k,	add	1	to	d	and	repeat	this	step.	(To
simulate	this	probability,	the	first	sub-algorithm	below	can	be
used.)

4.	 Generate	a	uniform	random	integer	in	[0,	2k),	call	it	m,	then	with
probability	(1−px/py)m,	return	d*2k+m.	Otherwise,	repeat	this
step.	(The	Bringmann	paper,	though,	suggests	to	simulate	this
probability	by	sampling	only	as	many	bits	of	m	as	needed	to	do	so,
rather	than	just	generating	m	in	one	go,	then	using	the	first	sub-
algorithm	on	m.	However,	the	implementation,	given	as	the	second
sub-algorithm	below,	is	much	more	complicated	and	is	not	crucial
for	correctness.)

The	first	sub-algorithm	returns	1	with	probability	(1−px/py)n,
assuming	that	n*px/py	≤	1.	It	implements	the	approach	from	the
Bringmann	paper	by	rewriting	the	probability	using	the	binomial
theorem.	(More	generally,	to	return	1	with	probability	(1−p)n,	it's
enough	to	flip	a	coin	that	shows	heads	with	probability	p,	n	times	or
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until	it	shows	heads,	whichever	comes	first,	and	then	return	either	1	if
all	the	flips	showed	tails,	or	0	otherwise.	See	also	"Bernoulli	Factory
Algorithms".)

1.	 Set	pnum,	pden,	and	j	to	1,	then	set	r	to	0,	then	set	qnum	to	px,
and	qden	to	py,	then	set	i	to	2.

2.	 If	j	is	greater	than	n,	go	to	step	5.
3.	 If	j	is	even9,	set	pnum	to	pnum*qden	+	pden*qnum*choose(n,j).

Otherwise,	set	pnum	to	pnum*qden	−	pden*qnum*choose(n,j).
4.	 Multiply	pden	by	qden,	then	multiply	qnum	by	px,	then	multiply

qden	by	py,	then	add	1	to	j.
5.	 If	j	is	less	than	or	equal	to	2	and	less	than	or	equal	to	n,	go	to	step

2.
6.	 Multiply	r	by	2,	then	add	an	unbiased	random	bit's	value	(either	0

or	1	with	equal	probability)	to	r.
7.	 If	r	≤	floor((pnum*i)/pden)	−	2,	return	1.	If	r	≥

floor((pnum*i)/pden)	+	1,	return	0.	If	neither	is	the	case,	multiply	i
by	2	and	go	to	step	2.

The	second	sub-algorithm	returns	an	integer	m	in	[0,	2k)	with
probability	(1−px/py)m,	or	−1	with	the	opposite	probability.	It	assumes
that	2k*px/py	≤	1.

1.	 Set	r	and	m	to	0.
2.	 Set	b	to	0,	then	while	b	is	less	than	k:

1.	 (Sum	b+2	summands	of	the	binomial	equivalent	of	the	desired
probability.	First,	append	an	additional	bit	to	m,	from	most	to
least	significant.)	Generate	an	unbiased	random	bit	(either	0	or
1	with	equal	probability).	If	that	bit	is	1,	add	2k−b	to	m.

2.	 (Now	build	up	the	binomial	probability.)	Set	pnum,	pden,	and	j
to	1,	then	set	qnum	to	px,	and	qden	to	py.

3.	 If	j	is	greater	than	m	or	greater	than	b	+	2,	go	to	the	sixth
substep.

4.	 If	j	is	even10,	set	pnum	to	pnum*qden	+
pden*qnum*choose(m,j).	Otherwise,	set	pnum	to	pnum*qden	−
pden*qnum*choose(m,j).

5.	 Multiply	pden	by	qden,	then	multiply	qnum	by	px,	then	multiply
qden	by	py,	then	add	1	to	j,	then	go	to	the	third	substep.

6.	 (Now	check	the	probability.)	Multiply	r	by	2,	then	add	an
unbiased	random	bit's	value	(either	0	or	1	with	equal
probability)	to	r.

7.	 If	r	≤	floor((pnum*2b)/pden)	−	2,	add	a	uniform	random	integer
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in	[0,	2k*b)	to	m	and	return	m	(and,	if	requested,	the	number
k−b−1).	If	r	≥	floor((pnum*2b)/pden)	+	1,	return	−1	(and,	if
requested,	an	arbitrary	value).	If	neither	is	the	case,	add	1	to	b.

3.	 Add	an	unbiased	random	bit	to	m.	(At	this	point,	m	is	fully
sampled.)

4.	 Run	the	first	sub-algorithm	with	n	=	m,	except	in	step	1	of	that
sub-algorithm,	set	r	to	the	value	of	r	built	up	by	this	algorithm,
rather	than	0,	and	set	i	to	2k,	rather	than	2.	If	that	sub-algorithm
returns	1,	return	m	(and,	if	requested,	the	number	−1).	Otherwise,
return	−1	(and,	if	requested,	an	arbitrary	value).

3.2.1	Bounded	Geometric	Distribution

As	used	in	the	Bringmann	paper,	a	bounded	geometric(p,	n)	random
variate	is	a	geometric(p)	random	variate	or	n	(an	integer	greater	than
0),	whichever	is	less.	The	following	algorithm	is	equivalent	to	the
algorithm	given	in	that	paper,	but	adapted	to	be	more	programmer-
friendly.

1.	 Set	pn	to	px,	k	to	0,	d	to	0,	and	m2	to	the	smallest	power	of	2	that
is	greater	than	n	(or	equivalently,	2bits	where	bits	is	the	minimum
number	of	bits	needed	to	store	n).

2.	 While	pn*2	≤	py,	add	1	to	k	and	multiply	pn	by	2.

3.	 With	probability	(1−px/py)2k,	add	1	to	d	and	then	either	return	n	if
d*2k	is	greater	than	or	equal	to	m2,	or	repeat	this	step	if	less.	(To
simulate	this	probability,	the	first	sub-algorithm	above	can	be
used.)

4.	 Generate	a	uniform	random	integer	in	[0,	2k),	call	it	m,	then	with
probability	(1−px/py)m,	return	min(n,	d*2k+m).	In	the	Bringmann
paper,	this	step	is	implemented	in	a	manner	equivalent	to	the
following	(this	alternative	implementation,	though,	is	not	crucial
for	correctness):
1.	 Run	the	second	sub-algorithm	above,	except	return	two	values,

rather	than	one,	in	the	situations	given	in	the	sub-algorithm.
Call	these	two	values	m	and	mbit.

2.	 If	m	<	0,	go	to	the	first	substep.
3.	 If	mbit	≥	0,	add	2mbit	times	an	unbiased	random	bit	to	m	and

subtract	1	from	mbit.	If	that	bit	is	1	or	mbit	<	0,	go	to	the	next
substep;	otherwise,	repeat	this	substep.

4.	 Return	n	if	d*2k	is	greater	than	or	equal	to	m2.
5.	 Add	a	uniform	random	integer	in	[0,	2mbit+1)	to	m,	then	return



min(n,	d*2k+m).

3.2.2	Symmetric	Geometric	Distribution

Samples	from	the	symmetric	geometric	distribution	from	(Ghosh	et	al.
2012)11,	with	parameter	λ	(a	real	number	satisfying	0	<	λ	≤	1),	in	the
form	of	an	input	coin	with	unknown	probability	of	heads	of	λ.

1.	 Flip	the	input	coin	until	it	returns	1.	Set	n	to	the	number	of	times
the	coin	returned	0	this	way.

2.	 Run	a	Bernoulli	factory	algorithm	for	1/(2−λ),	using	the	input
coin.	If	the	run	returns	1,	return	n.	Otherwise,	return	−1	−	n.

This	is	similar	to	an	algorithm	mentioned	in	an	appendix	in	Li
(2021)12,	in	which	the	input	coin—

has	λ	=	1−exp(−ε),	where	ε	>	0,	and
can	be	built	as	follows	using	another	input	coin:	"Run	the
ExpMinus	algorithm	with	parameter	ε,	then	return	1	minus	the
result."

The	algorithm	of	Li	generates	a	variate	from	the	discrete	Laplace
distribution	with	parameter	ε,	and	Canonne	et	al.	(2020)13	likewise
gave	an	exact	algorithm	for	that	distribution	where	ε	=	s/t	is	a	rational
number,	where	s	>	0	and	t	>	0	are	integers,	namely	an	algorithm
equivalent	to	the	following:

1.	 Generate	a	uniform	random	integer	u	that	satisfies	0	≤	u	<	t.
2.	 Run	the	ExpMinus	algorithm	with	parameter	u/t.	If	it	returns	0,

go	to	step	1.
3.	 Run	the	ExpMinus	algorithm	with	parameter	1,	until	a	run	returns

0,	then	set	n	to	the	number	of	times	the	algorithm	returned	1	this
way.

4.	 Set	y	to	floor((u+n*t)/s).
5.	 Generate	an	unbiased	random	bit	(either	zero	or	one	with	equal

probability).	If	the	bit	is	0,	return	y.	Otherwise,	if	y	is	0,	go	to	step
1.	Otherwise,	return	−y.

3.3	Weighted	Choice	for	Special
Distributions

file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn11
file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn12
file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn13


The	following	are	algorithms	to	sample	items	whose	"weights"	(which
are	related	to	the	probability	of	sampling	each	item)	are	given	in	a
special	way.	They	supplement	the	section	"Weighted	Choice"	in	my
article	"Randomization	and	Sampling	Methods".

3.3.1	Weighted	Choice	with	Weights	Written	as	an
Integer	and	Fraction

Suppose	there	is	a	list	called	weights.	This	is	a	list	of	n	weights,	with
labels	starting	at	0	and	ending	at	n−1.

Each	weight—

1.	 can	store	an	integer	part	m	and	have	ν	represent	a	"coin"	that
implements	an	algorithm	that	returns	1	(or	outputs	heads)	with
probability	exactly	equal	to	the	fractional	part	ν	(m	≥	0,	and	0	≤	ν
≤	1),	or

2.	 can	store	a	partially-sampled	random	number	(PSRN),	with	the
integer	part	equal	to	m	and	the	fractional	part	equal	to	ν	(m	≥	0,
and	0	≤	ν	≤	1),	or

3.	 can	store	a	rational	number	x/y,	where	x≥0	and	y>0	are	integers,
such	that	m	=	floor(x/y)	and	ν	=	x/y−m.

Given	this	list	of	weights,	the	following	algorithm	chooses	an	integer
in	[0,	n)	with	probability	proportional	to	its	weight.

1.	 Create	an	empty	list,	then	for	each	weight	starting	with	weight	0,
append	the	weight's	integer	part	(m)	plus	1	to	that	list.	For
example,	if	the	weights	are	PSRNs	written	as
[2.22...,0.001...,1.3...],	in	that	order,	the	list	will	be	[3,	1,	2],
corresponding	to	integers	0,	1,	and	2,	in	that	order.	Call	the	list
just	created	the	rounded	weights	list.

2.	 Choose	an	integer	i	with	probability	proportional	to	the	weights	in
the	rounded	weights	list.	This	can	be	done,	for	example,	by	taking
the	result	of	WeightedChoice(list),	where	list	is	the	rounded
weights	list	and	WeightedChoice	is	given	in	"Randomization
and	Sampling	Methods".	Let	w	be	the	original	weight	for	integer
i,	and	let	rw	be	the	rounded	weight	for	integer	i	in	the	rounded
weights	list.

3.	 Generate	j,	a	uniform	random	integer	that	is	0	or	greater	and	less
than	rw.	If	j	is	less	than	rw−1,	return	i.	Otherwise:
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If	w	is	written	as	in	case	1,	above,	flip	the	"coin"	represented	by
ν	(the	weight's	fractional	part).	If	it	returns	1,	return	i.
Otherwise,	go	to	step	2.
If	w	is	written	as	in	case	2,	run	SampleGeometricBag	on	the
PSRN.	If	the	result	is	1,	return	i.	Otherwise,	go	to	step	2.
If	w	is	written	as	in	case	3,	let	r	=	rem(x,	y)	=	x−floor(x/y)*y,
then	with	probability	r/y,	return	i.	(For	example,	generate	z,	a
uniform	random	integer	satisfying	0≤z<y,	then	if	z<r,	return	i.)
Otherwise,	go	to	step	2.

3.3.2	Distributions	with	nowhere	increasing	or
nowhere	decreasing	weights

An	algorithm	for	sampling	an	integer	in	the	interval	[a,	b)	with
probability	proportional	to	weights	listed	in	nowhere	increasing	order
(example:	[10,	3,	2,	1,	1]	when	a	=	0	and	b	=	5)	can	be	implemented
as	follows	(Chewi	et	al.	2022)14.	It	has	a	logarithmic	time	complexity
in	terms	of	setup	and	sampling.

Setup:	Let	w[i]	be	the	weight	for	integer	i	(with	i	starting	at	a).
1.	 (Envelope	weights.)	Build	a	list	q	as	follows:	The	first	item	is

w[a],	then	set	j	to	1,	then	while	j	<	b−a,	append	w[a	+	j]	and
multiply	j	by	2.	The	list	q's	items	should	be	rational	numbers
that	equal	the	true	values,	if	possible,	or	overestimate	them	if
not.

2.	 (Envelope	chunk	weights.)	Build	a	list	r	as	follows:	The	first
item	is	q[0],	then	set	j	to	1	and	m	to	1,	then	while	j	<	b−a,
append	q[m]*min((b−a)	−	j,	j)	and	multiply	j	by	2	and	add	1	to
m.

3.	 (Start	and	end	points	of	each	chunk.)	Build	a	list	D	as	follows:
The	first	item	is	the	list	[a,	a+1],	then	set	j	to	1,	then	while	j	<
n,	append	the	list	[j,	j	+	min((b−a)	−	j,	j)]	and	multiply	j	by	2.

Sampling:
1.	 Choose	an	integer	in	[0,	s)	with	probability	proportional	to	the

weights	in	r,	where	s	is	the	number	of	items	in	r.	Call	the
chosen	integer	k.

2.	 Set	x	to	an	integer	chosen	uniformly	at	random	such	that	x	is
greater	than	or	equal	to	D[k][0]	and	is	less	than	D[k][1].

3.	 With	probability	w[x]	/	q[k],	return	x.	Otherwise,	go	to	step	1.

For	nowhere	decreasing	rather	than	nowhere	increasing	weights,	the
algorithm	is	as	follows	instead:
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Setup:	Let	w[i]	be	the	weight	for	integer	i	(with	i	starting	at	a).
1.	 (Envelope	weights.)	Build	a	list	q	as	follows:	The	first	item	is

w[b−1],	then	set	j	to	1,	then	while	j	<	(b−a),	append	w[b−1−j]
and	multiply	j	by	2.	The	list	q's	items	should	be	rational
numbers	that	equal	the	true	values,	if	possible,	or	overestimate
them	if	not.

2.	 (Envelope	chunk	weights.)	Build	a	list	r	as	given	in	step	2	of	the
previous	algorithm's	setup.

3.	 (Start	and	end	points	of	each	chunk.)	Build	a	list	D	as	follows:
The	first	item	is	the	list	[b−1,	b],	then	set	j	to	1,	then	while	j	<
(b−a),	append	the	list	[(b−j)	−	min((b−a)	−	j,	j),	b−j]	and
multiply	j	by	2.

The	sampling	is	the	same	as	for	the	previous	algorithm.

Notes:

1.	 The	weights	can	be	base-β	logarithms,	especially	since
logarithms	preserve	order,	but	in	this	case	the	algorithm
requires	changes.	In	the	setup	step	2,	replace
"q[m]*min((b−a)"	with	"q[m]+ln(min((b−a))/ln(β)"	(which	is
generally	inexact	unless	β	is	2);	in	sampling	step	1,	use	an
algorithm	that	takes	base-β	logarithms	as	weights;	and
replace	sampling	step	3	with	"Generate	an	exponential
random	variate	with	rate	ln(β)	(that	is,	the	variate	is	E/ln(β)
where	E	is	an	exponential	random	variate	with	rate	1).	If	that
variate	is	greater	than	q[k]	minus	w[x],	return	x.	Otherwise,
go	to	step	1."
Applying	these	modifications	to	this	section's	algorithms	can
introduce	numerical	errors	unless	care	is	taken	(see	note	2).
The	same	is	true	for	running	the	unmodified	algorithms	with
weights	that	are	not	rational	numbers.

2.	 If	an	algorithm	will	operate	on	potentially	irrational	numbers,
then	to	avoid	numerical	errors,	it	should	store	and	operate	on
real	numbers	in	the	form	of	constructive	reals	or	recursive
reals	(see,	e.g.,	Boehm	198715,	202016),	or	in	the	form	of
partially-sampled	random	numbers	(PSRNs)	together	with
algorithms	with	desirable	properties	for	PSRN	samplers.

3.3.3	Unimodal	distributions	of	weights
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The	following	is	an	algorithm	for	sampling	an	integer	in	the	interval
[a,	b)	with	probability	proportional	to	a	unimodal	distribution	of
weights	(that	is,	nowhere	decreasing	on	the	left	and	nowhere
increasing	on	the	right)	(Chewi	et	al.	2022)17.	It	assumes	the	mode
(the	point	with	the	highest	weight)	is	known.	An	example	is	[1,	3,	9,	4,
4]	when	a	=	0	and	b	=	5,	and	the	mode	is	2,	which	corresponds	to	the
weight	9.	It	has	a	logarithmic	time	complexity	in	terms	of	setup	and
sampling.

Setup:
1.	 Find	the	point	with	the	highest	weight,	such	as	via	binary

search.	Call	this	point	mode.
2.	 Run	the	setup	for	nowhere	decreasing	weights	on	the	interval

[a,	mode),	then	run	the	setup	for	nowhere	increasing	weights
on	the	interval	[mode,	b).	Both	setups	are	described	in	the
previous	section.	Then,	concatenate	the	two	q	lists	into	one,	the
two	r	lists	into	one,	and	the	two	D	lists	into	one.

The	sampling	is	the	same	as	for	the	algorithms	in	the	previous
section.

3.3.4	Weighted	Choice	with	Log	Probabilities

Huijben	et	al.	(2022)18	reviews	the	Gumbel	max	trick	and	Gumbel
softmax	distributions.

Note:	Because	these	algorithms	involve	adding	one	real	number
to	another	and	calculating	exp	of	a	real	number,	they	can
introduce	numerical	errors	unless	care	is	taken	(see	note	2	in
"Distributions	with	nowhere	increasing	or	nowhere	decreasing
weights",	above).

Weighted	choice	with	the	Gumbel	max	trick.	Let	C>0	be	an
unknown	number.	Then,	given—

a	vector	of	the	form	[p0,	p1,	...,	pn],	where	pi	is	a	so-called
"unnormalized	log	probability"	of	the	form	ln(x)+C	(where	C	is	a
constant	and	x	is	the	probability	of	getting	i),

an	integer	in	the	closed	interval	[0,	n]	can	be	sampled	as	follows:

1.	 ("Gumbel".)	For	each	pi,	generate	a	"Gumbel	variate"	G,	then	set	qi
to	pi+G.	(A	so-called	"Gumbel	variate"	is	distributed	as
−ln(−ln(U)),	where	U	is	a	uniform	random	variate	greater	than	0
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and	less	than	1.19)
2.	 ("Max".)	Return	the	integer	i	corresponding	to	the	highest	qi	value.

Note:	"Gumbel	top	k	sampling"	samples	k	items	according	to
their	"unnormalized	log	probabilities"	(see	Fig.	7	of	Huijben	et
al.	(2022)20);	this	sampling	works	by	doing	step	1,	then	choosing
the	k	integers	corresponding	to	the	k	highest	qi	values.	With	this
sampling,	though,	the	probability	of	getting	i	(if	the	plain
Gumbel	max	trick	were	used)	is	not	necessarily	the	probability
that	i	is	included	in	the	k-item	sample	(Tillé	2023)21.

Weighted	choice	with	the	Gumbel	softmax	trick.	Given	a	vector
described	above	as	well	as	a	"temperature"	parameter	λ	>	0,	a
"continuous	relaxation"	or	"concrete	distribution"	(which	transforms
the	vector	to	a	new	one)	can	be	sampled	as	follows:

1.	 ("Gumbel".)	For	each	pi,	generate	a	"Gumbel	variate"	G,	then	set	qi
to	pi+G.

2.	 ("Softmax".)	For	each	qi,	set	it	to	exp(qi/λ).
3.	 Set	d	to	the	sum	of	all	values	of	qi.
4.	 For	each	qi,	divide	it	by	d.

The	algorithm's	result	is	a	vector	q,	which	can	be	used	only	once	to
sample	i	with	probability	proportional	to	qi	(which	is	not	a	"log
probability").	(In	this	case,	steps	3	and	4	above	can	be	omitted	if	that
sampling	method	can	work	with	weights	that	need	not	sum	to	1.)

3.4	Bernoulli	Distribution	for	Cumulative
Distribution	Functions

Suppose	a	real	number	z	is	given	(which	might	be	a	partially-sampled
random	number	[PSRN]	or	a	rational	number).	If	a	probability
distribution—

has	a	probability	density	function	(PDF)	(as	with	the	normal	or
exponential	distribution),	and
has	an	arbitrary-precision	sampler	that	returns	a	PSRN	X,

then	it's	possible	to	generate	1	with	the	same	probability	as	the
sampler	returns	an	X	that	is	less	than	or	equal	to	z,	as	follows:

1.	 Run	the	arbitrary-precision	sampler	to	generate	X,	a	uniform
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PSRN.
2.	 Run	RandLess	(if	z	is	a	PSRN)	or	RandLessThanReal	(if	z	is	a

real	number)	with	parameters	X	and	z,	in	that	order,	and	return
the	result.

Specifically,	the	probability	of	returning	1	is	the	cumulative
distribution	function	(CDF)	for	the	distribution	of	X.

Notes:

1.	 Although	step	2	of	the	algorithm	checks	whether	X	is	merely
less	than	z,	this	is	still	correct;	because	the	distribution	of	X
has	a	PDF,	X	is	less	than	z	with	the	same	probability	as	X	is
less	than	or	equal	to	z.

2.	 All	probability	distributions	have	a	CDF,	not	just	those	with	a
PDF,	but	also	discrete	ones	such	as	Poisson	or	binomial.

3.5	Bit	Vectors	with	Random	Bit	Flips

Chakraborty	and	Vardeman	(2021)22	describes	distributions	of	bit
vectors	with	a	random	number	of	bit	flips.	Given	three	parameters	—
μ	is	a	p-item	vector	(list)	with	only	zeros	and/or	ones;	p	is	the	size	of	μ;
and	α	is	a	spread	parameter	greater	than	0	and	less	than	1	—	do	the
following	to	generate	such	a	vector:

1.	 Generate	a	random	integer	c	in	the	interval	[0,	p]	in	some	way.	(c
need	not	be	uniformly	distributed.	This	is	the	number	of	bit	flips.)

2.	 Create	a	p-item	list	ν,	where	the	first	c	items	are	ones	and	the	rest
are	zeros.	Shuffle	the	list.

3.	 Create	a	copy	of	μ,	call	it	M.	Then	for	each	i	where	ν[i]	=	1,	set
M[i]	to	1	−	M[i].	Then	return	M.

The	paper	describes	two	ways	to	establish	the	weights	for	c	in	step	1
(there	are	others	as	well):

Generate	c	with	probability	proportional	to	the	following	weights:
[α0,	α1,	...,	αp].	(Since	each	weight	is	1	or	less,	this	can	be
implemented	as	follows,	for	example.	Generate	a	uniform	random
integer	in	[0,	p],	call	it	d,	then	flip	a	coin	that	shows	heads	with
probability	α,	d	times,	then	either	return	d	if	d	is	0	or	all	the	flips
are	heads,	or	repeat	this	process	otherwise.)
Generate	c	with	probability	proportional	to	the	following	weights:
[α0*choose(p,0),	α1*choose(p,1),	...,	αp*choose(p,p)].	(Since	the
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sum	of	weights	is	no	more	than	$2^p$,	each	weight	can	be	divided
by	$2^p$	to	get	weights	that	are	1	or	less,	so	that	this	can	be
implemented	as	follows,	for	example.	Generate	a	uniform	random
integer	in	[0,	p],	call	it	d,	then	flip	a	coin	that	shows	heads	with
probability	α,	d	times,	and	a	coin	that	shows	heads	with	probability
choose(p,	d)/2p	once,	then	either	return	d	if	all	the	flips	are	heads,
or	repeat	this	process	otherwise.	Note	that	the	probability
choose(p,	d)/2p	is	simple	to	simulate	for	being	a	rational	number.)

3.6	Log-Uniform	Distribution

Samples	from	the	so-called	"log	uniform	distribution"	as	used	by	the
Abseil	programming	library.	This	algorithm	takes	a	maximum	mx	and
a	logarithmic	base	b,	and	chooses	an	integer	in	[0,	mx]	such	that	two
values	are	chosen	with	the	same	probability	if	their	base-b	logarithms
are	equal	in	their	integer	parts	(which	roughly	means	that	lower
numbers	occur	with	an	exponentially	greater	probability).	Although
this	algorithm	works,	in	principle,	for	every	b	>	0,	Abseil	supports
only	integer	bases	b.

1.	 Let	L	be	ceil(ln(mx+1)/ln(b)).	Choose	a	uniform	random	integer	in
the	closed	interval	[0,	L],	call	it	u.

2.	 If	u	is	0,	return	0.
3.	 Set	st	to	min(mx,	ceil(bu−1)).
4.	 Set	en	to	min(mx,	ceil(bu)	−	1).
5.	 Choose	a	uniform	random	integer	in	the	closed	interval	[st,	en],

and	return	it.

4	Sampling	Unbounded	Monotone	Density
Functions

This	section	shows	a	preprocessing	algorithm	to	generate	a	random
variate	in	the	closed	interval	[0,	1]	from	a	distribution	whose
probability	density	function	(PDF)—

is	continuous	in	the	interval	[0,	1],
is	strictly	decreasing	in	[0,	1],	and
has	an	unbounded	peak	at	0.



The	trick	here	is	to	sample	the	peak	in	such	a	way	that	the	result	is
either	forced	to	be	0	or	forced	to	belong	to	the	bounded	part	of	the
PDF.	This	algorithm	does	not	require	the	area	under	the	curve	of	the
PDF	in	[0,	1]	to	be	1;	in	other	words,	this	algorithm	works	even	if	the
PDF	is	known	up	to	a	normalizing	constant.	The	algorithm	is	as
follows.

1.	 Set	i	to	1.
2.	 Calculate	the	cumulative	probability	of	the	interval	[0,	2−i]	and

that	of	[0,	2−(i	−	1)],	call	them	p	and	t,	respectively.
3.	 With	probability	p/t,	add	1	to	i	and	go	to	step	2.	(Alternatively,	if	i

is	equal	to	or	higher	than	the	desired	number	of	fractional	bits	in
the	result,	return	0	instead	of	adding	1	and	going	to	step	2.)

4.	 At	this	point,	the	PDF	at	[2−i,	2−(i	−	1))	is	less	than	or	equal	to	a
finite	number,	so	sample	a	random	variate	in	this	interval	using
any	appropriate	algorithm,	including	rejection	sampling.	Because
the	PDF	is	strictly	decreasing,	the	peak	of	the	PDF	at	this	interval
is	located	at	2−i,	so	that	rejection	sampling	becomes	trivial.

It	is	relatively	straightforward	to	adapt	this	algorithm	for	strictly
increasing	PDFs	with	the	unbounded	peak	at	1,	or	to	PDFs	with	a
different	domain	than	[0,	1].

This	algorithm	is	similar	to	the	"inversion–rejection"	algorithm
mentioned	in	section	4.4	of	chapter	7	of	Devroye's	Non-Uniform
Random	Variate	Generation	(1986)23.	I	was	unaware	of	that	algorithm
at	the	time	I	started	writing	the	text	that	became	this	section	(Jul.	25,
2020).	The	difference	here	is	that	it	assumes	the	whole	distribution
has	support	[0,	1]	("support"	is	defined	later),	while	the	algorithm
presented	in	this	article	doesn't	make	that	assumption	(for	example,
the	interval	[0,	1]	can	cover	only	part	of	the	distribution's	support).

By	the	way,	this	algorithm	arose	while	trying	to	devise	an	algorithm
that	can	generate	an	integer	power	of	a	uniform	random	variate,	with
arbitrary	precision,	without	actually	calculating	that	power	(a	naïve
calculation	that	is	merely	an	approximation	and	usually	introduces
bias);	for	more	information,	see	the	article	on	partially-sampled
random	numbers.	Even	so,	the	algorithm	I	have	come	up	with	in	this
note	may	be	of	independent	interest.
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In	the	case	of	powers	of	a	uniform	random	variate	between	0	and	1,
call	the	variate	X,	namely	Xn,	the	ratio	p/t	in	this	algorithm	has	a	very
simple	form,	namely	(1/2)1/n.	Note	that	this	formula	is	the	same
regardless	of	i.	(To	return	1	with	probability	(1/2)1/n,	the	algorithm	for
(a/b)z	in	"Bernoulli	Factory	Algorithms"	can	be	used	with	a=1,
b=2,	and	z=1/n.)	This	is	found	by	taking	the	PDF	f(x)	=	x1/n/(x	*	n)	and
finding	the	appropriate	p/t	ratios	by	integrating	f	over	the	two
intervals	mentioned	in	step	2	of	the	algorithm.

5	Certain	Families	of	Distributions

This	section	is	a	note	on	certain	families	of	univariate	(one-variable)
probability	distributions,	with	emphasis	on	generating	random
variates	from	them.	Some	of	these	families	are	described	in	Ahmad	et
al.	(2019)24,	Jones	(2015)25.

The	following	mathematical	definitions	are	used:

A	probability	distribution's	quantile	function	(also	known	as
inverse	cumulative	distribution	function	or	inverse	CDF)	is	a
nowhere	decreasing	function	that	maps	uniform	random	variates
greater	than	0	and	less	than	1	to	numbers	that	follow	the
distribution.
A	probability	distribution's	support	is	the	set	of	values	the
distribution	can	take	on,	plus	that	set's	endpoints.	For	example,
the	beta	distribution's	support	is	the	closed	interval	[0,	1],	and	the
normal	distribution's	support	is	the	entire	real	line.
The	zero-truncated	Poisson	distribution:	To	generate	a	random
variate	that	follows	this	distribution	(with	parameter	λ	>	0),
generate	random	variates	from	the	Poisson	distribution	with
parameter	λ	until	a	variate	other	than	0	is	generated	this	way,	then
take	the	last	generated	variate.

G	families.	In	general,	families	of	the	form	"X-G"	(such	as	"beta-G"
(Eugene	et	al.,	2002)26)	use	two	distributions,	X	and	G,	where—

X	is	a	probability	distribution	whose	support	is	the	closed	interval
[0,	1],	and
G	is	a	probability	distribution	that	should	have	an	easy-to-compute
quantile	function.

https://peteroupc.github.io/bernoulli.html
file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn24
file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn25
https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
file:///home/peter/Documents/SharpDevelopProjects/peteroupc.github.io/html2pdf389731-0.html#fn26


The	following	algorithm	samples	a	random	variate	following	a
distribution	from	this	kind	of	family:

1.	 Generate	a	random	variate	that	follows	the	distribution	X.	(Or
generate	a	uniform	partially-sampled	random	number	(PSRN)
that	follows	the	distribution	X.)	Call	the	number	x.

2.	 Calculate	the	quantile	for	G	of	x,	and	return	that	quantile.	(If	x	is	a
uniform	PSRN,	see	"Random	Variate	Generation	via	Quantiles",
later.)

Certain	special	cases	of	the	"X-G"	families,	such	as	the	following,	use	a
specially	designed	distribution	for	X:

The	exp-G	family	(Barreto-Souza	and	Simas	2010/2013)27,	where	X
is	an	exponential	distribution,	truncated	to	the	interval	[0,	1],	with
parameter	λ	≥	0;	step	1	is	modified	to	read:	"Generate	U,	a
uniform	random	variate	between	0	and	1,	then	set	x	to
−ln((exp(−λ)−1)*U	+	1)/λ	if	λ	!=	0,	and	U	otherwise."	(The	alpha
power	or	alpha	power	transformed	family	(Mahdavi	and	Kundu
2017)28	uses	the	same	distribution	for	X,	but	with	λ=−ln(α)	where
α	is	in	(0,	1];	see	also	Jones	(2018)29.)
One	family	uses	a	shape	parameter	a	>	0;	step	1	is	modified	to
read:	"Generate	u,	a	uniform	random	variate	between	0	and	1,
then	set	x	to	u1/a."	This	family	is	mentioned	in	Lehmann	(1953)30,
Durrans	(1992)31,	and	Mudholkar	and	Srivastava	(1993)32,	which
called	it	exponentiated.
The	transmuted-G	family	(Shaw	and	Buckley	2007)33.	The	family
uses	a	shape	parameter	η	satisfying	−1	≤	η	≤	1;	step	1	is	modified
to	read:	"Generate	a	piecewise	linear	random	variate	between	0
and	1	with	weight	1−η	at	0	and	weight	1+η	at	1,	call	the	number	x.
(It	can	be	generated	as	follows,	see	also	(Devroye	1986,	p.	71-
72)34:	With	probability	min(1−η,	1+η),	generate	x,	a	uniform
random	variate	between	0	and	1.	Otherwise,	generate	two	uniform
random	variates	between	0	and	1,	set	x	to	the	higher	of	the	two,
then	if	η	is	less	than	0,	set	x	to	1−x.)".	((Granzotto	et	al.	2017)35

mentions	the	same	distribution,	but	with	a	parameter	λ	=	η	+	1
satisfying	0	≤	λ	≤	2.)
A	cubic	rank	transmuted	distribution	(Granzotto	et	al.	2017)36	uses
parameters	λ0	and	λ1	in	the	interval	[0,	1];	step	1	is	modified	to
read:	"Generate	three	uniform	random	variates	between	0	and	1,
then	sort	them	in	ascending	order.	Then,	choose	1,	2,	or	3	with
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probability	proportional	to	these	weights:	[λ0,	λ1,	3−λ0−λ1].	Then
set	x	to	the	first,	second,	or	third	variate	if	1,	2,	or	3	is	chosen	this
way,	respectively."
Biweight	distribution	(Al-Khazaleh	and	Alzoubi	2021)37:	Step	1	is
modified	to	read:	"Generate	a	uniform	random	variate	x	in	[0,	1],
then	with	probability	(1−x2)2,	go	to	the	next	step.	Otherwise,
repeat	this	process.";	or	"Create	a	uniform	PSRN	x	with	positive
sign	and	integer	part	0,	then	run	SampleGeometricBag	on	that
PSRN	four	times.	If	the	first	two	results	are	not	both	1	and	if	the
last	two	results	are	not	both	1,	go	to	the	next	step;	otherwise,
repeat	this	process."

Transformed–transformer	family.	In	fact,	the	"X-G"	families	are	a
special	case	of	the	so-called	"transformed–transformer"	family	of
distributions	introduced	by	Alzaatreh	et	al.	(2013)38	that	uses	two
distributions,	X	and	G,	where	X	(the	"transformed")	is	an	arbitrary
distribution	with	a	probability	density	function;	G	(the	"transformer")
is	a	distribution	with	an	easy-to-compute	quantile	function;	and	W	is	a
nowhere	decreasing	function	that,	among	other	conditions,	maps	a
number	in	the	closed	interval	[0,	1]	to	a	number	with	the	same
support	as	X.	The	following	algorithm	samples	a	random	variate	from
this	kind	of	family:

1.	 Generate	a	random	variate	that	follows	the	distribution	X.	(Or
generate	a	uniform	PSRN	that	follows	X.)	Call	the	number	x.

2.	 Calculate	w	=	W−1(x)	(where	W−1(.)	is	the	inverse	of	W),	then
calculate	the	quantile	for	G	of	w	and	return	that	quantile.	(If	x	is	a
uniform	PSRN,	see	"Random	Variate	Generation	via	Quantiles",
later.)

The	following	are	special	cases	of	the	"transformed–transformer"
family:

The	"T-R{Y}"	family	(Aljarrah	et	al.,	2014)39,	in	which	T	is	an
arbitrary	distribution	with	a	PDF	(X	in	the	algorithm	above),	R	is	a
distribution	with	an	easy-to-compute	quantile	function	(G	in	the
algorithm	above),	and	W	is	the	quantile	function	for	the
distribution	Y,	whose	support	must	contain	the	support	of	T	(so
that	W−1(x)	is	the	cumulative	distribution	function	for	Y,	or	the
probability	that	a	Y-distributed	number	is	x	or	less).
Several	versions	of	W	have	been	proposed	for	the	case	when
distribution	X's	support	is	[0,	∞),	such	as	the	Rayleigh	and	gamma
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distributions.	They	include:
W(x)	=	−ln(1−x)	(W−1(x)	=	1−exp(−x)).	Suggested	in	the
original	paper	by	Alzaatreh	et	al.
W(x)	=	x/(1−x)	(W−1(x)	=	x/(1+x)).	Suggested	in	the	original
paper	by	Alzaatreh	et	al.	This	choice	forms	the	so-called	"odd	X
G"	family,	and	one	example	is	the	"odd	log-logistic	G"	family
(Gleaton	and	Lynch	2006)40.

Example:	For	the	"generalized	odd	gamma-G"	family	(Hosseini
et	al.	2018)41,	X	is	the	gamma(α)	distribution,	W−1(x)	=
(x/(1+x))1/β,	G	is	arbitrary,	α>0,	and	β>0.

A	family	very	similar	to	the	"transformed–transformer"	family	uses	a
decreasing	W.

When	distribution	X's	support	is	[0,	∞),	one	such	W	that	has	been
proposed	is	W(x)	=	−ln(x)	(W−1(x)	=	exp(−x);	examples	include	the
"Rayleigh-G"	family	or	"Rayleigh–Rayleigh"	distribution	(Al	Noor
and	Assi	2020)42,	as	well	as	the	"generalized	gamma-G"	family,
where	"generalized	gamma"	refers	to	the	Stacy	distribution	(Boshi
et	al.	2020)43).

Minimums,	maximums,	and	sums.	Some	distributions	are
described	as	a	minimum,	maximum,	or	sum	of	N	independent	random
variates	distributed	as	X,	where	N	≥	1	is	an	independent	integer
distributed	as	the	discrete	distribution	Y.

Tahir	and	Cordeiro	(2016)44	calls	a	distribution	of	minimums	a
compound	distribution,	and	a	distribution	of	maximums	a
complementary	compound	distribution.
Pérez-Casany	et	al.	(2016)45	calls	a	distribution	of	minimums	or	of
maximums	a	random-stopped	extreme	distribution.
Let	S	be	a	sum	of	N	variates	as	described	above.	Then	Amponsah
et	al.	(2021)46	describe	the	distribution	of	(S,	N),	a	two-variable
random	variate	often	called	an	episode.
A	distribution	of	sums	can	be	called	a	stopped-sum	distribution
(Johnson	et	al.	2005)47.	(In	this	case,	N	can	be	0	so	that	N	≥	0	is
an	integer	distributed	as	Y.)

A	variate	following	a	distribution	of	minimums	or	of	maximums	can	be
generated	as	follows	(Duarte-López	et	al.	2021)48:
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1.	 Generate	a	uniform	random	variate	between	0	and	1.	(Or	generate
a	uniform	PSRN	with	integer	part	0,	positive	sign,	and	empty
fractional	part.)	Call	the	number	x.

2.	 For	minimums,	calculate	the	quantile	for	X	of	1−W−1(x)	(where
W−1(.)	is	the	inverse	of	Y's	probability	generating	function),	and
return	that	quantile.49	(If	x	is	a	uniform	PSRN,	see	"Random
Variate	Generation	via	Quantiles",	later.	Y's	probability	generating
function	is	W(z)	=	a[0]*z0	+	a[1]*z1	+	...,	where	0	<	z	<	1	and	a[i]
is	the	probability	that	a	Y-distributed	variate	equals	i.	See	example
below.)

3.	 For	maximums,	calculate	the	quantile	for	X	of	W−1(x),	and	return
that	quantile.

Examples:

This
distribution:

Is	a
distribution

of:
Where	X	is: And	Y	is:

Geometric
zero-truncated
Poisson
(Akdoğan	et
al.,	2020)50.

Maximums.

1	plus	the
number	of
failures
before	the
first	success,
with	each
success
having	the
same
probability.

Zero-truncated
Poisson.

GMDP(α,	β,	δ,
p)	(Amponsah
et	al.	2021)51

(α>0,	β>0,
δ>0,	0<p<1).

(S,	N)
episodes.

Gamma(α)
variate
divided	by	β.

Discrete
Pareto(δ,	p)
(see	"Certain
Distributions").

Bivariate
gamma
geometric(α,
β,	p)	(Barreto-
Souza	2012)52

(α>0,	β>0,
0<p<1).

(S,	N)
episodes.

Gamma(α)
variate
divided	by	β.

1	plus	the
number	of
failures	before
the	first
success,	with
each	success
having
probability	p.
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Exponential
Poisson	(Kuş
2007)53.

Minimums. Exponential.
Zero-truncated
Poisson.

Poisson
exponential
(Cancho	et	al.
2011)54.

Maximums. Exponential.
Zero-truncated
Poisson.

Right-
truncated
Weibull(a,	b,	c)
(Jodrá	2020)55

(a,	b,	and	c
are	greater
than	0).

Minimums.
Power
function(b,	c).

Zero-truncated
Poisson(a*cb).

Example:	If	Y	is	zero-truncated	Poisson	with	parameter	λ,	its
probability	generating	function	is	$W(z)=\frac{1-
\exp(z\lambda)}{1-\exp(\lambda)}$,	and	solving	for	x	leads	to	its
inverse:	$W^{-1}(x)=\ln(1-x+x\times\exp(\lambda))/\lambda$.

Note:	Bivariate	exponential	geometric	(Barreto-Souza	2012)56	is
a	special	case	of	bivariate	gamma	geometric	with	α=1.

Inverse	distributions.	An	inverse	X	distribution	(or	inverted	X
distribution)	is	generally	the	distribution	of	1	divided	by	a	random
variate	distributed	as	X.	For	example,	an	inverse	exponential	random
variate	(Keller	and	Kamath	1982)57	is	1	divided	by	an	exponential
random	variate	with	rate	1	(and	so	is	distributed	as	−1/ln(U)	where	U
is	a	uniform	random	variate	between	0	and	1)	and	may	be	multiplied
by	a	parameter	θ	>	0.

Weighted	distributions.	A	weighted	X	distribution	uses	a
distribution	X	and	a	weight	function	w(x)	whose	values	lie	in	[0,	1]
everywhere	in	X's	support.	The	following	algorithm	samples	from	a
weighted	distribution	(see	also	(Devroye	1986,	p.	47)58):

1.	 Generate	a	random	variate	that	follows	the	distribution	X.	(Or
generate	a	uniform	PSRN	that	follows	X.)	Call	the	number	x.

2.	 With	probability	w(x),	return	x.	Otherwise,	go	to	step	1.
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Some	weighted	distributions	allow	any	weight	function	w(x)	whose
values	are	nonnegative	everywhere	in	X's	support	(Rao	1985)59.	(If
w(x)	=	x,	the	distribution	is	often	called	a	length-biased	or	size-biased
distribution;	if	w(x)	=	x2,	area-biased.)	Their	probability	density
functions	(PDFs)	are	proportional	to	the	original	PDFs	multiplied	by
w(x).

Inflated	distributions.	To	generate	an	inflated	X	(also	called	c-
inflated	X	or	c-adjusted	X)	random	variate	with	parameters	c	and	α,
generate—

c	with	probability	α,	and
a	random	variate	distributed	as	X	otherwise.

For	example,	a	zero-inflated	beta	random	variate	is	0	with	probability
α	and	a	beta	random	variate	otherwise	(the	parameter	c	is	0)	(Ospina
and	Ferrari	2010)60	A	zero-and-one	inflated	X	distribution	is	0	or	1
with	probability	α	and	distributed	as	X	otherwise.	For	example,	to
generate	a	zero-and-one-inflated	unit	Lindley	random	variate	(with
parameters	α,	θ,	and	p)	(Chakraborty	and	Bhattacharjee	2021)61:

1.	 With	probability	α,	return	a	number	that	is	0	with	probability	p	and
1	otherwise.

2.	 Generate	a	unit	Lindley(θ)	random	variate,	that	is,	generate
x/(1+x)	where	x	is	a	Lindley(θ)	random	variate.

Note:	A	zero-inflated	X	distribution	where	X	takes	on	0	with
probability	0	is	also	called	a	hurdle	distribution	(Mullahy
1986)62.

Unit	distributions.	To	generate	a	unit	X	random	variate	(where	X	is
a	distribution	whose	support	is	the	positive	real	line),	generate	a
random	variate	distributed	as	X,	call	it	x,	then	return	exp(−x)	or	1
−exp(−x)	(also	known	as	"Type	I"	or	"Type	II",	respectively).	For
example,	a	unit	gamma	distribution	is	also	known	as	the	Grassia
distribution	(Grassia	1977)63.

CDF–quantile	family.	Given	two	distributions	X	and	Y	(which	can	be
the	same),	a	location	parameter	μ	≥	0,	and	a	dispersion	parameter
σ>0,	a	variate	from	this	family	of	distributions	can	be	generated	as
follows	(Smithson	and	Shou	2019)64:

1.	 Generate	a	random	variate	that	follows	the	distribution	X.	(Or
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generate	a	uniform	PSRN	that	follows	X.)	Call	the	number	x.
2.	 If	distribution	X's	support	is	the	positive	real	line,	calculate	x	as

ln(x).
3.	 Calculate	z	as	μ+σ*x.
4.	 If	distribution	Y's	support	is	the	positive	real	line,	calculate	z	as

exp(z).
5.	 Return	H(z).

In	this	algorithm:

X	and	Y	are	distributions	that	each	have	support	on	either	the
whole	real	line	or	the	positive	real	line.	However,	the	book	intends
X	to	have	an	easy-to-compute	quantile	function.
H(z)	is	Y's	cumulative	distribution	function,	or	the	probability	that
a	Y-distributed	random	variate	is	z	or	less.	The	book	likewise
intends	H	to	be	easy	to	compute.

Note:	An	important	property	for	use	in	statistical	estimation	is
identifiability.	A	family	of	distributions	is	identifiable	if	it	has	the
property	that	if	two	parameter	vectors	(θ1	and	θ2)	determine	the
same	distribution,	then	θ1	must	equal	θ2.

6	Certain	Distributions

In	the	table	below,	U	is	a	uniform	random	variate	between	0	and	1,
and	all	random	variates	are	independently	generated.

This
distribution: Is	distributed	as: And	uses	these

parameters:
Power
function(a,	c). c*U1/a. a	>	0,	c	>	0.

Lehmann
Weibull(a1,	a2,
β)	(Elgohari
and	Yousof
2020)65.

(ln(1/U)/β)1/a1/a2	or	(E/
β)1/a1/a2

a1,	a2,	β	>	0.	E	is	an
exponential	random
variate	with	rate	1.

Marshall–
Olkin(α)
(Marshall	and
Olkin	1997)66

(1−U)/(U*(α−1)	+	1). α	in	[0,	1].
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Lomax(α). (1−U)−1/α−1. α	>	0.

Power
Lomax(α,	β)
(Rady	et	al.
2016)67.

L1/β β	>	0;	L	is	Lomax(α).

Topp–
Leone(α). 1−sqrt(1−U1/α). α	>	0.

Bell–
Touchard(a,	b)
(Castellares	et
al.	2020)68.

Sum	of	N	zero-truncated
Poisson(a)	random	variates,
where	N	is	Poisson	with
parameter	b*exp(a)−b.69

a>0,	b>0.

Bell(a)
(Castellares	et
al.	2020)70.

Bell–Touchard(a,	0). a>0.

Discrete
Pareto(δ,	p)
(Buddana	and
Kozubowski
2014)71

1	plus	the	number	of
failures	before	the	first
success,	with	each	success
having	probability
1−exp(−Z),	where	Z	is	a
gamma(1/δ)	variate	times
−δ*ln(1−p).

δ	>	0,	and	0<p<1.

Neyman	type
A(δ,	τ)
(Batsidis	and
Lemonte
2021)72

Bell–Touchard(τ,
δ*exp(−τ)).

δ>0,	τ>0.

Gamma
exponential
(Kudryavtsev
2019)73.

δ*Gamma(t)1/ν/Gamma(s)r/ν,
where	Gamma(x)	is	a
gamma(x)	variate.

0	≤	r	<	1;	ν	≠	0;
s>0;	t>0;	δ>0.

Extended
xgamma	(Saha
et	al.	2019)74

Gamma(α	+	c)	variate
divided	by	θ,	where	c	is
either	0	with	probability
θ/(θ+β),	or	2	otherwise.

θ>0,	α>0,	β	≥	0.

Generalized
Pareto(a,	b)
(McNeil	et	al.
2010)75

a*((1/(1−U))b−1)/b. a>0;	b>0.
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Skew
symmetric	or
symmetry-
modulated
(Azzalini	and
Capitanio
2003)76,
(Azzalini
2022)77.

Z	if	T	≤	w(Z),	or	−Z
otherwise.

Z	follows	a
symmetric
distribution	around
0;	T	follows	a
symmetric
distribution	(not
necessarily	around
0).	w(x)	satisfies
−w(x)	=	w(−x).

Skew	normal
(Azzalini
1985)78.

Skew	symmetric	with	Z	and
T	both	separate	Normal(0,
1)	variates,	and	w(x)	=	x*α.

α	is	a	real	number.

Logarithmic
skew	normal
(Gómez-Déniz
et	al.	2020)79

exp(SNE(λ,λ)*σ+μ).
μ	and	λ	are	real
numbers;	σ	>	0.	SNE
is	described	later.

Tilted	beta
binomial
(Hahn	2022)80

Binomial(n,	Tilted-beta(θ,	v,
α,	β))	variate.

0	≤	θ	≤	1;	0	≤	v	≤	1;
α>0,	β>0;	n	≥	0	is
an	integer.

Two-piece
distribution
(Rubio	and
Steel	2020)81.

μ	−	abs(Z)*sigma1	with
probability
sigma1/(sigma1+sigma2),
or	μ	+	abs(Z)*sigma2
otherwise.

μ	is	a	real	number;
sigma1>0;
sigma2>0;	Z	follows
a	symmetric
distribution	around
0.

Asymmetric
generalized
Gaussian
(Tesei	and
Regazzoni
1996)82

Two-piece	distribution
where	Z	is	exponential-
power(α).

α>0;	μ	is	a	real
number;	sigma1>0;
sigma2>0.

This
distribution:

Can	be	sampled	with	the
following	algorithms:

And	uses
these

parameters:

Offset-
symmetric
Gaussian

(1)	Generate	an	unbiased	random	bit
b	(either	0	or	1	with	equal
probability);	(2)	generate	Y,	a
Normal(0,	σ)	random	variate m>0;	σ>0.
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(Sadeghi	and
Korki	2021)83

(standard	deviation	σ),	and	if	Y	<	m,
repeat	this	step;	(3)	return	(Y	−	m)*
(b*2	−	1).

Generalized
skew	normal
(SNE(λ,ξ))
(Henze
1986)84

First	algorithm:	(1)	Generate	Y	and
Z,	two	Normal(0,1)	variates;	(2)	if
Z<Y*λ+ξ,	return	Y;	else	go	to	1.
Second	algorithm:	(1)	Let
il=1/sqrt(1+λ2);	(2)	Generate	Y	and
Z,	two	Normal(0,1)	variates;	(3)	if
Y>−ξ*il,	return	Y*λ*il	+	Z;	else	go	to
2.

λ	and	ξ	are
real
numbers.

Generalized
geometric
(Francis-
Staite	and
White
2022)85

(1)	Set	ret	to	1;	(2)	with	probability
ρ(ret),	add	1	to	ret	and	repeat	this
step;	otherwise,	return	ret.

0	≤	ρ(k)	≤	1
for	each	k.

Generalized
Sibuya
(Kozubowski
and
Podgórski
2018)86

(1)	Set	ret	to	1;	(2)	with	probability
α/(ν+ret),	return	ret;	otherwise,	add
1	to	ret	and	repeat	this	step.

α	<	ν	+	1,
and	ν	≥	0.87

Himanshu
(Agarwal	and
Pandey
2022)88

(1)	Set	ret	to	0;	(2)	flip	coin	that
shows	heads	with	probability	p,	n
times;	(3)	if	any	flip	shows	0	(tails),
add	1	to	ret	and	go	to	2;	otherwise,
return	ret.

0	≤	p	≤	1;	n
≥	1	is	an
integer.

Tilted	beta
(Hahn	and
López	Martín
2005)89

(1)	With	probability	θ,	return	a
beta(α,	β)	variate;	(2)	Generate	a
uniform	variate	in	(0,	1),	call	it	x;	(3)
Flip	coin	that	returns	1	with
probability	x,	and	another	that
returns	1	with	probability	v;	(4)	If
both	coins	return	1	or	both	return	0,
return	x;	otherwise	go	to	step	2.

0	≤	θ	≤	1;	0
≤	v	≤	1;
α>0;	β>0.

7	Random	Variate	Generation	via
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Quantiles

This	note	is	about	generating	random	variates	from	a	non-discrete
distribution	via	inverse	transform	sampling,	using	uniform	partially-
sampled	random	numbers	(PSRNs).

In	this	section:

A	distribution's	quantile	function	(also	known	as	inverse
cumulative	distribution	function	or	inverse	CDF)	is	a	nowhere
decreasing	function	that	maps	uniform	random	variates	greater
than	0	and	less	than	1	to	numbers	that	follow	the	distribution.
A	uniform	PSRN	is	ultimately	a	number	that	lies	in	an	interval;	it
contains	a	sign,	an	integer	part,	and	a	fractional	part	made	up	of
digits	sampled	on	demand.

Take	the	following	situation:

Let	f(.)	be	a	function	applied	to	a	or	b	before	calculating	the
quantile.
Let	Q(z)	be	the	quantile	function	for	the	desired	distribution.
Let	x	be	a	random	variate	in	the	form	of	a	uniform	PSRN,	so	that
this	PSRN	will	lie	in	the	interval	[a,	b].	If	f(t)	=	t	(the	identity
function),	the	PSRN	x	must	have	a	positive	sign	and	an	integer
part	of	0,	so	that	the	interval	[a,	b]	is	either	the	interval	[0,	1]	or	a
closed	interval	in	[0,	1],	depending	on	the	PSRN's	fractional	part.
For	example,	if	the	PSRN	is	2.147...,	then	the	interval	is	[2.147,
2.148].
Let	β	be	the	digit	base	of	digits	in	x's	fractional	part	(such	as	2	for
binary).
Suppose	Q(z)	is	continuous	on	the	open	interval	(a,	b).

Then	the	following	algorithm	transforms	that	number	to	a	random
variate	for	the	desired	distribution,	which	comes	within	the	desired
error	tolerance	of	ε	with	probability	1	(see	(Devroye	and	Gravel
2020)90):

1.	 Generate	additional	digits	of	x	uniformly	at	random—thus
shortening	the	interval	[a,	b]—until	a	lower	bound	of	Q(f(a))	and	an
upper	bound	of	Q(f(b))	differ	by	no	more	than	2*ε.	Call	the	two
bounds	low	and	high,	respectively.

2.	 Return	low+(high−low)/2.
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In	some	cases,	it	may	be	possible	to	calculate	the	needed	digit	size	in
advance.

As	one	example,	if	f(t)	=	t	(the	identity	function)	and	the	quantile
function	is	Lipschitz	continuous	with	Lipschitz	constant	L	or	less	on
the	interval	[a,	b]91,	then	the	following	algorithm	generates	a	quantile
with	error	tolerance	ε:

1.	 Let	d	be	ceil((ln(max(1,L))	−	ln(ε))	/	ln(β)).	For	each	digit	among
the	first	d	digits	in	x's	fractional	part,	if	that	digit	is	unsampled,	set
it	to	a	digit	chosen	uniformly	at	random.

2.	 The	PSRN	x	now	lies	in	the	interval	[a,	b].	Calculate	lower	and
upper	bounds	of	Q(a)	and	Q(b),	respectively,	that	are	within	ε/2	of
the	true	quantiles,	call	the	bounds	low	and	high,	respectively.

3.	 Return	low+(high−low)/2.

This	algorithm	chooses	a	random	interval	of	size	equal	to	βd,	and
because	the	quantile	function	is	Lipschitz	continuous,	the	values	at
the	interval's	bounds	are	guaranteed	to	vary	by	no	more	than	2*ε
(actually	ε,	but	the	calculation	in	step	2	adds	an	additional	error	of	at
most	ε),	which	is	needed	to	meet	the	tolerance	ε	(see	also	Devroye
and	Gravel	202092).

A	similar	algorithm	can	exist	even	if	the	quantile	function	Q	is	not
Lipschitz	continuous	on	the	interval	[a,	b].

Specifically,	if—

f(t)	=	t	(the	identity	function),
Q	on	the	interval	[a,	b]	is	continuous	and	has	a	minimum	and
maximum,	and
Q	on	[a,	b]	admits	a	continuous	and	strictly	increasing	function
ω(δ)	as	a	modulus	of	continuity,

then	d	in	step	1	above	can	be	calculated	as—
		max(0,	ceil(−ln(ω−1(ε))/ln(β))),
where	ω−1(ε)	is	the	inverse	of	the	modulus	of	continuity.	(Loosely
speaking,	a	modulus	of	continuity	ω(δ)	gives	the	quantile	function's
maximum-minus-minimum	in	a	window	of	size	δ,	and	the	inverse
modulus	ω−1(ε)	finds	a	window	small	enough	that	the	quantile
function	differs	by	no	more	than	ε	in	the	window.93).94

For	example—
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if	Q	is	Lipschitz	continuous95	with	Lipschitz	constant	L	or	less	on
[a,	b],	then	the	function	is	no	"steeper"	than	that	of	ω(δ)	=	L*δ,	so
ω−1(ε)	=	ε/L,	and
if	Q	is	Hölder	continuous	with	Hölder	constant	M	or	less	and
Hölder	exponent	α	on	that	interval	96,	then	the	function	is	no
"steeper"	than	that	of	ω(δ)	=	M*δα,	so	ω−1(ε)	=	(ε/M)1/α.

The	algorithms	given	earlier	in	this	section	have	a	disadvantage:	the
desired	error	tolerance	has	to	be	made	known	to	the	algorithm	in
advance.	(Indeed,	for	this	reason,	the	algorithms	don't	satisfy
desirable	properties	for	PSRN	samplers.)	To	generate	a	quantile
to	any	error	tolerance	(even	if	the	tolerance	is	not	known	in	advance),
a	rejection	sampling	approach	is	needed.	For	this	to	work:

The	target	distribution	must	have	a	probability	density	function
(PDF),	as	is	the	case	with	the	normal	and	exponential	distributions.
That	PDF,	or	a	function	proportional	to	it,	must	be	known,	must	be
less	than	or	equal	to	a	finite	number,	and	must	be	continuous
"almost	everywhere"	(the	set	of	discontinuous	points	is	"zero-
volume",	that	is,	has	Lebesgue	measure	zero)	(see	also	(Devroye
and	Gravel	2020)97).

Here	is	a	sketch	of	how	this	rejection	sampler	might	work:

1.	 After	using	one	of	the	algorithms	given	earlier	in	this	section	to
sample	digits	of	x	as	needed,	let	a	and	b	be	x's	upper	and	lower
bounds.	Calculate	lower	and	upper	bounds	of	the	quantiles	of	f(a)
and	f(b)	(the	bounds	are	[alow,	ahigh]	and	[blow,	bhigh]
respectively).

2.	 Given	the	target	function's	PDF	or	a	function	proportional	to	it,
sample	a	uniform	PSRN,	y,	in	the	interval	[alow,	bhigh]	using	an
arbitrary-precision	rejection	sampler	such	as	Oberhoff's	method
(described	in	an	appendix	to	the	PSRN	article).

3.	 Accept	y	(and	return	it)	if	it	clearly	lies	in	[ahigh,	blow].	Reject	y
(and	go	to	the	previous	step)	if	it	clearly	lies	outside	[alow,	bhigh].
If	y	clearly	lies	in	[alow,	ahigh]	or	in	[blow,	bhigh],	generate	more
digits	of	x,	uniformly	at	random,	and	go	to	the	first	step.

4.	 If	y	doesn't	clearly	fall	in	any	of	the	cases	in	the	previous	step,
generate	more	digits	of	y,	uniformly	at	random,	and	go	to	the
previous	step.
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8	Batching	Random	Samples	via
Randomness	Extraction

Devroye	and	Gravel	(2020)98	suggest	the	following	randomness
extractor	to	reduce	the	number	of	random	bits	needed	to	produce	a
batch	of	samples	by	a	sampling	algorithm.	The	extractor	works	based
on	the	probability	that	the	algorithm	consumes	X	random	bits	given
that	it	produces	a	specific	output	Y	(or	P(X	|	Y)	for	short):

1.	 Start	with	the	interval	[0,	1].
2.	 For	each	pair	(X,	Y)	in	the	batch,	the	interval	shrinks	from	below

by	P(X−1	|	Y)	and	from	above	by	P(X	|	Y).	(For	example,	if	[0.2,	0.8]
(range	0.6)	shrinks	from	below	by	0.1	and	from	above	by	0.8,	the
new	interval	is	[0.2+0.1*0.6,	0.2+0.8*0.6]	=	[0.26,	0.68].	For
correctness,	though,	the	interval	is	not	allowed	to	shrink	to	a
single	point,	since	otherwise	step	3	would	run	forever.)

3.	 Extract	the	bits,	starting	from	the	binary	point,	that	the	final
interval's	lower	and	upper	bound	have	in	common	(or	0	bits	if	the
upper	bound	is	1).	(For	example,	if	the	final	interval	is	[0.101010...,
0.101110...]	in	binary,	the	bits	1,	0,	1	are	extracted,	since	the
common	bits	starting	from	the	point	are	101.)

After	a	sampling	method	produces	an	output	Y,	both	X	(the	number	of
random	bits	the	sampler	consumed)	and	Y	(the	output)	are	added	to
the	batch	and	fed	to	the	extractor,	and	new	bits	extracted	this	way	are
added	to	a	queue	for	the	sampling	method	to	use	to	produce	future
outputs.	(Notice	that	the	number	of	bits	extracted	by	the	algorithm
above	grows	as	the	batch	grows,	so	only	the	new	bits	extracted	this
way	are	added	to	the	queue	this	way.)

The	issue	of	finding	P(X	|	Y)	is	now	discussed.	Generally,	if	the
sampling	method	implements	a	random	walk	on	a	binary	tree	that	is
driven	by	unbiased	random	bits	and	has	leaves	labeled	with	one
outcome	each	(Knuth	and	Yao	1976)99,	P(X	|	Y)	is	found	as	follows
(and	Claude	Gravel	clarified	to	me	that	this	is	the	intention	of	the
extractor	algorithm):	Take	a	weighted	count	of	all	leaves	labeled	Y	up
to	depth	X	(where	the	weight	for	depth	z	is	1/2z),	then	divide	it	by	a
weighted	count	of	all	leaves	labeled	Y	at	all	depths	(for	instance,	if	the
tree	has	two	leaves	labeled	Y	at	z=2,	three	at	z=3,	and	three	at	z=4,
and	X	is	3,	then	P(X	|	Y)	is	(2/22+3/23)	/	(2/22+3/23+3/24)).	In	the
special	case	where	the	tree	has	at	most	1	leaf	labeled	Y	at	every
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depth,	this	is	implemented	by	finding	P(Y),	or	the	probability	to	output
Y,	then	chopping	P(Y)	up	to	the	Xth	binary	digit	after	the	point	and
dividing	by	the	original	P(Y)	(for	instance,	if	X	is	4	and	P(Y)	is
0.101011...,	then	P(X	|	Y)	is	0.1010	/	0.101011...).

Unfortunately,	P(X	|	Y)	is	not	easy	to	calculate	when	the	number	of
values	Y	can	take	on	is	large	or	even	unbounded.	In	this	case,	I	can
suggest	the	following	ad	hoc	algorithm,	which	uses	a	randomness
extractor	that	takes	bits	as	input,	such	as	the	von	Neumann,	Peres,	or
Zhou–Bruck	extractor	(see	"Notes	on	Randomness	Extraction").
The	algorithm	counts	the	number	of	bits	it	consumes	(X)	to	produce
an	output,	then	feeds	X	to	the	extractor	as	follows.

1.	 Let	z	be	abs(X−lastX),	where	lastX	is	either	the	last	value	of	X	fed
to	this	extractor	for	this	batch	or	0	if	there	is	no	such	value.

2.	 If	z	is	greater	than	0,	feed	the	bits	of	z	from	most	significant	to
least	significant	to	a	queue	of	extractor	inputs.

3.	 Now,	when	the	sampler	consumes	a	random	bit,	it	checks	the	input
queue.	As	long	as	64	bits	or	more	are	in	the	input	queue,	the
sampler	dequeues	64	bits	from	it,	runs	the	extractor	on	those	bits,
and	adds	the	extracted	bits	to	an	output	queue.	(The	number	64
can	instead	be	any	even	number	greater	than	2.)	Then,	if	the
output	queue	is	not	empty,	the	sampler	dequeues	a	bit	from	that
queue	and	uses	that	bit;	otherwise	it	generates	an	unbiased
random	bit	as	usual.

9	Sampling	Distributions	Using
Incomplete	Information

The	Bernoulli	factory	problem	(the	problem	of	turning	one	biased	coin
into	another	biased	coin;	see	"Bernoulli	Factory	Algorithms")	is	a
special	case	of	the	problem	of	sampling	a	probability	distribution
with	unknown	parameters.	This	problem	can	be	described	as
sampling	from	a	new	distribution	using	an	oracle	(black	box)	that
produces	numbers	of	an	incompletely	known	distribution.	In	the
Bernoulli	factory	problem,	this	oracle	is	a	coin	that	shows	heads	or
tails	where	the	probability	of	heads	is	unknown.	The	rest	of	this
section	deals	with	oracles	that	go	beyond	coins.
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Algorithm	1.	Suppose	there	is	an	oracle	that	produces	independent
random	variates	on	a	closed	interval	[a,	b],	and	these	numbers	have
an	unknown	mean	of	μ.	The	goal	is	now	to	produce	nonnegative
random	variates	whose	expected	value	("long-run	average")	is	f(μ).
Unless	f	is	constant,	this	is	possible	if	and	only	if—

f	is	continuous	on	the	closed	interval,	and
f(μ)	is	greater	than	or	equal	to	ε*min((μ	−	a)n,	(b	−	μ)n)	for	some
integer	n	and	some	ε	greater	than	0	(loosely	speaking,	f	is
nonnegative	and	neither	touches	0	in	the	interior	of	the	interval
nor	moves	away	from	0	more	slowly	than	a	polynomial)

(Jacob	and	Thiery	2015)100.	(Here,	a	and	b	are	both	rational	numbers
and	may	be	less	than	0.)

In	the	algorithm	below,	let	K	be	a	rational	number	greater	than	the
maximum	value	of	f	on	the	closed	interval	[a,	b],	and	let	g(λ)	=	f(a	+
(b−a)*λ)/K.

1.	 Create	a	λ	input	coin	that	does	the	following:	"Take	a	number	from
the	oracle,	call	it	x.	With	probability	(x−a)/(b−a)	(see	note	below),
return	1.	Otherwise,	return	0."

2.	 Run	a	Bernoulli	factory	algorithm	for	g(λ),	using	the	λ	input	coin.
Then	return	K	times	the	result.

Note:	The	check	"With	probability	(x−a)/(b−a)"	is	exact	if	the
oracle	produces	only	rational	numbers.	Otherwise,	calculating
the	probability	can	lead	to	numerical	errors	unless	care	is	taken
(see	note	2	in	"Distributions	with	nowhere	increasing	or
nowhere	decreasing	weights",	above).	With	uniform	partially-
sampled	random	numbers	(PSRNs),	the	check	can	be
implemented	as	follows.	Let	x	be	a	uniform	PSRN	representing	a
number	generated	by	the	oracle.	Set	y	to
RandUniformFromReal(b−a),	then	the	check	succeeds	if
RandLess(y,	UniformAddRational(x,	−a))	returns	1,	and	fails
otherwise.

Example:	Suppose	an	oracle	produces	random	variates	in	the
interval	[3,	13]	with	unknown	mean	μ,	and	the	goal	is	to	use	the
oracle	to	produce	nonnegative	random	variates	with	mean	f(μ)	=
−319/100	+	μ*103/50	−	μ2*11/100,	which	is	a	polynomial	with
Bernstein	coefficients	[2,	9,	5]	in	the	given	interval.	Then	since	8
is	greater	than	the	maximum	of	f	in	that	interval,	g(λ)	is	a
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degree-2	polynomial	in	the	interval	[0,	1]	that	has	Bernstein
coefficients	[2/8,	9/8,	5/8].	g	can't	be	simulated	as	is,	though,	but
increasing	g's	degree	to	3	leads	to	the	Bernstein	coefficients
[1/4,	5/6,	23/24,	5/8],	which	are	all	less	than	1	so	that	the
following	algorithm	can	be	used	(see	"Certain	Polynomials"):

1.	 Set	heads	to	0.
2.	 Generate	three	random	variates	from	the	oracle	(which	must

produce	random	variates	in	the	interval	[3,	13]).	For	each
number	x:	With	probability	(x−3)/(10−3),	add	1	to	heads.

3.	 Depending	on	heads,	return	8	(that	is,	1	times	the	upper
bound)	with	the	given	probability,	or	0	otherwise:	heads=0	→
probability	1/4;	1	→	5/6;	2	→	23/24;	3	→	5/8.

Algorithm	2.	Say	there	is	an	oracle	in	the	form	of	a	fair	die.	The
number	of	faces	of	the	die,	n,	is	at	least	2	but	otherwise	unknown.
Each	face	shows	a	different	integer	0	or	greater	and	less	than	n.	The
question	arises:	Which	probability	distributions	based	on	the	number
of	faces	can	be	sampled	with	this	oracle?	This	question	was	studied	in
the	French-language	dissertation	of	R.	Duvignau	(2015,	section
5.2)101,	and	the	following	are	four	of	these	distributions.

Bernoulli	1/n.	It's	trivial	to	generate	a	Bernoulli	variate	that	is	1	with
probability	1/n	and	0	otherwise:	just	take	a	number	from	the	oracle
and	return	either	1	if	that	number	is	0,	or	0	otherwise.	Alternatively,
take	two	numbers	from	the	oracle	and	return	either	1	if	both	are	the
same,	or	0	otherwise	(Duvignau	2015,	p.	153)102.

Random	variate	with	mean	n.	Likewise,	it's	trivial	to	generate
variates	with	a	mean	of	n:	Do	"Bernoulli	1/n"	trials	as	described	above
until	a	trial	returns	0,	then	return	the	number	of	trials	done	this	way.
(This	is	related	to	the	ambiguously	defined	"geometric"	random
variates.)

Binomial	with	parameters	n	and	1/n.	Using	the	oracle,	the
following	algorithm	generates	a	binomial	variate	of	this	kind
(Duvignau	2015,	Algorithm	20)103:

1.	 Take	items	from	the	oracle	until	the	same	item	is	taken	twice.
2.	 Create	a	list	consisting	of	the	items	taken	in	step	1,	except	for	the

last	item	taken,	then	shuffle	that	list.
3.	 In	the	shuffled	list,	count	the	number	of	items	that	didn't	change

position	after	being	shuffled,	then	return	that	number.
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Binomial	with	parameters	n	and	k/n.	Duvignau	2015	also	includes
an	algorithm	(Algorithm	25)	to	generate	a	binomial	variate	of	this	kind
using	the	oracle	(where	k	is	a	known	integer	such	that	0	<	k	and	k	≤
n):

1.	 Take	items	from	the	oracle	until	k	different	items	were	taken	this
way.	Let	U	be	a	list	of	these	k	items,	in	the	order	in	which	they
were	first	taken.

2.	 Create	an	empty	list	L.
3.	 For	each	integer	i	satisfying	0	≤	i	<	k:

1.	 Create	an	empty	list	M.
2.	 Take	an	item	from	the	oracle.	If	the	item	is	in	U	at	a	position
less	than	i	(positions	start	at	0),	repeat	this	substep.
Otherwise,	if	the	item	is	not	in	M,	add	it	to	M	and	repeat	this
substep.	Otherwise,	go	to	the	next	substep.

3.	 Shuffle	the	list	M,	then	add	to	L	each	item	that	didn't	change
position	after	being	shuffled	(if	not	already	present	in	L).

4.	 For	each	integer	i	satisfying	0	≤	i	<	k:
1.	 Let	P	be	the	item	at	position	i	in	U.
2.	 Take	an	item	from	the	oracle.	If	the	item	is	in	U	at	position	i	or
less	(positions	start	at	0),	repeat	this	substep.

3.	 If	the	last	item	taken	in	the	previous	substep	is	in	U	at	a
position	greater	than	i,	add	P	to	L	(if	not	already	present).

5.	 Return	the	number	of	items	in	L.

Note:	Duvignau	proved	a	result	(Theorem	5.2)	that	answers	the
question:	Which	probability	distributions	based	on	the	unknown
n	can	be	sampled	with	the	oracle?104	The	result	applies	to	a
family	of	(discrete)	distributions	with	the	same	unknown
parameter	n,	starting	with	either	1	or	a	greater	integer.	Let
Supp(m)	be	the	set	of	values	taken	on	by	the	distribution	with
parameter	equal	to	m.	Then	that	family	can	be	sampled	using
the	oracle	(with	or	without	additional	randomness)	if	and	only	if:

There	is	a	computable	function	f(k)	that	outputs	a	positive
number.
For	each	n,	Supp(n)	is	included	in	Supp(n+1).
For	every	k	and	for	every	n	≥	2	starting	with	the	first	n	for
which	k	is	in	Supp(n),	the	probability	of	seeing	k	given
parameter	n	is	at	least	(1/n)f(k).
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Moreover,	by	Proposition	5.5	of	Duvignau,	a	family	meeting	the
conditions	above	can	be	sampled	without	additional	randomness
(besides	the	oracle)	if	and	only	if	Supp(1)	has	no	more	than	one
element.

Example:	Let	n≥	2	be	an	integer.
The	family	of	Bernoulli	distributions,	taking	on	1	with	probability
exp(−n)	and	0	otherwise,	cannot	be	simulated	this	way,	because
that	probability	decays	faster	than	the	rate	(1/n)f(1)	for	any	f.
This	is	consistent	with	the	results	for	Bernoulli	factories	(Keane
and	O'Brien	1994)105,	where	a	coin	that	shows	heads	with
unknown	probability	λ	=	1/n	cannot	be	turned	into	a	coin	that
shows	heads	with	probability	g(λ)	=	exp(−1/λ)	=	exp(−n)	since	g
is	not	polynomially	bounded	(away	from	0).
However,	a	Bernoulli	family,	taking	on	1	with	probability	h(n)	=
(1+ln(n))/n	and	0	with	probability	1−h(n),	can	be	simulated,
because	min(h(n),	1−h(n))	≥	(1/n)3.

9.1	Additional	Algorithms

The	following	algorithms	are	included	here	because	they	require
applying	an	arbitrary	function	(such	as	f(λ))	to	a	potentially	irrational
number.

Algorithm	3.	Suppose	there	is	an	oracle	that	produces	independent
random	real	numbers	whose	expected	value	("long-run	average")	is	a
known	or	unknown	mean.	The	goal	is	now	to	produce	nonnegative
random	variates	whose	expected	value	is	the	mean	of	f(X),	where	X	is
a	number	produced	by	the	oracle.	This	is	possible	whenever—

f	has	a	finite	lower	bound	and	a	finite	upper	bound	on	its	domain,
and
the	mean	of	f(X)	is	not	less	than	δ,	where	δ	is	a	known	rational
number	greater	than	0.

The	algorithm	to	achieve	this	goal	follows	(see	Lee	et	al.	2014106):

1.	 Let	m	be	a	rational	number	equal	to	or	greater	than	the	maximum
value	of	abs(f(μ))	anywhere.	Create	a	ν	input	coin	that	does	the
following:	"Take	a	number	from	the	oracle,	call	it	x.	With
probability	abs(f(x))/m,	return	a	number	that	is	1	if	f(x)	<	0	and	0
otherwise.	Otherwise,	repeat	this	process."
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2.	 Use	one	of	the	linear	Bernoulli	factories	to	simulate	2*ν	(2
times	the	ν	coin's	probability	of	heads),	using	the	ν	input	coin,	with
ϵ	=	δ/m.	If	the	factory	returns	1,	return	0.	Otherwise,	take	a
number	from	the	oracle,	call	it	ξ,	and	return	abs(f(ξ)).

Example:	An	example	from	Lee	et	al.	(2014)107.	Say	the	oracle
produces	uniform	random	variates	in	[0,	3*π],	and	let	f(ν)	=
sin(ν).	Then	the	mean	of	f(X)	is	2/(3*π),	which	is	greater	than	0
and	found	in	SymPy	by	
sympy.stats.E(sin(sympy.stats.Uniform('U',0,3*pi))),	so	the
algorithm	can	produce	nonnegative	random	variates	whose
expected	value	("long-run	average")	is	that	mean.

Notes:

1.	 Averaging	to	the	mean	of	f(X)	(that	is,	E[f(X)]	where	E[.]
means	expected	value	or	"long-run	average")	is	not	the	same
as	averaging	to	f(μ)	where	μ	is	the	mean	of	the	oracle's
numbers	(that	is,	f(E[X])).	For	example,	if	X	is	0	or	1	with
equal	probability,	and	f(ν)	=	exp(−ν),	then	E[f(X)]	=	exp(0)	+
(exp(−1)	−	exp(0))*(1/2),	and	f(E[X])	=	f(1/2)	=	exp(−1/2).

2.	 (Lee	et	al.	2014,	Corollary	4)108:	If	f(μ)	is	known	to	return
only	values	in	the	interval	[a,	c],	the	mean	of	f(X)	is	not	less
than	δ,	δ	>	b,	and	δ	and	b	are	known	numbers,	then
Algorithm	2	can	be	modified	as	follows:

Use	f(ν)	=	f(ν)	−	b,	and	use	δ	=	δ	−	b.
m	is	taken	as	max(b−a,	c−b).
When	Algorithm	2	finishes,	add	b	to	its	return	value.

3.	 The	check	"With	probability	abs(f(x))/m"	is	exact	if	the	oracle
produces	only	rational	numbers	and	if	f(x)	outputs	only
rational	numbers.	If	the	oracle	or	f	can	produce	irrational
numbers	(such	as	numbers	that	follow	a	beta	distribution	or
another	non-discrete	distribution),	then	calculating	the
probability	can	lead	to	numerical	errors	unless	care	is	taken
(see	note	2	in	"Distributions	with	nowhere	increasing	or
nowhere	decreasing	weights",	above).

Algorithm	4.	Suppose	there	is	an	oracle	that	produces	independent
random	real	numbers	that	are	all	greater	than	or	equal	to	a	(which	is
a	known	rational	number),	whose	mean	(μ)	is	unknown.	The	goal	is	to
use	the	oracle	to	produce	nonnegative	random	variates	with	mean
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f(μ).	This	is	possible	only	if	f	is	0	or	greater	everywhere	in	the	interval
[a,	∞)	and	is	nowhere	decreasing	in	that	interval	(Jacob	and	Thiery
2015)109.	This	can	be	done	using	the	algorithm	below.	In	the
algorithm:

f(μ)	must	be	a	function	that	can	be	written	as—
c[0]*z0	+	c[1]*z1	+	...,
which	is	an	infinite	series	where	z	=	μ−a	and	all	c[i]	are	0	or
greater.
ψ	is	a	rational	number	close	to	1,	such	as	95/100.	(The	exact
choice	is	arbitrary	and	can	be	less	or	greater	for	efficiency
purposes,	but	must	be	greater	than	0	and	less	than	1.)

The	algorithm	follows.

1.	 Set	ret	to	0,	prod	to	1,	k	to	0,	and	w	to	1.	(w	is	the	probability	of
taking	k	or	more	numbers	from	the	oracle	in	a	single	run	of	the
algorithm.)

2.	 If	k	is	greater	than	0:	Take	a	number	from	the	oracle,	call	it	x,	and
multiply	prod	by	x−a.

3.	 Add	c[k]*prod/w	to	ret.
4.	 Multiply	w	by	ψ	and	add	1	to	k.
5.	 With	probability	ψ,	go	to	step	2.	Otherwise,	return	ret.

Now,	assume	the	oracle's	numbers	are	all	less	than	or	equal	to	b
(rather	than	greater	than	or	equal	to	a),	where	b	is	a	known	rational
number.	Then	f	must	be	0	or	greater	everywhere	in	(−∞,	b]	and	be
nowhere	increasing	there	(Jacob	and	Thiery	2015)110,	and	the
algorithm	above	can	be	used	with	the	following	modifications:	(1)	In
the	note	on	the	infinite	series,	z	=	b	−μ;	(2)	in	step	2,	multiply	prod	by
b	−	x	rather	than	x	−	a.

Note:	This	algorithm	is	exact	if	the	oracle	produces	only	rational
numbers	and	if	all	c[i]	are	rational	numbers.	Otherwise,	the
algorithm	can	introduce	numerical	errors	unless	care	is	taken
(see	note	2	in	"Distributions	with	nowhere	increasing	or
nowhere	decreasing	weights",	above).	See	also	note	3	on	the
previous	algorithm.
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Due	to	a	suggestion	by	Michael	Shoemate	who	suggested	it	was	"easy
to	get	lost"	in	this	and	related	articles,	some	sections	that	related	to
geometric	distributions	were	moved	here.	He	also	noticed	a	minor
error	which	was	corrected.
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