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1	Introduction
This	page	introduces	a	Python	implementation	of	partially-sampled	random	numbers
(PSRNs).	Although	structures	for	PSRNs	were	largely	described	before	this	work,	this
document	unifies	the	concepts	for	these	kinds	of	numbers	from	prior	works	and	shows	how
they	can	be	used	to	sample	the	beta	distribution	(for	most	sets	of	parameters),	the
exponential	distribution	(with	an	arbitrary	rate	parameter),	and	other	continuous
distributions—

while	avoiding	floating-point	arithmetic,	and
to	an	arbitrary	precision	and	with	user-specified	error	bounds	(and	thus	in	an	"exact"
manner	in	the	sense	defined	in	(Karney	2014)(1)).

For	instance,	these	two	points	distinguish	the	beta	sampler	in	this	document	from	any	other
specially-designed	beta	sampler	I	am	aware	of.	As	for	the	exponential	distribution,	there	are
papers	that	discuss	generating	exponential	random	variates	using	random	bits	(Flajolet	and
Saheb	1982)(2),	(Karney	2014)(1),	(Devroye	and	Gravel	2020)(3),	(Thomas	and	Luk	2008)(4),
but	most	if	not	all	of	them	don't	deal	with	generating	exponential	PSRNs	using	an	arbitrary
rate,	not	just	1.	(Habibizad	Navin	et	al.,	2010)(5)	is	perhaps	an	exception;	however	the
approach	appears	to	involve	pregenerated	tables	of	digit	probabilities.

The	samplers	discussed	here	also	draw	on	work	dealing	with	a	construct	called	the	Bernoulli
factory	(Keane	and	O'Brien	1994)(6)	(Flajolet	et	al.,	2010)(7),	which	can	simulate	an	arbitrary
probability	by	transforming	biased	coins	to	biased	coins.	One	important	feature	of	Bernoulli
factories	is	that	they	can	simulate	a	given	probability	exactly,	without	having	to	calculate	that
probability	manually,	which	is	important	if	the	probability	can	be	an	irrational	number	that
no	computer	can	compute	exactly	(such	as	pow(p,	1/2)	or	exp(-2)).

This	page	shows	Python	code	for	these	samplers.

1.1	About	This	Document
This	is	an	open-source	document;	for	an	updated	version,	see	the	source	code	or	its
rendering	on	GitHub.	You	can	send	comments	on	this	document	either	on
CodeProject	or	on	the	GitHub	issues	page.
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3	About	the	Beta	Distribution
The	beta	distribution	is	a	bounded-domain	probability	distribution;	its	two	parameters,	
alpha	and	beta,	are	both	greater	than	0	and	describe	the	distribution's	shape.	Depending	on	
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alpha	and	beta,	the	shape	can	be	a	smooth	peak	or	a	smooth	valley.	The	beta	distribution	can
take	on	values	in	the	interval	[0,	1].	Any	value	in	this	interval	(x)	can	occur	with	a	probability
proportional	to—

pow(x,	alpha	-	1)	*	pow(1	-	x,	beta	-	1).															(1)

Although	alpha	and	beta	can	each	be	greater	than	0,	the	sampler	presented	in	this	document
only	works	if—

both	parameters	are	1	or	greater,	or
in	the	case	of	base-2	numbers,	one	parameter	equals	1	and	the	other	is	greater	than	0.

4	About	the	Exponential	Distribution
The	exponential	distribution	takes	a	parameter	λ.	Informally	speaking,	a	random	variate	that
follows	an	exponential	distribution	is	the	number	of	units	of	time	between	one	event	and	the
next,	and	λ	is	the	expected	average	number	of	events	per	unit	of	time.	Usually,	λ	is	equal	to
1.

An	exponential	random	variate	is	commonly	generated	as	follows:	-ln(1	-	X)	/	lamda,	where	X
is	a	uniformly-distributed	random	real	number	in	the	interval	\0,	1).	(This	particular
algorithm,	however,	is	not	robust	in	practice,	for	reasons	that	are	outside	the	scope	of	this
document,	but	see	(Pedersen	2018)[(8).)	This	page	presents	an	alternative	way	to	sample
exponential	random	variates.

5	About	Partially-Sampled	Random	Numbers
In	this	document,	a	partially-sampled	random	number	(PSRN)	is	a	data	structure	that	stores
a	real	number	of	unlimited	precision,	but	whose	contents	are	sampled	only	when	necessary.
PSRNs	open	the	door	to	algorithms	that	sample	a	random	variate	that	"exactly"	follows	a
continuous	distribution,	with	arbitrary	precision,	and	without	floating-point	arithmetic	(see
"Properties"	later	in	this	section).

PSRNs	specified	here	consist	of	the	following	three	things:

A	fractional	part	with	an	arbitrary	number	of	digits.	This	can	be	implemented	as	an
array	of	digits	or	as	a	packed	integer	containing	all	the	digits.	Some	algorithms	care
whether	those	digits	were	sampled	or	unsampled;	in	that	case,	if	a	digit	is	unsampled,
its	unsampled	status	can	be	noted	in	a	way	that	distinguishes	it	from	sampled	digits
(e.g.,	by	using	the	None	keyword	in	Python,	or	the	number	−1,	or	by	storing	a	separate
bit	array	indicating	which	bits	are	sampled	and	unsampled).	The	base	in	which	all	the
digits	are	stored	(such	as	base	10	for	decimal	or	base	2	for	binary)	is	arbitrary.	The
fractional	part's	digits	form	a	so-called	digit	expansion	(e.g.,	binary	expansion	in	the
case	of	binary	or	base-2	digits).	Digits	beyond	those	stored	in	the	fractional	part	are
unsampled.

For	example,	if	the	fractional	part	stores	the	base-10	digits	[1,	3,	5],	in	that	order,	then
it	represents	a	random	variate	in	the	interval	[0.135,	0.136],	reflecting	the	fact	that	the
digits	between	0.135	and	0.136	are	unknown.

An	optional	integer	part	(more	specifically,	the	integer	part	of	the	number's	absolute
value,	that	is,	floor(abs(x))).

An	optional	sign	(positive	or	negative).

If	the	integer	part	is	not	stored,	it's	assumed	to	be	0.	If	the	sign	is	not	stored,	it's	assumed	to
be	positive.	For	example,	an	implementation	can	care	only	about	PSRNs	in	the	interval	[0,	1]



by	storing	only	a	fractional	part.

PSRNs	ultimately	represent	a	random	variate	between	two	others;	one	of	the	number's	two
bounds	has	the	following	form:	sign	*	(integer	part	+	fractional	part),	which	is	a	lower	bound
if	the	PSRN	is	positive,	or	an	upper	bound	if	it's	negative.	For	example,	if	the	PSRN	stores	a
positive	sign,	the	integer	3,	and	the	fractional	part	[3,	5,	6]	(in	base	10),	then	the	PSRN
represents	a	random	variate	in	the	interval	[3.356,	3.357].	Here,	one	of	the	bounds	is	built
using	the	PSRN's	sign,	integer	part,	and	fractional	part,	and	because	the	PSRN	is	positive,
this	is	a	lower	bound.

This	section	specifies	two	kinds	of	PSRNs:	uniform	and	exponential.

5.1	Uniform	Partially-Sampled	Random	Numbers
The	most	trivial	example	of	a	PSRN	is	that	of	the	uniform	distribution.

Flajolet	et	al.	(2010)(7)	use	the	term	geometric	bag	to	refer	to	a	uniform	PSRN	in	the
interval	[0,	1]	that	stores	binary	(base-2)	digits,	some	of	which	may	be	unsampled.	In
this	case,	the	PSRN	can	consist	of	just	a	fractional	part,	which	can	be	implemented	as
described	earlier.
(Karney	2014)(1)	uses	the	term	u-rand	to	refer	to	uniform	PSRNs	that	can	store	a	sign,
integer	part,	and	a	fractional	part,	where	the	base	of	the	fractional	part's	digits	is
arbitrary,	but	Karney's	concept	only	contemplates	sampling	digits	from	left	to	right
without	any	gaps.

Each	additional	digit	of	a	uniform	PSRN's	fractional	part	is	sampled	simply	by	setting	it	to	an
independent	uniform	random	digit,	an	observation	that	dates	from	von	Neumann	(1951)(9)	in
the	binary	case.(10)	A	PSRN	with	this	property	is	called	a	uniform	PSRN	in	this	document,
even	if	it	was	generated	using	a	non-uniform	random	sampling	algorithm	(such	as	Karney's
algorithm	for	the	normal	distribution).	(This	is	notably	because,	in	general,	this	kind	of	PSRN
represents	a	uniform	random	variate	in	a	given	interval.	For	example,	if	the	PSRN	is	3.356...,
then	it	represents	a	uniformly	distributed	random	variate	in	the	interval	[3.356,	3.357].)

5.2	Exponential	Partially-Sampled	Random	Numbers
In	this	document,	an	exponential	PSRN	(or	e-rand,	named	similarly	to	Karney's	"u-rands"
for	partially-sampled	uniform	random	variates	(Karney	2014)(1))	samples	each	bit	that,	when
combined	with	the	existing	bits,	results	in	an	exponentially-distributed	random	variate	of	the
given	rate.	Also,	because	-ln(1	-	X),	where	X	is	a	uniform	random	variate	in	the	interval	[0,	1],
is	exponentially	distributed,	e-rands	can	also	represent	the	natural	logarithm	of	a	partially-
sampled	uniform	random	variate	in	(0,	1].	The	difference	here	is	that	additional	bits	are
sampled	not	as	unbiased	random	bits,	but	rather	as	bits	with	a	vanishing	bias.	(More
specifically,	an	exponential	PSRN	generally	represents	an	exponentially-distributed	random
variate	in	a	given	interval.)

Algorithms	for	sampling	e-rands	are	given	in	the	section	"Algorithms	for	the	Beta	and
Exponential	Distributions".

5.3	Other	Distributions
PSRNs	of	other	distributions	can	be	implemented	via	rejection	from	the	uniform	distribution.
Examples	include	the	following:

The	beta	and	continuous	Bernoulli	distributions,	as	discussed	later	in	this	document.
The	standard	normal	distribution,	as	shown	in	(Karney	2014)(1)	by	running	Karney's
Algorithm	N	and	filling	unsampled	digits	uniformly	at	random,	or	as	shown	in	an



improved	version	of	that	algorithm	by	Du	et	al.	(2020)(11).
Sampling	uniform	distributions	in	[0,	n)	(not	just	[0,	1]),	is	described	later	in	"Sampling
Uniform	PSRNs".)

For	all	these	distributions,	the	PSRN's	unsampled	trailing	digits	converge	to	the	uniform
distribution,	and	this	also	applies	to	any	continuous	distribution	with	a	continuous	probability
density	function	(or	more	generally,	to	so-called	"absolutely	continuous"(12)	distributions)
(Oberhoff	2018)(13),	(Hill	and	Schürger	2005,	Corollary	4.4)(14).

PSRNs	could	also	be	implemented	via	rejection	from	the	exponential	distribution,	although
no	concrete	examples	are	presented	here.

5.4	Properties
An	algorithm	that	samples	from	a	continuous	distribution	using	PSRNs	has	the	following
properties:

1.	 The	algorithm	relies	only	on	a	source	of	independent	and	unbiased	random	bits	for
randomness.

2.	 The	algorithm	does	not	rely	on	floating-point	arithmetic	or	fixed-precision
approximations	of	irrational	or	transcendental	numbers.	(The	algorithm	may	calculate
approximations	that	converge	to	an	irrational	number,	as	long	as	those	approximations
use	arbitrary	precision.)

3.	 The	algorithm	may	use	rational	arithmetic	(such	as	Fraction	in	Python	or	Rational	in
Ruby),	as	long	as	the	arithmetic	is	exact.

4.	 If	the	algorithm	outputs	a	PSRN,	the	number	represented	by	the	sampled	digits	must
follow	a	distribution	that	is	close	to	the	ideal	distribution	by	a	distance	of	not	more	than
b−m,	where	b	is	the	PSRN's	base,	or	radix	(such	as	2	for	binary),	and	m	is	the	position,
starting	from	1,	of	the	rightmost	sampled	digit	of	the	PSRN's	fractional	part.	((Devroye
and	Gravel	2020)(3)	suggests	Wasserstein	distance,	or	"earth-mover	distance",	as	the
distance	to	use	for	this	purpose.)	The	number	has	to	be	close	this	way	even	if	the
algorithm's	caller	later	samples	unsampled	digits	of	that	PSRN	at	random	(e.g.,
uniformly	at	random	in	the	case	of	a	uniform	PSRN).

5.	 If	the	algorithm	fills	a	PSRN's	unsampled	fractional	digits	at	random	(e.g.,	uniformly	at
random	in	the	case	of	a	uniform	PSRN),	so	that	the	number's	fractional	part	has	m
digits,	the	number's	distribution	must	remain	close	to	the	ideal	distribution	by	a
distance	of	not	more	than	b−m.

Notes:

1.	 It	is	not	easy	to	turn	a	sampler	for	a	continuous	distribution	into	an	algorithm
that	meets	these	properties.	Some	reasons	for	this	are	given	in	the	section
"Discussion"	later	in	this	document.

2.	 The	exact	rejection	sampling	algorithm	described	by	Oberhoff	(2018)(13)
produces	samples	that	act	like	PSRNs;	however,	the	algorithm	doesn't	have
the	properties	described	in	this	section.	This	is	because	the	method	requires
calculating	minimums	of	probabilities	and,	in	practice,	requires	the	use	of
floating-point	arithmetic	in	most	cases	(see	property	2	above).	Moreover,	the
algorithm's	progression	depends	on	the	value	of	previously	sampled	bits,	not
just	on	the	position	of	those	bits	as	with	the	uniform	and	exponential
distributions	(see	also	(Thomas	and	Luk	2008)(4)).	For	completeness,
Oberhoff's	method	appears	in	the	appendix.

5.5	Limitations
Because	a	PSRN	stores	a	random	variate	in	a	certain	interval,	PSRNs	are	not	well	suited	for



representing	numbers	in	zero-volume	sets.	Such	sets	include:

Sets	of	integers	or	rational	numbers.
Sets	of	individual	points.
Curves	on	two-	or	higher-dimensional	space.
Surfaces	on	three-	or	higher-dimensional	space.

In	the	case	of	curves	and	surfaces,	a	PSRN	can't	directly	store	the	coordinates,	in	space,	of	a
random	point	on	that	curve	or	surface	(because	the	exact	value	of	those	coordinates	may	be
an	irrational	number	that	no	computer	can	store,	and	no	interval	can	bound	those	exact
coordinates	"tightly"	enough),	but	the	PSRN	can	store	upper	and	lower	bounds	that	indirectly
give	that	point's	position	on	that	curve	or	surface.

Examples:

1.	 To	represent	a	point	on	the	edge	of	a	circle,	a	PSRN	can	store	a	random
variate	in	the	interval	[0,	2*π),	via	the	RandUniformFromReal	method,	given
later,	for	2*π	(for	example,	it	can	store	an	integer	part	of	2	and	a	fractional
part	of	[1,	3,	5]	and	thus	represent	a	number	in	the	interval	[2.135,	2.136]),
and	the	number	stored	this	way	indicates	the	distance	on	the	circular	arc
relative	to	its	starting	position.	A	program	that	cares	about	the	point's	X	and	Y
coordinates	can	then	generate	enough	digits	of	the	PSRN	to	compute	an
approximation	of	cos(P)	and	sin(P),	respectively,	to	the	desired	accuracy,
where	P	is	the	number	stored	by	the	PSRN.	(However,	the	direct	use	of
mathematical	functions	such	as	cos	and	sin	is	outside	the	scope	of	this
document,	because	the	focus	here	is	on	"exact	sampling".)

2.	 Example	1	is	quite	trivial,	because	each	point	on	the	interval	maps	evenly	to	a
point	on	the	circle.	But	this	is	not	true	in	general:	an	interval's	or	box's	points
don't	map	evenly	to	points	on	a	curve	or	surface	in	general.	For	example,	take
two	PSRNs	describing	the	U	and	V	coordinates	of	a	3	dimensional	cone's
surface:	[1.135,	1.136]	for	U	and	[0.288,	0.289]	for	V,	and	the	cone's
coordinates	are	X	=	U*cos(V),	Y	=	U*sin(V),	Z	=	U.	In	this	example,	the	PSRNs
form	a	box	that's	mapped	to	a	small	part	of	the	cone.	However,	the	points	in
the	box	don't	map	to	the	cone	evenly	this	way,	so	generating	enough	digits	to
calculate	X,	Y,	and	Z	to	the	desired	accuracy	will	not	sample	uniformly	from
that	part	of	the	cone	without	more	work	(see	Williamson	(1987)(15)	for	one
solution).

6	Sampling	Uniform	and	Exponential	PSRNs
	

6.1	Sampling	Uniform	PSRNs
There	are	several	algorithms	for	sampling	uniform	partially-sampled	random	numbers	given
another	number.

The	RandUniform	algorithm	generates	a	uniformly	distributed	PSRN	(a)	that	is	greater	than
0	and	less	than	another	PSRN	(b)	with	probability	1.	This	algorithm	samples	digits	of	b's
fractional	part	as	necessary.	This	algorithm	should	not	be	used	if	b	is	known	to	be	a	real
number	rather	than	a	partially-sampled	random	number,	since	this	algorithm	could	overshoot
the	value	b	had	(or	appeared	to	have)	at	the	beginning	of	the	algorithm;	instead,	the
RandUniformFromReal	algorithm,	given	later,	should	be	used.	(For	example,	if	b	is
3.425...,	one	possible	result	of	this	algorithm	is	a	=	3.42574...	and	b	=	3.42575...	Note	that	in
this	example,	3.425...	is	not	considered	an	exact	number.)



1.	 Create	an	empty	uniform	PSRN	a.	Let	β	be	the	base	(or	radix)	of	digits	stored	in	b's
fractional	part	(e.g.,	2	for	binary	or	10	for	decimal).	If	b's	integer	part	or	sign	is
unsampled,	or	if	b's	sign	is	negative,	return	an	error.

2.	 (We	now	set	a's	integer	part	and	sign.)	Set	a's	sign	to	positive	and	a's	integer	part	to	an
integer	chosen	uniformly	at	random	in	[0,	bi],	where	bi	is	b's	integer	part	(note	that	bi	is
included).	If	a's	integer	part	is	less	than	bi,	return	a.

3.	 (We	now	sample	a's	fractional	part.)	Set	i	to	0.
4.	 If	b's	integer	part	is	0	and	b's	fractional	part	begins	with	a	sampled	0-digit,	set	i	to	the

number	of	sampled	zeros	at	the	beginning	of	b's	fractional	part.	A	nonzero	digit	or	an
unsampled	digit	ends	this	sequence.	Then	append	i	zeros	to	a's	fractional	part.	(For
example,	if	b	is	5.000302	or	4.000	or	0.0008,	there	are	three	sampled	zeros	that	begin
b's	fractional	part,	so	i	is	set	to	3	and	three	zeros	are	appended	to	a's	fractional	part.)

5.	 If	the	digit	at	position	i	of	a's	fractional	part	is	unsampled,	set	the	digit	at	that	position
to	a	base-β	digit	chosen	uniformly	at	random	(such	as	an	unbiased	random	bit	if	β	is	2).
(Positions	start	at	0	where	0	is	the	most	significant	digit	after	the	point,	1	is	the	next,
etc.)

6.	 If	the	digit	at	position	i	of	b's	fractional	part	is	unsampled,	sample	the	digit	at	that
position	according	to	the	kind	of	PSRN	b	is.	(For	example,	if	b	is	a	uniform	PSRN	and	β
is	2,	this	can	be	done	by	setting	the	digit	at	that	position	to	an	unbiased	random	bit.)

7.	 If	the	digit	at	position	i	of	a's	fractional	part	is	less	than	the	corresponding	digit	for	b,
return	a.

8.	 If	that	digit	is	greater,	then	discard	a,	then	create	a	new	empty	uniform	PSRN	a,	then	go
to	step	2.

9.	 Add	1	to	i	and	go	to	step	5.

Notes:

1.	 Karney	(2014,	end	of	sec.	4)(1)	discusses	how	even	the	integer	part	can	be
partially	sampled	rather	than	generating	the	whole	integer	as	in	step	2	of	the
algorithm.	However,	incorporating	this	suggestion	will	add	a	non-trivial
amount	of	complexity	to	the	algorithm	given	above.

2.	 The	RandUniform	algorithm	is	equivalent	to	generating	the	product	of	a
random	variate	(b)	and	a	uniform	random	variate	in	the	interval	[0,	1].

3.	 If	b	is	a	uniform	PSRN	with	a	positive	sign,	an	integer	part	of	0,	and	an	empty
fractional	part,	the	RandUniform	algorithm	is	equivalent	to	generating	the
product	of	two	uniform	random	variate	in	the	interval	[0,	1].

The	RandUniformInRangePositive	algorithm	generates	a	uniformly	distributed	PSRN	(a)
that	is	greater	than	one	non-negative	real	number	bmin	and	less	than	another	positive	real
number	bmax	with	probability	1.	This	algorithm	works	whether	bmin	or	bmax	is	known	to
be	a	rational	number	or	not	(for	example,	either	number	can	be	the	result	of	an	expression
such	as	exp(-2)	or	ln(20)),	but	the	algorithm	notes	how	it	can	be	more	efficiently	implemented
if	bmin	or	bmax	is	known	to	be	a	rational	number.

1.	 If	bmin	is	greater	than	or	equal	to	bmax,	if	bmin	is	less	than	0,	or	if	bmax	is	0	or	less,
return	an	error.

2.	 Create	an	empty	uniform	PSRN	a.
3.	 Special	case:	If	bmax	is	1	and	bmin	is	0,	set	a's	sign	to	positive,	set	a's	integer	part	to

0,	and	return	a.
4.	 Special	case:	If	bmax	and	bmin	are	rational	numbers	and	each	of	their	denominators	is

a	power	of	β,	including	1	(where	β	is	the	desired	digit	base,	or	radix,	of	the	uniform
PSRN,	such	as	10	for	decimal	or	2	for	binary),	then	do	the	following:
1.	 Let	denom	be	bmax's	or	bmin's	denominator,	whichever	is	greater.
2.	 Set	c1	to	floor(bmax*denom)	and	c2	to	floor((bmax−bmin)*denom).
3.	 If	c2	is	greater	than	1,	add	to	c1	an	integer	chosen	uniformly	at	random	in	[0,	c2)

(note	that	c2	is	excluded).
4.	 Let	d	be	the	base-β	logarithm	of	denom	(this	is	equivalent	to	finding	the	minimum



number	of	base-β	digits	needed	to	store	denom	and	subtracting	1).	Transfer	c1's
least	significant	digits	to	a's	fractional	part;	the	variable	d	tells	how	many	digits	to
transfer	to	each	PSRN	this	way.	Then	set	a's	sign	to	positive	and	a's	integer	part	to
floor(c1/βd).	(For	example,	if	β	is	10,	d	is	3,	and	c1	is	7342,	set	a's	fractional	part	to
[3,	4,	2]	and	a's	integer	part	to	7.)	Finally,	return	a.

5.	 Calculate	floor(bmax),	and	set	bmaxi	to	the	result.	Likewise,	calculate	floor(bmin)	and
set	bmini	to	the	result.

6.	 If	bmini	is	equal	to	bmin	and	bmaxi	is	equal	to	bmax,	set	a's	sign	to	positive	and	a's
integer	part	to	an	integer	chosen	uniformly	at	random	in	[bmini,	bmaxi)	(note	that	bmaxi
is	excluded),	then	return	a.	(It	should	be	noted	that	determining	whether	a	real	number
is	equal	to	another	is	undecidable	in	general.)

7.	 (We	now	set	a's	integer	part	and	sign.)	Set	a's	sign	to	positive	and	a's	integer	part	to	an
integer	chosen	uniformly	at	random	in	the	interval	[bmini,	bmaxi]	(note	that	bmaxi	is
included).	If	bmaxi	is	equal	to	bmax,	the	integer	is	chosen	from	the	interval	[bmini,
bmaxi−1]	instead.	Return	a	if—

a's	integer	part	is	greater	than	bmini	and	less	than	bmaxi,	or
bmini	is	equal	to	bmin,	and	a's	integer	part	is	equal	to	bmini	and	less	than	bmaxi.

8.	 (We	now	sample	a's	fractional	part.)	Set	i	to	0	and	istart	to	0.	(	Then,	if	bmax	is	known
rational:	set	bmaxf	to	bmax	minus	bmaxi,	and	if	bmin	is	known	rational,	set	bminf	to
bmin	minus	bmini.)

9.	 (This	step	is	not	crucial	for	correctness,	but	helps	improve	its	efficiency.	It	sets	a's
fractional	part	to	the	initial	digits	shared	by	bmin	and	bmax.)	If	a's	integer	part	is	equal
to	bmini	and	bmaxi,	then	do	the	following	in	a	loop:	1.	Calculate	the	base-β	digit	at
position	i	of	bmax's	and	bmin's	fractional	parts,	and	set	dmax	and	dmin	to	those	digits,
respectively.	(If	bmax	is	known	rational:	Do	this	step	by	setting	dmax	to	floor(bmaxf*β)
and	dmin	to	floor(bminf*β).)	2.	If	dmin	equals	dmax,	append	dmin	to	a's	fractional	part,
then	add	1	to	i	(and,	if	bmax	and/or	bmin	is	known	to	be	rational,	set	bmaxf	to
bmaxf*β−d	and	set	bminf	to	bminf*β−d).	Otherwise,	break	from	this	loop	and	set	istart
to	i.

10.	 (Ensure	the	fractional	part	is	greater	than	bmin's.)	Set	i	to	istart,	then	if	a's	integer	part
is	equal	to	bmini:
1.	 Calculate	the	base-β	digit	at	position	i	of	bmin's	fractional	part,	and	set	dmin	to

that	digit.
2.	 If	the	digit	at	position	i	of	a's	fractional	part	is	unsampled,	set	the	digit	at	that

position	to	a	base-β	digit	chosen	uniformly	at	random	(such	as	an	unbiased	random
bit	if	β	is	2,	or	binary).	(Positions	start	at	0	where	0	is	the	most	significant	digit
after	the	point,	1	is	the	next,	etc.)

3.	 Let	ad	be	the	digit	at	position	i	of	a's	fractional	part.	If	ad	is	greater	than	dmin,
abort	these	substeps	and	go	to	step	11.

4.	 Discard	a,	create	a	new	empty	uniform	PSRN	a,	and	abort	these	substeps	and	go	to
step	7	if	ad	is	less	than	dmin.

5.	 Add	1	to	i	and	go	to	the	first	substep.
11.	 (Ensure	the	fractional	part	is	less	than	bmax's.)	Set	i	to	istart,	then	if	a's	integer	part	is

equal	to	bmaxi:
1.	 If	bmaxi	is	0	and	not	equal	to	bmax,	and	if	a	has	no	digits	in	its	fractional	part,	then

do	the	following	in	a	loop:
1.	 Calculate	the	base-β	digit	at	position	i	of	bmax's	fractional	part,	and	set	d	to

that	digit.	(If	bmax	is	known	rational:	Do	this	step	by	setting	d	to
floor(bmaxf*β).)

2.	 If	d	is	0,	append	a	0-digit	to	a's	fractional	part,	then	add	1	to	i	(and,	if	bmax	is
known	to	be	rational,	set	bmaxf	to	bmaxf*β−d).	Otherwise,	break	from	this
loop.

2.	 Calculate	the	base-β	digit	at	position	i	of	bmax's	fractional	part,	and	set	dmax	to
that	digit.	(If	bmax	is	known	rational:	Do	this	step	by	multiplying	bmaxf	by	β,	then
setting	dmax	to	floor(bmaxf),	then	subtracting	dmax	from	bmaxf.)

3.	 If	the	digit	at	position	i	of	a's	fractional	part	is	unsampled,	set	the	digit	at	that



position	to	a	base-β	digit	chosen	uniformly	at	random.
4.	 Let	ad	be	the	digit	at	position	i	of	a's	fractional	part.	Return	a	if	ad	is	less	than

dmax.
5.	 Discard	a,	create	a	new	empty	uniform	PSRN	a,	and	abort	these	substeps	and	go	to

step	7	if—
bmax	is	not	known	to	be	rational,	and	either	ad	is	greater	than	dmax	or	all	the
digits	after	the	digit	at	position	i	of	bmax's	fractional	part	are	zeros,	or
bmax	is	known	to	be	rational,	and	either	ad	is	greater	than	dmax	or	bmaxf	is	0

6.	 Add	1	to	i	and	go	to	the	second	substep.
12.	 Return	a.

The	RandUniformInRange	algorithm	generates	a	uniformly	distributed	PSRN	(a)	that	is
greater	than	one	real	number	bmin	and	less	than	another	real	number	bmax	with
probability	1.	It	works	for	both	positive	and	negative	real	numbers,	but	it's	specified
separately	from	RandUniformInRangePositive	to	reduce	clutter.

1.	 If	bmin	is	greater	than	or	equal	to	bmax,	return	an	error.	If	bmin	and	bmax	are	each	0
or	greater,	return	the	result	of	RandUniformInRangePositive.

2.	 If	bmin	and	bmax	are	each	0	or	less,	call	RandUniformInRangePositive	with	bmin	=
abs(bmax)	and	bmax	=	abs(bmin),	set	the	result's	fractional	part	to	negative,	and
return	the	result.

3.	 (At	this	point,	bmin	is	less	than	0	and	bmax	is	greater	than	0.)	Set	bmaxi	to	either
floor(bmax)	if	bmax	is	0	or	greater,	or	−ceil(abs(bmax))	otherwise,	and	set	bmini	to
either	floor(bmin)	if	bmin	is	0	or	greater,	or	−ceil(abs(bmin))	otherwise.	(Described
this	way	to	keep	implementers	from	confusing	floor	with	the	integer	part.)

4.	 Set	ipart	to	an	integer	chosen	uniformly	at	random	in	the	interval	[bmini,	bmaxi]	(note
that	bmaxi	is	included).	If	bmaxi	is	equal	to	bmax,	the	integer	is	chosen	from	the
interval	[bmini,	bmaxi−1]	instead.

5.	 If	ipart	is	neither	bmini	nor	bmaxi,	create	a	uniform	PSRN	a	with	an	empty	fractional
part;	then	set	a's	sign	to	either	positive	if	ipart	is	0	or	greater,	or	negative	otherwise;
then	set	a's	integer	part	to	abs(ipart+1)	if	ipart	is	less	than	0,	or	ipart	otherwise;	then
return	a.

6.	 If	ipart	is	bmini,	then	create	a	uniform	PSRN	a	with	a	positive	sign,	an	integer	part	of
abs(ipart+1),	and	an	empty	fractional	part;	then	run	URandLessThanReal	with	a	=	a
and	b	=	abs(bmin).	If	the	result	is	1,	set	a's	sign	to	negative	and	return	a.	Otherwise,	go
to	step	3.

7.	 If	ipart	is	bmaxi,	then	create	a	uniform	PSRN	a	with	a	positive	sign,	an	integer	part	of
ipart,	and	an	empty	fractional	part;	then	run	URandLessThanReal	with	a	=	a	and	b	=
bmax.	If	the	result	is	1,	return	a.	Otherwise,	go	to	step	3.

The	RandUniformFromReal	algorithm	generates	a	uniformly	distributed	PSRN	(a)	that	is
greater	than	0	and	less	than	a	real	number	b	with	probability	1.	It	is	equivalent	to	the
RandUniformInRangePositive	algorithm	with	a	=	a,	bmin	=	0,	and	bmax	=	b.

The	UniformComplement	algorithm	generates	1	minus	the	value	of	a	uniform	PSRN	(a)	as
follows:

1.	 If	a's	sign	is	negative	or	its	integer	part	is	other	than	0,	return	an	error.
2.	 For	each	sampled	digit	in	a's	fractional	part,	set	it	to	base−1−digit,	where	digit	is	the

digit	and	base	is	the	base	of	digits	stored	by	the	PSRN,	such	as	2	for	binary.
3.	 Return	a.

6.2	Sampling	E-rands
Sampling	an	e-rand	(a	exponential	PSRN)	makes	use	of	two	observations	(based	on	the
parameter	λ	of	the	exponential	distribution):



While	a	coin	flip	with	probability	of	heads	of	exp(-λ)	is	heads,	the	exponential	random
variate	is	increased	by	1.
If	a	coin	flip	with	probability	of	heads	of	1/(1+exp(λ/2k))	is	heads,	the	exponential
random	variate	is	increased	by	2-k,	where	k	>	0	is	an	integer.

Devroye	and	Gravel	(2020)(3)	already	made	these	observations	in	section	3.8,	but	only	for	λ
=	1.

To	implement	these	probabilities	using	just	random	bits,	the	sampler	uses	two	algorithms,
which	both	enable	e-rands	with	rational	valued	λ	parameters:

1.	 One	to	simulate	a	probability	of	the	form	exp(-x/y)	(here,	the	algorithm	for	exp(−x/y)
described	in	"Bernoulli	Factory	Algorithms").

2.	 One	to	simulate	a	probability	of	the	form	1/(1+exp(x/(y*pow(2,	prec))))	(here,	the
LogisticExp	algorithm	described	in	"Bernoulli	Factory	Algorithms").

7	Arithmetic	and	Comparisons	with	PSRNs
This	section	describes	addition,	subtraction,	multiplication,	reciprocal,	and	division	involving
uniform	PSRNs,	and	discusses	other	aspects	of	arithmetic	involving	PSRNs.

7.1	Addition	and	Subtraction
The	following	algorithm	(UniformAdd)	shows	how	to	add	two	uniform	PSRNs	(a	and	b)	that
store	digits	of	the	same	base	(radix)	in	their	fractional	parts,	and	get	a	uniform	PSRN	as	a
result.	The	input	PSRNs	may	have	a	positive	or	negative	sign,	and	it	is	assumed	that	their
integer	parts	and	signs	were	sampled.	Python	code	implementing	this	algorithm	is	given	later
in	this	document.

1.	 If	a	has	unsampled	digits	before	the	last	sampled	digit	in	its	fractional	part,	set	each	of
those	unsampled	digits	to	a	digit	chosen	uniformly	at	random.	Do	the	same	for	b.

2.	 If	a	has	fewer	digits	in	its	fractional	part	than	b	(or	vice	versa),	sample	enough	digits	(by
setting	them	to	uniform	random	digits,	such	as	unbiased	random	bits	if	a	and	b	store
binary,	or	base-2,	digits)	so	that	both	PSRNs'	fractional	parts	have	the	same	number	of
digits.	Now,	let	digitcount	be	the	number	of	digits	in	a's	fractional	part.

3.	 Let	asign	be	−1	if	a's	sign	is	negative,	or	1	otherwise.	Let	bsign	be	−1	if	b's	sign	is
negative,	or	1	otherwise.	Let	afp	be	a's	integer	and	fractional	parts	packed	into	an
integer,	as	explained	in	the	example,	and	let	bfp	be	b's	integer	and	fractional	parts
packed	the	same	way.	(For	example,	if	a	represents	the	number	83.12344...,	afp	is
8312344.)	Let	base	be	the	base	of	digits	stored	by	a	and	b,	such	as	2	for	binary	or	10	for
decimal.

4.	 Calculate	the	following	four	numbers:
afp*asign	+	bfp*bsign.
afp*asign	+	(bfp+1)*bsign.
(afp+1)*asign	+	bfp*bsign.
(afp+1)*asign	+	(bfp+1)*bsign.

5.	 Set	minv	to	the	minimum	and	maxv	to	the	maximum	of	the	four	numbers	just	calculated.
These	are	lower	and	upper	bounds	to	the	result	of	applying	interval	addition	to	the
PSRNs	a	and	b.	(For	example,	if	a	is	0.12344...	and	b	is	0.38925...,	their	fractional	parts
are	added	to	form	c	=	0.51269....,	or	the	interval	[0.51269,	0.51271].)	However,	the
resulting	PSRN	is	not	uniformly	distributed	in	its	interval,	and	this	is	what	the	rest	of
this	algorithm	will	solve,	since	in	fact,	the	distribution	of	numbers	in	the	interval
resembles	the	distribution	of	the	sum	of	two	uniform	random	variates.

6.	 Once	the	four	numbers	are	sorted	from	lowest	to	highest,	let	midmin	be	the	second
number	in	the	sorted	order,	and	let	midmax	be	the	third	number	in	that	order.

https://peteroupc.github.io/bernoulli.html
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7.	 Set	x	to	a	uniform	random	integer	in	the	interval	[0,	maxv−minv).	If	x	<	midmin−minv,
set	dir	to	0	(the	left	side	of	the	sum	density).	Otherwise,	if	x	>	midmax−minv,	set	dir	to
1	(the	right	side	of	the	sum	density).	Otherwise,	do	the	following:
1.	 Set	s	to	minv	+	x.
2.	 Create	a	new	uniform	PSRN,	ret.	If	s	is	less	than	0,	set	s	to	abs(1	+	s)	and	set	ret's

sign	to	negative.	Otherwise,	set	ret's	sign	to	positive.
3.	 Transfer	the	digitcount	least	significant	digits	of	s	to	ret's	fractional	part.	(Note	that

ret's	fractional	part	stores	digits	from	most	to	least	significant.)	Then	set	ret's
integer	part	to	floor(s/basedigitcount),	then	return	ret.	(For	example,	if	base	is	10,
digitcount	is	3,	and	s	is	34297,	then	ret's	fractional	part	is	set	to	[2,	9,	7],	and	ret's
integer	part	is	set	to	34.)

8.	 If	dir	is	0	(the	left	side),	set	pw	to	x	and	b	to	midmin−minv.	Otherwise	(the	right	side),
set	pw	to	x−(midmax−minv)	and	b	to	maxv−midmax.

9.	 Set	newdigits	to	0,	then	set	y	to	a	uniform	random	integer	in	the	interval	[0,	b).
10.	 If	dir	is	0,	set	lower	to	pw.	Otherwise,	set	lower	to	b−1−pw.
11.	 If	y	is	less	than	lower,	do	the	following:

1.	 Set	s	to	minv	if	dir	is	0,	or	midmax	otherwise,	then	set	s	to	s*(basenewdigits)	+	pw.
2.	 Create	a	new	uniform	PSRN,	ret.	If	s	is	less	than	0,	set	s	to	abs(1	+	s)	and	set	ret's

sign	to	negative.	Otherwise,	set	ret's	sign	to	positive.
3.	 Transfer	the	digitcount	+	newdigits	least	significant	digits	of	s	to	ret's	fractional

part,	then	set	ret's	integer	part	to	floor(s/basedigitcount	+	newdigits),	then	return	ret.
12.	 If	y	is	greater	than	lower	+	1,	go	to	step	7.	(This	is	a	rejection	event.)
13.	 Multiply	pw,	y,	and	b	each	by	base,	then	add	a	digit	chosen	uniformly	at	random	to	pw,

then	add	a	digit	chosen	uniformly	at	random	to	y,	then	add	1	to	newdigits,	then	go	to
step	10.

The	following	algorithm	(UniformAddRational)	shows	how	to	add	a	uniform	PSRN	(a)	and	a
rational	number	b.	The	input	PSRN	may	have	a	positive	or	negative	sign,	and	it	is	assumed
that	its	integer	part	and	sign	were	sampled.	Similarly,	the	rational	number	may	be	positive,
negative,	or	zero.	Python	code	implementing	this	algorithm	is	given	later	in	this	document.

1.	 Let	ai	be	a's	integer	part.	Special	cases:
If	a's	sign	is	positive	and	has	no	sampled	digits	in	its	fractional	part,	and	if	b	is	an
integer	0	or	greater,	return	a	uniform	PSRN	with	a	positive	sign,	an	integer	part
equal	to	ai	+	b,	and	an	empty	fractional	part.
If	a's	sign	is	negative	and	has	no	sampled	digits	in	its	fractional	part,	and	if	b	is	an
integer	less	than	0,	return	a	uniform	PSRN	with	a	negative	sign,	an	integer	part
equal	to	ai	+	abs(b),	and	an	empty	fractional	part.
If	a's	sign	is	positive,	has	an	integer	part	of	0,	and	has	no	sampled	digits	in	its
fractional	part,	and	if	b	is	an	integer,	return	a	uniform	PSRN	with	an	empty
fractional	part.	If	b	is	less	than	0,	the	PSRN's	sign	is	negative	and	its	integer	part	is
abs(b)−1.	If	b	is	0	or	greater,	the	PSRN's	sign	is	positive	and	its	integer	part	is
abs(b).
If	b	is	0,	return	a	copy	of	a.

2.	 If	a	has	unsampled	digits	before	the	last	sampled	digit	in	its	fractional	part,	set	each	of
those	unsampled	digits	to	a	digit	chosen	uniformly	at	random.	Now,	let	digitcount	be	the
number	of	digits	in	a's	fractional	part.

3.	 Let	asign	be	−1	if	a's	sign	is	negative	or	1	otherwise.	Let	base	be	the	base	of	digits
stored	in	a's	fractional	part	(such	as	2	for	binary	or	10	for	decimal).	Set	absfrac	to
abs(b),	then	set	fraction	to	absfrac	−	floor(absfrac).

4.	 Let	afp	be	a's	integer	and	fractional	parts	packed	into	an	integer,	as	explained	in	the
example.	(For	example,	if	a	represents	the	number	83.12344...,	afp	is	8312344.)	Let
asign	be	−1	if

5.	 Set	ddc	to	basedcount,	then	set	lower	to	((afp*asign)/ddc)+b	(using	rational	arithmetic),
then	set	upper	to	(((afp+1)*asign)/ddc)+b	(again	using	rational	arithmetic).	Set	minv	to
min(lower,	upper),	and	set	maxv	to	min(lower,	upper).



6.	 Set	newdigits	to	0,	then	set	b	to	1,	then	set	ddc	to	basedcount,	then	set	mind	to
floor(abs(minv*ddc)),	then	set	maxd	to	floor(abs(maxv*ddc)).	(Outer	bounds):	Then	set
rvstart	to	mind−1	if	minv	is	less	than	0,	or	mind	otherwise,	then	set	rvend	to	maxd	if
maxv	is	less	than	0,	or	maxd+1	otherwise.

7.	 Set	rv	to	a	uniform	random	integer	in	the	interval	[0,	rvend−rvstart),	then	set	rvs	to	rv	+
rvstart.

8.	 (Inner	bounds.)	Set	innerstart	to	mind	if	minv	is	less	than	0,	or	mind+1	otherwise,	then
set	innerend	to	maxd−1	if	maxv	is	less	than	0,	or	maxd	otherwise.

9.	 If	rvs	is	greater	than	innerstart	and	less	than	innerend,	then	the	algorithm	is	almost
done,	so	do	the	following:
1.	 Create	an	empty	uniform	PSRN,	call	it	ret.	If	rvs	is	less	than	0,	set	rvs	to	abs(1	+

rvs)	and	set	ret's	sign	to	negative.	Otherwise,	set	ret's	sign	to	positive.
2.	 Transfer	the	digitcount	+	newdigits	least	significant	digits	of	rvs	to	ret's	fractional

part,	then	set	ret's	integer	part	to	floor(rvs/basedigitcount	+	newdigits),	then	return
ret.

10.	 If	rvs	is	equal	to	or	less	than	innerstart	and	(rvs+1)/ddc	(calculated	using	rational
arithmetic)	is	less	than	or	equal	to	minv,	go	to	step	6.	(This	is	a	rejection	event.)

11.	 If	rvs/ddc	(calculated	using	rational	arithmetic)	is	greater	than	or	equal	to	maxv,	go	to
step	6.	(This	is	a	rejection	event.)

12.	 Add	1	to	newdigits,	then	multiply	ddc,	rvstart,	rv,	and	rvend	each	by	base,	then	set	mind
to	floor(abs(minv*ddc)),	then	set	maxd	to	floor(abs(maxv*ddc)),	then	add	a	digit	chosen
uniformly	at	random	to	rv,	then	set	rvs	to	rv+rvstart,	then	go	to	step	8.

7.2	Multiplication
The	following	algorithm	(UniformMultiply)	shows	how	to	multiply	two	uniform	PSRNs	(a
and	b)	that	store	digits	of	the	same	base	(radix)	in	their	fractional	parts,	and	get	a	uniform
PSRN	as	a	result.	The	input	PSRNs	may	have	a	positive	or	negative	sign,	and	it	is	assumed
that	their	integer	parts	and	signs	were	sampled.	Python	code	implementing	this	algorithm	is
given	later	in	this	document.

1.	 If	a	has	unsampled	digits	before	the	last	sampled	digit	in	its	fractional	part,	set	each	of
those	unsampled	digits	to	a	digit	chosen	uniformly	at	random.	Do	the	same	for	b.

2.	 If	a	has	fewer	digits	in	its	fractional	part	than	b	(or	vice	versa),	sample	enough	digits	(by
setting	them	to	uniform	random	digits,	such	as	unbiased	random	bits	if	a	and	b	store
binary,	or	base-2,	digits)	so	that	both	PSRNs'	fractional	parts	have	the	same	number	of
digits.

3.	 If	either	a	or	b	has	an	integer	part	of	0	and	a	fractional	part	with	no	non-zero	digits,
then	do	the	following.	(This	step	is	crucial	for	correctness	when	both	PSRNs'	intervals
cover	the	number	0,	since	the	distribution	of	their	product	is	different	from	the	usual
case.)
1.	 Append	a	digit	chosen	uniformly	at	random	to	a's	fractional	part.	Do	the	same	for	b.
2.	 If	either	a	or	b	has	an	integer	part	of	0	and	a	fractional	part	with	no	non-zero

digits,	go	to	the	previous	substep.
4.	 Let	afp	be	a's	integer	and	fractional	parts	packed	into	an	integer,	as	explained	in	the

example,	and	let	bfp	be	b's	integer	and	fractional	parts	packed	the	same	way.	(For
example,	if	a	represents	the	number	83.12344...,	afp	is	8312344.)	Let	digitcount	be	the
number	of	digits	in	a's	fractional	part.

5.	 Calculate	n1	=	afp*bfp,	n2	=	afp*(bfp+1),	n3	=	(afp+1)*bfp,	and	n4	=	(afp+1)*(bfp+1).
6.	 Set	minv	to	n1	and	maxv	to	n2.	Set	midmin	to	min(n2,	n3)	and	midmax	to	max(n2,	n3).

The	numbers	minv	and	maxv	are	lower	and	upper	bounds	to	the	result	of	applying	interval
multiplication	to	the	PSRNs	a	and	b.	For	example,	if	a	is	0.12344...	and	b	is	0.38925...,	their	fractional
parts	are	added	to	form	c	=	0.51269....,	or	the	interval	[0.51269,	0.51271].	However,	the	resulting
PSRN	is	not	uniformly	distributed	in	its	interval.	In	the	case	of	multiplication	the	distribution	is	almost
a	trapezoid	whose	domain	is	the	interval	[minv,	maxv]	and	whose	top	is	delimited	by	midmin	and
midmax.	(See	note	1	at	the	end	of	this	section.)



7.	 Create	a	new	uniform	PSRN,	ret.	If	a's	sign	is	negative	and	b's	sign	is	negative,	or	vice
versa,	set	ret's	sign	to	negative.	Otherwise,	set	ret's	sign	to	positive.

8.	 Set	z	to	a	uniform	random	integer	in	the	interval	[0,	maxv−minv).
9.	 If	z	<	midmin−minv	or	if	z	≥	midmax	−	minv,	we	will	sample	from	the	left	side	or	right

side	of	the	"trapezoid",	respectively.	In	this	case,	do	the	following:
1.	 Set	x	to	minv	+	z.	Create	psrn,	a	PSRN	with	positive	sign	and	empty	fractional	part.
2.	 If	z	<	midmin	−	minv	(left	side),	set	psrn's	integer	part	to	x	−	minv,	then	run	sub-

algorithm	1	given	later,	with	the	parameters	minv	and	psrn.	(The	sub-algorithm
returns	1	with	probability	ln((minv+psrn)/minv).)

3.	 If	z	≥	midmin	−	minv	(right	side),	set	psrn's	integer	part	to	x	−	midmax,	then	run
sub-algorithm	2	given	later,	with	the	parameters	maxv,	midmax	and	psrn.	(The
sub-algorithm	returns	1	with	probability	ln(maxv/(midmax+psrn)).)

4.	 If	sub-algorithm	1	or	2	returns	1,	the	algorithm	succeeds,	so	do	the	following:
1.	 Set	s	to	ru.
2.	 Transfer	the	n*2	least	significant	digits	of	s	to	ret's	fractional	part,	where	n	is

the	number	of	digits	in	a's	fractional	part.	(Note	that	ret's	fractional	part
stores	digits	from	most	to	least	significant.)

3.	 Append	the	digits	in	psrn's	fractional	part	to	the	end	of	ret's	fractional	part.
4.	 Set	ret's	integer	part	to	floor(s/basen*2).	(For	example,	if	base	is	10,	n*2	is	4,

and	s	is	342978,	then	ret's	fractional	part	is	set	to	[2,	9,	7,	8],	and	ret's	integer
part	is	set	to	34.)	Finally,	return	ret.

5.	 If	sub-algorithm	1	or	2	returns	0,	abort	these	substeps	and	go	to	step	8.
10.	 (If	we	reach	here,	we	have	reached	the	middle	part	of	the	trapezoid,	which	is	flat	and

uniform.)	If	n2	>	n3,	run	sub-algorithm	3	given	later,	with	the	parameter	afp	(returns
1	with	probability	ln(1+1/afp)).	Otherwise,	run	sub-algorithm	3	with	the	parameter	bfp
(returns	1	with	probability	ln(1+1/bfp)).	In	either	case,	if	the	sub-algorithm	returns	0,	go
to	step	8.

11.	 (The	algorithm	succeeds.)	Set	s	to	minv	+	z,	then	transfer	the	(n*2)	least	significant
digits	of	s	to	ret's	fractional	part,	then	set	ret's	integer	part	to	floor(s/basen*2),	then
return	ret.

The	following	sub-algorithms	are	used	by	UniformMultiply.	They	all	involve	the	same
underlying	function,	ln(1+x),	with	an	algorithm	mentioned	in	the	page	"Bernoulli	Factory
Algorithms".

The	sub-algorithm	ln(1+x)	takes	an	input	algorithm	and	returns	1	with	probability
ln(1+x),	where	x	is	the	probability	that	the	input	algorithm	returns	1.

Do	the	following	process	repeatedly,	until	this	sub-algorithm	returns	a	value:
1.	 Generate	an	unbiased	random	bit.	If	that	bit	is	1	(which	happens	with

probability	1/2),	run	the	input	algorithm	and	return	the	result.
2.	 If	u	wasn't	created	yet,	create	u,	a	uniform	PSRN	with	positive	sign,	an	integer

part	of	0,	and	an	empty	fractional	part.
3.	 Run	the	SampleGeometricBag	algorithm	on	u's	fractional	part,	then	run	the

input	algorithm.	If	the	call	and	the	run	both	return	1,	return	0.
Sub-algorithm	1	takes	two	parameters	(minv	and	psrn)	and	returns	1	with	probability
ln((minv+psrn)/minv).	Run	the	ln(1+x)	sub-algorithm	with	an	input	algorithm	as
follows:
1.	 Let	p	be	psrn's	integer	part.	Generate	an	integer	in	[0,	minv)	uniformly	at	random,

call	it	i.
2.	 If	i	<	p,	return	1.	If	i	=	p,	flip	the	input	coin	and	return	the	result.	If	neither	is	the

case,	return	0.
Sub-algorithm	2	takes	three	parameters	(maxv,	midmax	and	psrn)	and	returns	1	with
probability	ln(maxv/(midmax+psrn)).	Run	the	ln(1+x)	sub-algorithm	with	an	input
algorithm	as	follows:
1.	 Let	p	be	psrn's	integer	part.	Set	d	to	maxv	−	p	−	midmax	−	1,	and	set	c	to	p	+

midmax.
2.	 With	probability	c	/	(1	+	c),	do	the	following:

https://peteroupc.github.io/bernoulli.html#ln_1___lambda


Generate	an	integer	in	[0,	c)	uniformly	at	random,	call	it	i.	If	i	<	d,	return	1.	If	i
=	d,	run	SampleGeometricBag	on	psrn's	fractional	part	and	return	1	minus
the	result.	If	i	>	d,	return	0.

3.	 Run	SampleGeometricBag	on	psrn's	fractional	part.	If	the	result	is	1,	return	0.
Otherwise,	go	to	step	2.

Sub-algorithm	3	takes	one	parameter	(called	n	here)	and	returns	1	with	probability
ln(1+1/n).	Run	the	ln(1+x)	sub-algorithm	with	an	input	algorithm	as	follows:	"Return
a	number	that	is	1	with	probability	1/n	and	0	otherwise."

The	following	algorithm	(UniformMultiplyRational)	shows	how	to	multiply	a	uniform	PSRN
(a)	by	a	nonzero	rational	number	b.	The	input	PSRN	may	have	a	positive	or	negative	sign,
and	it	is	assumed	that	its	integer	part	and	sign	were	sampled.	Python	code	implementing	this
algorithm	is	given	later	in	this	document.

1.	 If	a	has	unsampled	digits	before	the	last	sampled	digit	in	its	fractional	part,	set	each	of
those	unsampled	digits	to	a	digit	chosen	uniformly	at	random.	Now,	let	digitcount	be	the
number	of	digits	in	a's	fractional	part.

2.	 Create	a	uniform	PSRN,	call	it	ret.	Set	ret's	sign	to	be	−1	if	a's	sign	is	positive	and	b	is
less	than	0	or	if	a's	sign	is	negative	and	b	is	0	or	greater,	or	1	otherwise,	then	set	ret's
integer	part	to	0.	Let	base	be	the	base	of	digits	stored	in	a's	fractional	part	(such	as	2
for	binary	or	10	for	decimal).	Set	absfrac	to	abs(b),	then	set	fraction	to	absfrac	−
floor(absfrac).

3.	 Let	afp	be	a's	integer	and	fractional	parts	packed	into	an	integer,	as	explained	in	the
example.	(For	example,	if	a	represents	the	number	83.12344...,	afp	is	8312344.)

4.	 Set	dcount	to	digitcount,	then	set	ddc	to	basedcount,	then	set	lower	to	(afp/ddc)*absfrac
(using	rational	arithmetic),	then	set	upper	to	((afp+1)/ddc)*absfrac	(again	using	rational
arithmetic).

5.	 Set	rv	to	a	uniform	random	integer	in	the	interval	[floor(lower*ddc),	floor(upper*ddc)).
6.	 Set	rvlower	to	rv/ddc	(as	a	rational	number),	then	set	rvupper	to	(rv+1)/ddc	(as	a

rational	number).
7.	 If	rvlower	is	greater	than	or	equal	to	lower	and	rvupper	is	less	than	upper,	then	the

algorithm	is	almost	done,	so	do	the	following:	Transfer	the	dcount	least	significant	digits
of	rv	to	ret's	fractional	part	(note	that	ret's	fractional	part	stores	digits	from	most	to
least	significant),	then	set	ret's	integer	part	to	floor(rv/basedcount),	then	return	ret.	(For
example,	if	base	is	10,	dcount	is	4,	and	rv	is	342978,	then	ret's	fractional	part	is	set	to
[2,	9,	7,	8],	and	ret's	integer	part	is	set	to	34.)

8.	 If	rvlower	is	greater	than	upper	or	if	rvupper	is	less	than	lower,	go	to	step	4.
9.	 Multiply	rv	and	ddc	each	by	base,	then	add	1	to	dcount,	then	add	a	digit	chosen

uniformly	at	random	to	rv,	then	go	to	step	6.

Notes:

1.	 The	product	distribution	of	two	uniform	PSRNs	is	not	exactly	a	trapezoid,	but
follows	a	not-so-trivial	distribution;	the	left	and	right	sides	are	not	exactly
"triangular",	but	are	based	on	logarithmic	functions.	However,	these
logarithmic	functions	approach	a	triangular	shape	as	the	distribution's	"width"
gets	smaller.

2.	 Let	b>0,	c≥0,	and	d>0	be	rational	numbers	where	d>c.	To	generate	the
product	of	two	uniform	variates,	one	in	[0,	b]	and	the	other	in	[c,	d],	the
following	algorithm	can	be	used.
(1)	Generate	a	uniform	PSRN	using	RandUniformFromReal	with	parameter
b*(d−c),	call	it	K;
(2)	Get	the	result	of	UniformAddRational	with	parameters	K	and	b*c
,	call	it	M;
(3)	Generate	a	uniform	PSRN	using	RandUniform	with	parameter	M;	return
the	PSRN.
Broadly	speaking:	"generate	a	uniform(0,	b*(d−c))	random	variate	X,	then

https://math.stackexchange.com/questions/375967/probability-density-function-of-a-product-of-uniform-random-variables


return	a	uniform(0,	X+b*c)	random	variate".	See	the	appendix	for	a	proof	that
this	algorithm	works,	at	least	when	c	=	0.

7.3	Reciprocal	and	Division
The	following	algorithm	(UniformReciprocal)	generates	1/a,	where	a	is	a	uniform	PSRN,
and	generates	a	new	uniform	PSRN	with	that	reciprocal.	The	input	PSRN	may	have	a	positive
or	negative	sign,	and	it	is	assumed	that	its	integer	part	and	sign	were	sampled.	All	divisions
mentioned	here	should	be	done	using	rational	arithmetic.	Python	code	implementing	this
algorithm	is	given	later	in	this	document.

1.	 If	a	has	unsampled	digits	before	the	last	sampled	digit	in	its	fractional	part,	set	each	of
those	unsampled	digits	to	a	digit	chosen	uniformly	at	random.	Now,	let	digitcount	be	the
number	of	digits	in	a's	fractional	part.

2.	 Create	a	uniform	PSRN,	call	it	ret.	Set	ret's	sign	to	a's	sign.	Let	base	be	the	base	of
digits	stored	in	a's	fractional	part	(such	as	2	for	binary	or	10	for	decimal).

3.	 If	a	has	no	non-zero	digit	in	its	fractional	part,	and	has	an	integer	part	of	0,	then	append
a	digit	chosen	uniformly	at	random	to	a's	fractional	part.	If	that	digit	is	0,	repeat	this
step.	(This	step	is	crucial	for	correctness	when	both	PSRNs'	intervals	cover	the	number
0,	since	the	distribution	of	their	product	is	different	from	the	usual	case.)

4.	 Let	afp	be	a's	integer	and	fractional	parts	packed	into	an	integer,	as	explained	in	the
example.	(For	example,	if	a	represents	the	number	83.12344...,	afp	is	8312344.)

5.	 (Calculate	lower	and	upper	bounds	of	1/a,	disregarding	a's	sign.)	Set	dcount	to
digitcount,	then	set	ddc	to	basedcount,	then	set	lower	to	(ddc/(afp+1)),	then	set	upper	to
(ddc/afp).

6.	 Set	lowerdc	to	floor(lower*ddc).	If	lowerdc	is	0,	add	1	to	dcount,	multiply	ddc	by	base,
then	repeat	this	step.	(This	step	too	is	important	for	correctness.)

7.	 (rv	represents	a	tight	interval	between	the	lower	and	upper	bounds,	and	rv2	represents
a	uniform(0,	1)	random	variate	to	compare	with	the	density	function	for	the	reciprocal.)
Set	rv	to	a	uniform	random	integer	in	the	interval	[lowerdc,	floor(upper*ddc)).	Set	rv2	to
a	uniform	random	integer	in	the	interval	[0,	lowerdc).

8.	 (Get	the	bounds	of	the	tight	interval	rv.)	Set	rvlower	to	rv/ddc,	then	set	rvupper	to
(rv+1)/ddc.

9.	 If	rvlower	is	greater	than	or	equal	to	lower	and	rvupper	is	less	than	upper:
1.	 Set	rvd	to	lowerdc/ddc,	then	set	rvlower2	to	rv2/lowerdc,	then	set	rvupper2	to

(rv2+1)/lowerdc.	(rvlower2	and	rvupper2	are	bounds	of	the	uniform(0,	1)	variate.)
2.	 (Compare	with	upper	bounded	density:	y2/x2,	where	y	is	the	lower	bound	of	1/a	and

x	is	between	the	lower	and	upper	bounds.)	If	rvupper2	is	less	than
(rvd*rvd)/(rvupper*rvupper),	then	the	algorithm	is	almost	done,	so	do	the	following:
Transfer	the	dcount	least	significant	digits	of	rv	to	ret's	fractional	part	(note	that
ret's	fractional	part	stores	digits	from	most	to	least	significant),	then	set	ret's
integer	part	to	floor(rv/basedcount),	then	return	ret.	(For	example,	if	base	is	10,
dcount	is	4,	and	rv	is	342978,	then	ret's	fractional	part	is	set	to	[2,	9,	7,	8],	and	ret's
integer	part	is	set	to	34.)

3.	 (Compare	with	lower	bounded	density.)	If	rvlower2	is	greater	than
(rvd*rvd)/(rvlower*rvlower),	then	abort	these	substeps	and	go	to	step	5.	(This	is	a
rejection	event.)

10.	 If	rvlower	is	greater	than	upper	or	if	rvupper	is	less	than	lower,	go	to	step	5.	(This	is	a
rejection	event.)

11.	 Multiply	rv,	rv2,	lowerdc,	and	ddc	each	by	base,	then	add	1	to	dcount,	then	add	a	digit
chosen	uniformly	at	random	to	rv,	then	add	a	digit	chosen	uniformly	at	random	to	rv2,
then	go	to	step	8.

With	this	algorithm	it's	now	trivial	to	describe	an	algorithm	for	dividing	one	uniform	PSRN	a
by	another	uniform	PSRN	b,	here	called	UniformDivide:

1.	 Run	the	UniformReciprocal	algorithm	on	b	to	create	a	new	uniform	PSRN	c.



2.	 Run	the	UniformMultiply	algorithm	on	a	and	b,	in	that	order,	and	return	the	result	of
that	algorithm.

It's	likewise	trivial	to	describe	an	algorithm	for	multiplying	a	uniform	PSRN	a	by	a	nonzero
rational	number	b,	here	called	UniformDivideRational:

1.	 If	b	is	0,	return	an	error.
2.	 Run	the	UniformMultiplyRational	algorithm	on	a	and	1/b,	in	that	order,	and	return

the	result	of	that	algorithm.

7.4	Using	the	Arithmetic	Algorithms
The	algorithms	given	above	for	addition	and	multiplication	are	useful	for	scaling	and	shifting
PSRNs.	For	example,	they	can	transform	a	normally-distributed	PSRN	into	one	with	an
arbitrary	mean	and	standard	deviation	(by	first	multiplying	the	PSRN	by	the	standard
deviation,	then	adding	the	mean).	Here	is	a	sketch	of	a	procedure	that	achieves	this,	given
two	parameters,	location	and	scale,	that	are	both	rational	numbers.

1.	 Generate	a	uniform	PSRN,	then	transform	it	into	a	variate	of	the	desired	distribution	via
an	algorithm	that	employs	rejection	from	the	uniform	distribution	(such	as	Karney's
algorithm	for	the	standard	normal	distribution	(Karney	2014)(1))).	This	procedure	won't
work	for	exponential	PSRNs	(e-rands).

2.	 Run	the	UniformMultiplyRational	algorithm	to	multiply	the	uniform	PSRN	by	the
rational	parameter	scale	to	get	a	new	uniform	PSRN.

3.	 Run	the	UniformAddRational	algorithm	to	add	the	new	uniform	PSRN	and	the	rational
parameter	location	to	get	a	third	uniform	PSRN.	Return	this	third	PSRN.

See	also	the	section	"Discussion"	later	in	this	article.

7.5	Comparisons
Two	PSRNs,	each	of	a	different	distribution	but	storing	digits	of	the	same	base	(radix),	can	be
exactly	compared	to	each	other	using	algorithms	similar	to	those	in	this	section.

The	RandLess	algorithm	compares	two	PSRNs,	a	and	b	(and	samples	additional	bits	from
them	as	necessary)	and	returns	1	if	a	turns	out	to	be	less	than	b	with	probability	1,	or	0
otherwise	(see	also	(Karney	2014)(1))).

1.	 If	a's	integer	part	wasn't	sampled	yet,	sample	a's	integer	part	according	to	the	kind	of
PSRN	a	is.	Do	the	same	for	b.

2.	 If	a's	sign	is	different	from	b's	sign,	return	1	if	a's	sign	is	negative	and	0	if	it's	positive.	If
a's	sign	is	positive,	return	1	if	a's	integer	part	is	less	than	b's,	or	0	if	greater.	If	a's	sign
is	negative,	return	0	if	a's	integer	part	is	less	than	b's,	or	1	if	greater.

3.	 Set	i	to	0.
4.	 If	the	digit	at	position	i	of	a's	fractional	part	is	unsampled,	set	the	digit	at	that	position

according	to	the	kind	of	PSRN	a	is.	(Positions	start	at	0	where	0	is	the	most	significant
digit	after	the	point,	1	is	the	next,	etc.)	Do	the	same	for	b.

5.	 Let	da	be	the	digit	at	position	i	of	a's	fractional	part,	and	let	db	be	b's	corresponding
digit.

6.	 If	a's	sign	is	positive,	return	1	if	da	is	less	than	db,	or	0	if	da	is	greater	than	db.
7.	 If	a's	sign	is	negative,	return	0	if	da	is	less	than	db,	or	1	if	da	is	greater	than	db.
8.	 Add	1	to	i	and	go	to	step	4.

URandLess	is	a	version	of	RandLess	that	involves	two	uniform	PSRNs.	The	algorithm	for
URandLess	samples	digit	i	in	step	4	by	setting	the	digit	at	position	i	to	a	digit	chosen
uniformly	at	random.	(For	example,	if	a	is	a	uniform	PSRN	that	stores	base-2	or	binary	digits,



this	can	be	done	by	setting	the	digit	at	that	position	to	an	unbiased	random	bit.)

Note:	To	sample	the	maximum	of	two	uniform	random	variate	in	the	interval	[0,
1],	or	the	square	root	of	a	uniform	random	variate	in	the	interval	[0,	1]:	(1)
Generate	two	uniform	PSRNs	a	and	b	each	with	a	positive	sign,	an	integer	part	of
0,	and	an	empty	fractional	part.	(2)	Run	RandLess	on	a	and	b	in	that	order.	If	the
call	returns	0,	return	a;	otherwise,	return	b.

The	RandLessThanReal	algorithm	compares	a	PSRN	a	with	a	real	number	b	and	returns	1
if	a	turns	out	to	be	less	than	b	with	probability	1,	or	0	otherwise.	This	algorithm	samples
digits	of	a's	fractional	part	as	necessary.	This	algorithm	works	whether	b	is	known	to	be	a
rational	number	or	not	(for	example,	b	can	be	the	result	of	an	expression	such	as	exp(-2)	or	
ln(20)),	but	the	algorithm	notes	how	it	can	be	more	efficiently	implemented	if	b	is	known	to
be	a	rational	number.

1.	 If	a's	integer	part	or	sign	is	unsampled,	return	an	error.
2.	 Set	bs	to	−1	if	b	is	less	than	0,	or	1	otherwise.	Calculate	floor(abs(b)),	and	set	bi	to	the

result.	(If	b	is	known	rational:	Then	set	bf	to	abs(b)	minus	bi.)
3.	 If	a's	sign	is	different	from	bs's	sign,	return	1	if	a's	sign	is	negative	and	0	if	it's	positive.

If	a's	sign	is	positive,	return	1	if	a's	integer	part	is	less	than	bi,	or	0	if	greater.	(Continue
if	both	are	equal.)	If	a's	sign	is	negative,	return	0	if	a's	integer	part	is	less	than	bi,	or	1	if
greater.	(Continue	if	both	are	equal.)

4.	 Set	i	to	0.
5.	 If	the	digit	at	position	i	of	a's	fractional	part	is	unsampled,	set	the	digit	at	that	position

according	to	the	kind	of	PSRN	a	is.	(Positions	start	at	0	where	0	is	the	most	significant
digit	after	the	point,	1	is	the	next,	etc.)

6.	 Calculate	the	base-β	digit	at	position	i	of	b's	fractional	part,	and	set	d	to	that	digit.	(If	b
is	known	rational:	Do	this	step	by	multiplying	bf	by	β,	then	setting	d	to	floor(bf),	then
subtracting	d	from	bf.)

7.	 Let	ad	be	the	digit	at	position	i	of	a's	fractional	part.
8.	 Return	1	if—

ad	is	less	than	d	and	a's	sign	is	positive,
ad	is	greater	than	d	and	a's	sign	is	negative,	or
ad	is	equal	to	d,	a's	sign	is	negative,	and—

b	is	not	known	to	be	rational	and	all	the	digits	after	the	digit	at	position	i	of	b's
fractional	part	are	zeros	(indicating	a	is	less	than	b	with	probability	1),	or
b	is	known	to	be	rational	and	bf	is	0	(indicating	a	is	less	than	b	with
probability	1).

9.	 Return	0	if—
ad	is	less	than	d	and	a's	sign	is	negative,
ad	is	greater	than	d	and	a's	sign	is	positive,	or
ad	is	equal	to	d,	a's	sign	is	positive,	and—

b	is	not	known	to	be	rational	and	all	the	digits	after	the	digit	at	position	i	of	b's
fractional	part	are	zeros	(indicating	a	is	greater	than	b	with	probability	1),	or
b	is	known	to	be	rational	and	bf	is	0	(indicating	a	is	greater	than	b	with
probability	1).

10.	 Add	1	to	i	and	go	to	step	5.

An	alternative	version	of	steps	6	through	9	in	the	algorithm	above	are	as	follows	(see	also
(Brassard	et	al.	2019)(16)):

(6.)	Calculate	bp,	which	is	an	approximation	to	b	such	that	abs(b	−	bp)	<=	β−i	−	1,	and
such	that	bp	has	the	same	sign	as	b.	Let	bk	be	bp's	digit	expansion	up	to	the	i	+	1	digits
after	the	point	(ignoring	its	sign).	For	example,	if	b	is	π	or	−π,	β	is	10,	and	i	is	4,	one
possibility	is	bp	=	3.14159	and	bk	=	314159.
(7.)	Let	ak	be	a's	digit	expansion	up	to	the	i	+	1	digits	after	the	point	(ignoring	its	sign).
(8.)	If	ak	<=	bk	−	2,	return	either	1	if	a's	sign	is	positive	or	0	otherwise.



(9.)	If	ak	>=	bk	+	1,	return	either	1	if	a's	sign	is	negative	or	0	otherwise.

URandLessThanReal	is	a	version	of	RandLessThanReal	in	which	a	is	a	uniform	PSRN.	The
algorithm	for	URandLessThanReal	samples	digit	i	in	step	4	by	setting	the	digit	at	position	i
to	a	digit	chosen	uniformly	at	random.

The	following	shows	how	to	implement	URandLessThanReal	when	b	is	a	fraction	known	by
its	numerator	and	denominator,	num/den.

1.	 If	a's	integer	part	or	sign	is	unsampled,	or	if	den	is	0,	return	an	error.	Then,	if	num	and
den	are	both	less	than	0,	set	them	to	their	absolute	values.	Then	if	a's	sign	is	positive,	its
integer	part	is	0,	and	num	is	0,	return	0.	Then	if	a's	sign	is	positive,	its	integer	part	is	0,
and	num's	sign	is	different	from	den's	sign,	return	0.

2.	 Set	bs	to	−1	if	num	or	den,	but	not	both,	is	less	than	0,	or	1	otherwise,	then	set	den	to
abs(den),	then	set	bi	to	floor(abs(num)/den),	then	set	num	to	rem(abs(num),	den).

3.	 If	a's	sign	is	different	from	bs's	sign,	return	1	if	a's	sign	is	negative	and	0	if	it's	positive.
If	a's	sign	is	positive,	return	1	if	a's	integer	part	is	less	than	bi,	or	0	if	greater.	(Continue
if	both	are	equal.)	If	a's	sign	is	negative,	return	0	if	a's	integer	part	is	less	than	bi,	or	1	if
greater.	(Continue	if	both	are	equal.)	If	num	is	0	(indicating	the	fraction	is	an	integer),
return	0	if	a's	sign	is	positive	and	1	otherwise.

4.	 Set	pt	to	base,	and	set	i	to	0.	(base	is	the	base,	or	radix,	of	a's	digits,	such	as	2	for	binary
or	10	for	decimal.)

5.	 Set	d1	to	the	digit	at	the	ith	position	(starting	from	0)	of	a's	fractional	part.	If	the	digit	at
that	position	is	unsampled,	put	a	digit	chosen	uniformly	at	random	at	that	position	and
set	d1	to	that	digit.

6.	 Set	c	to	1	if	num	*	pt	>=	den,	and	0	otherwise.
7.	 Set	d2	to	floor(num	*	pt	/	den).	(In	base	2,	this	is	equivalent	to	setting	d2	to	c.)
8.	 If	d1	is	less	than	d2,	return	either	1	if	a's	sign	is	positive,	or	0	otherwise.	If	d1	is	greater

than	d2,	return	either	0	if	a's	sign	is	positive,	or	1	otherwise.
9.	 If	c	is	1,	set	num	to	num	*	pt	−	den	*	d2,	then	multiply	den	by	pt.
10.	 If	num	is	0,	return	either	0	if	a's	sign	is	positive,	or	1	otherwise.
11.	 Multiply	pt	by	base,	add	1	to	i,	and	go	to	step	5.

7.6	Discussion
This	section	discusses	issues	involving	arithmetic	with	PSRNs.

Uniform	PSRN	arithmetic	produces	non-uniform	distributions	in	general.	As	can	be
seen	in	the	arithmetic	algorithms	earlier	in	this	section	(such	as	UniformAdd	and
UniformMultiplyRational),	addition,	multiplication,	and	other	arithmetic	operations	with
PSRNs	(see	also	(Brassard	et	al.,	2019)(16))	are	not	as	trivial	as	adding,	multiplying,	etc.	their
integer	and	fractional	parts.	A	uniform	PSRN	is	ultimately	a	uniform	random	variate	inside	an
interval	(this	is	its	nature),	yet	arithmetic	on	random	variates	does	not	produce	a	uniform
distribution	in	general.

An	example	illustrates	this.	Say	we	have	two	uniform	PSRNs:	A	=	0.12345...	and	B	=
0.38901....	They	represent	random	variates	in	the	intervals	AI	=	[0.12345,	0.12346]	and	BI	=
[0.38901,	0.38902],	respectively.	Adding	two	uniform	PSRNs	is	akin	to	adding	their	intervals
(using	interval	arithmetic),	so	that	in	this	example,	the	result	C	lies	in	CI	=	[0.12345	+
0.38901,	0.12346	+	0.38902]	=	[0.51246,	0.51248].	However,	the	resulting	random	variate	is
not	uniformly	distributed	in	[0.51246,	0.51248],	so	that	simply	choosing	a	uniform	random
variate	in	the	interval	won't	work.	(This	is	true	in	general	for	other	arithmetic	operations
besides	addition.)	This	can	be	demonstrated	by	generating	many	pairs	of	uniform	random
variates	in	the	intervals	AI	and	BI,	summing	the	numbers	in	each	pair,	and	building	a
histogram	using	the	sums	(which	will	all	lie	in	the	interval	CI).	In	this	case,	the	histogram	will
show	a	triangular	distribution	that	peaks	at	0.51247.



The	example	applies	in	general	to	most	other	math	operations	besides	addition	(including
multiplication,	division,	log,	sin,	and	so	on):	do	the	math	operation	on	the	intervals	AI	and	BI,
and	build	a	histogram	of	random	results	(products,	quotients,	etc.)	that	lie	in	the	resulting
interval	to	find	out	what	distribution	forms	this	way.

Implementing	other	operations.	In	contrast	to	addition,	multiplication,	and	division,
certain	other	math	operations	are	trivial	to	carry	out	in	PSRNs.	They	include	negation,	as
mentioned	in	(Karney	2014)(1),	and	operations	affecting	the	PSRN's	integer	part	only.

Partially-sampled-number	arithmetic	may	also	be	possible	by	relating	the	relative
probabilities	of	each	digit,	in	the	result's	digit	expansion,	to	some	kind	of	formula.

There	is	previous	work	that	relates	continuous	distributions	to	digit	probabilities	in	a
similar	manner	(but	only	in	base	10)	(Habibizad	Navin	et	al.,	2007)(17),	(Nezhad	et	al.,
2013)(18).	This	previous	work	points	to	building	a	probability	tree,	where	the	probability
of	the	next	digit	depends	on	the	value	of	the	previous	digits.	However,	calculating	each
probability	requires	knowing	the	distribution's	cumulative	distribution	function	(CDF),
and	the	calculations	can	incur	rounding	and	cancellation	errors	especially	when	the
digit	probabilities	are	not	rational	numbers	or	they	have	no	simple	mathematical	form,
as	is	often	the	case.
For	some	distributions,	the	digit	probabilities	don't	depend	on	previous	digits,	only	on
the	position	of	the	digit.	However,	the	uniform	and	exponential	distributions	are	the	only
practical	distributions	of	this	kind.	See	the	appendix	for	details.

Finally,	arithmetic	with	PSRNs	may	be	possible	if	the	result	of	the	arithmetic	is	distributed
with	a	known	probability	density	function	(PDF),	allowing	for	an	algorithm	that	implements
rejection	from	the	uniform	or	exponential	distribution.	An	example	of	this	is	found	in	the
UniformReciprocal	algorithm	above	or	in	in	my	article	on	arbitrary-precision	samplers
for	the	sum	of	uniform	random	variates.	However,	that	PDF	may	have	an	unbounded
peak,	thus	ruling	out	rejection	sampling	in	practice.	For	example,	if	X	is	a	uniform	PSRN	in
the	interval	[0,	1],	then	the	distribution	of	X3	has	the	PDF	(1/3)	/	pow(X,	2/3),	which	has	an
unbounded	peak	at	0.	While	this	rules	out	plain	rejection	samplers	for	X3	in	practice,	it's	still
possible	to	sample	powers	of	uniforms	using	PSRNs,	which	will	be	described	later	in	this
article.

Reusing	PSRNs.	The	arithmetic	algorithms	in	this	section	may	give	incorrect	results	if	the
same	PSRN	is	used	more	than	once	in	different	runs	of	these	algorithms.

This	issue	happens	in	general	when	the	original	sampler	uses	the	same	random	variate	for
different	purposes	in	the	algorithm	(an	example	is	"W*Y,	(1−W)*Y",	where	W	and	Y	are
independent	random	variates	(Devroye	1986,	p.	394)(19)).	In	this	case,	if	one	PSRN	spawns
additional	PSRNs	(so	that	they	become	dependent	on	the	first),	those	additional	PSRNs	may
become	inaccurate	once	additional	digits	of	the	first	PSRN	are	sampled	uniformly	at	random.
(This	is	not	always	the	case,	but	it's	hard	to	characterize	when	the	additional	PSRNs	become
inaccurate	this	way	and	when	not.)

This	issue	is	easy	to	see	for	the	UniformAddRational	or	UniformMultiplyRational
algorithm	when	it's	called	more	than	once	with	the	same	PSRN	and	the	same	rational
number:	although	the	same	random	variate	ought	to	be	returned	each	time,	in	reality
different	variates	will	be	generated	this	way	with	probability	1,	especially	when	additional
digits	are	sampled	from	them	afterwards.

It	might	be	believed	that	the	issue	just	described	could	be	solved	by	the	algorithm	below:

Assume	we	want	to	multiply	the	same	PSRN	by	different	numbers.	Let	vec	be	a	vector	of
rational	numbers	to	multiply	the	same	PSRN	by,	and	let	vec[i]	be	the	rational	number	at
position	i	of	the	vector	(positions	start	at	0).

https://peteroupc.github.io/uniformsum.html


1.	 Set	i	to	0,	set	a	to	the	input	PSRN,	set	num	to	vec[i],	and	set	'output'	to	an	empty	list.
2.	 Set	ret	to	the	result	of	UniformMultiplyRational	with	the	PSRN	a	and	the	rational

number	num.
3.	 Add	a	pointer	to	ret	to	the	list	'output'.	If	vec[i]	was	the	last	number	in	the	vector,	stop

this	algorithm.
4.	 Set	a	to	point	to	ret,	then	add	1	to	i,	then	set	num	to	vec[i]/vec[i−1],	then	go	to	step	2.

However,	even	this	algorithm	doesn't	ensure	that	the	output	PSRNs	will	be	exactly
proportional	to	the	same	random	variate.	An	example:	Let	a	be	the	PSRN	0....	(or	the	interval
[0.0,	1.0]),	then	let	b	be	the	result	of	UniformMultiplyRational(a,	1/2),	then	let	c	be	the
result	of	UniformMultiplyRational(b,	1/3).	One	possible	result	for	b	is	0.41...	and	for	c	is
0.138....	Now	we	fill	a,	b,	and	c	with	uniform	random	bits.	Thus,	as	one	possible	result,	a	is
now	0.13328133...,	b	is	now	0.41792367...,	and	c	is	now	0.13860371....	Here,	however,	c
divided	by	b	is	not	exactly	1/3,	although	it's	quite	close,	and	b	divided	by	a	is	far	from	1/2
(especially	since	a	was	very	coarse	to	begin	with).	Although	this	example	shows	PSRNs	with
decimal	digits,	the	situation	is	worse	with	binary	digits.

8	Building	Blocks
This	document	relies	on	several	building	blocks	described	in	this	section.

One	of	them	is	the	"geometric	bag"	technique	by	Flajolet	and	others	(2010)(7),	which
generates	heads	or	tails	with	a	probability	that	is	built	up	digit	by	digit.

8.1	SampleGeometricBag
The	algorithm	SampleGeometricBag	returns	1	with	a	probability	built	up	by	a	uniform
PSRN's	fractional	part.	(Flajolet	et	al.,	2010)(7)	described	an	algorithm	for	the	base-2
(binary)	case,	but	that	algorithm	is	difficult	to	apply	to	other	digit	bases.	Thus	the	following	is
a	general	version	of	the	algorithm	for	any	digit	base.	For	convenience,	this	algorithm	ignores
the	PSRN's	integer	part	and	sign.

1.	 Set	i	to	0,	and	set	b	to	a	uniform	PSRN	with	a	positive	sign	and	an	integer	part	of	0.
2.	 If	the	item	at	position	i	of	the	input	PSRN's	fractional	part	is	unsampled	(that	is,	not	set

to	a	digit),	set	the	item	at	that	position	to	a	digit	chosen	uniformly	at	random,	increasing
the	fractional	part's	capacity	as	necessary	(positions	start	at	0	where	0	is	the	most
significant	digit	after	the	point,	1	is	the	next,	etc.),	and	append	the	result	to	that
fractional	part's	digit	expansion.	Do	the	same	for	b.

3.	 Let	da	be	the	digit	at	position	i	of	the	input	PSRN's	fractional	part,	and	let	db	be	the
corresponding	digit	for	b.	Return	0	if	da	is	less	than	db,	or	1	if	da	is	greater	than	db.

4.	 Add	1	to	i	and	go	to	step	2.

For	base	2,	the	following	SampleGeometricBag	algorithm	can	be	used,	which	is	closer	to
the	one	given	in	the	Flajolet	paper.	It	likewise	ignores	the	input	PSRN's	integer	part	and
sign.

1.	 Set	N	to	0.
2.	 With	probability	1/2,	go	to	the	next	step.	Otherwise,	add	1	to	N	and	repeat	this	step.

(When	the	algorithm	moves	to	the	next	step,	N	is	what	the	Flajolet	paper	calls	a
geometric	random	variate	(with	parameter	1/2),	hence	the	name	"geometric	bag",	but
the	terminology	"geometric	random	variate"	is	avoided	in	this	article	since	it	has	several
conflicting	meanings	in	academic	works.)

3.	 If	the	item	at	position	N	in	the	uniform	PSRN's	fractional	part	(positions	start	at	0)	is	not
set	to	a	digit	(e.g.,	0	or	1	for	base	2),	set	the	item	at	that	position	to	a	digit	chosen
uniformly	at	random	(e.g.,	either	0	or	1	for	base	2),	increasing	the	fractional	part's
capacity	as	necessary.	(As	a	result	of	this	step,	there	may	be	"gaps"	in	the	uniform	PSRN



where	no	digit	was	sampled	yet.)
4.	 Return	the	item	at	position	N.

For	more	on	why	these	two	algorithms	are	equivalent,	see	the	appendix.

SampleGeometricBagComplement	is	the	same	as	the	SampleGeometricBag	algorithm,
except	the	return	value	is	1	minus	the	original	return	value.	The	result	is	that	if
SampleGeometricBag	outputs	1	with	probability	U,	SampleGeometricBagComplement
outputs	1	with	probability	1	−	U.

8.2	FillGeometricBag
FillGeometricBag	takes	a	uniform	PSRN	and	generates	a	number	whose	fractional	part	has	
p	digits	as	follows:

1.	 For	each	position	in	\0,	p),	if	the	item	at	that	position	in	the	uniform	PSRN's	fractional
part	is	unsampled,	set	the	item	there	to	a	digit	chosen	uniformly	at	random	(e.g.,	either
0	or	1	for	binary),	increasing	the	fractional	part's	capacity	as	necessary.	(Positions	start
at	0	where	0	is	the	most	significant	digit	after	the	point,	1	is	the	next,	etc.	See	also
(Oberhoff	2018,	sec.	8)[(13).)

2.	 Let	sign	be	-1	if	the	PSRN's	sign	is	negative,	or	1	otherwise;	let	ipart	be	the	PSRN's
integer	part;	and	let	bag	be	the	PSRN's	fractional	part.	Take	the	first	p	digits	of	bag	and
return	sign	*	(ipart	+	∑i=0,	...,	p−1	bag[i]	*	b−i−1),	where	b	is	the	base,	or	radix.

After	step	2,	if	it	somehow	happens	that	digits	beyond	p	in	the	PSRN's	fractional	part	were
already	sampled	(that	is,	they	were	already	set	to	a	digit),	then	the	implementation	could
choose	instead	to	fill	all	unsampled	digits	between	the	first	and	the	last	set	digit	and	return
the	full	number,	optionally	rounding	it	to	a	number	whose	fractional	part	has	p	digits,	with	a
rounding	mode	of	choice.	(For	example,	if	p	is	4,	b	is	10,	and	the	PSRN	is	0.3437500...	or
0.3438500...,	it	could	use	a	round-to-nearest	mode	to	round	the	PSRN	to	the	number	0.3438
or	0.3439,	respectively;	because	this	is	a	PSRN	with	an	"infinite"	but	unsampled	digit
expansion,	there	is	no	tie-breaking	such	as	"ties	to	even"	applied	here.)

8.3	kthsmallest
The	kthsmallest	method	generates	the	'k'th	smallest	'bitcount'-digit	uniform	random	variate
in	the	interval	[0,	1]	out	of	'n'	of	them	(also	known	as	the	'n'th	order	statistic),	is	also	relied
on	by	this	beta	sampler.	It	is	used	when	both	a	and	b	are	integers,	based	on	the	known
property	that	a	beta	random	variate	in	this	case	is	the	ath	smallest	uniform	random	variate	in
the	interval	[0,	1]	out	of	a	+	b	-	1	of	them	(Devroye	1986,	p.	431)(19).

kthsmallest,	however,	doesn't	simply	generate	'n'	'bitcount'-digit	numbers	and	then	sort
them.	Rather,	it	builds	up	their	digit	expansions	digit	by	digit,	via	PSRNs.	It	uses	the
observation	that	(in	the	binary	case)	each	uniform	random	variate	in	the	interval	[0,	1]	is
equally	likely	to	be	less	than	half	or	greater	than	half;	thus,	the	number	of	uniform	numbers
that	are	less	than	half	vs.	greater	than	half	follows	a	binomial(n,	1/2)	distribution	(and	of	the
numbers	less	than	half,	say,	the	less-than-one-quarter	vs.	greater-than-one-quarter	numbers
follows	the	same	distribution,	and	so	on).	Thanks	to	this	observation,	the	algorithm	can
generate	a	sorted	sample	"on	the	fly".	A	similar	observation	applies	to	other	bases	than	base
2	if	we	use	the	multinomial	distribution	instead	of	the	binomial	distribution.	I	am	not	aware
of	any	other	article	or	paper	(besides	one	by	me)	that	describes	the	kthsmallest	algorithm
given	here.

The	algorithm	is	as	follows:

1.	 Create	n	uniform	PSRNs	with	positive	sign	and	an	integer	part	of	0.
2.	 Set	index	to	1.



3.	 If	index	<=	k	and	index	+	n	>=	k:
1.	 Generate	v,	a	multinomial	random	vector	with	b	probabilities	equal	to	1/b,	where	b

is	the	base,	or	radix	(for	the	binary	case,	b	=	2,	so	this	is	equivalent	to	generating	
LC,	a	binomial	random	variate	with	parameters	n	and	0.5,	and	setting	v	to	{LC,	n	-	
LC}).

2.	 Starting	at	index,	append	the	digit	0	to	the	first	v[0]	PSRNs,	a	1	digit	to	the	next
v[1]	PSRNs,	and	so	on	to	appending	a	b	−	1	digit	to	the	last	v[b	−	1]	PSRNs	(for	the
binary	case,	this	means	appending	a	0	bit	to	the	first	LC	PSRNs	and	a	1	bit	to	the
next	n	-	LC	PSRNs).

3.	 For	each	integer	i	in	[0,	b):	If	v[i]	>	1,	repeat	step	3	and	these	substeps	with	index	=
index	+	∑j=0,	...,	i−1	v[j]	and	n	=	v[i].	(For	the	binary	case,	this	means:	If	LC	>	1,
repeat	step	3	and	these	substeps	with	the	same	index	and	n	=	LC;	then,	if	n	-	LC	>	1,
repeat	step	3	and	these	substeps	with	index	=	index	+	LC,	and	n	=	n	-	LC).

4.	 Take	the	kth	PSRN	(starting	at	1),	then	optionally	fill	it	with	uniform	random	digits	as
necessary	to	give	its	fractional	part	bitcount	many	digits	(similarly	to	FillGeometricBag
above),	then	return	that	number.	(Note	that	the	beta	sampler	described	later	chooses	to
fill	the	PSRN	this	way	via	this	algorithm.)

8.4	Power-of-Uniform	Sub-Algorithm
The	power-of-uniform	sub-algorithm	is	used	for	certain	cases	of	the	beta	sampler	below.	It
returns	Upx/py,	where	U	is	a	uniform	random	variate	in	the	interval	[0,	1]	and	px/py	is	greater
than	1,	but	unlike	the	naïve	algorithm	it	supports	an	arbitrary	precision,	uses	only	random
bits,	and	avoids	floating-point	arithmetic.	It	also	uses	a	complement	flag	to	determine
whether	to	return	1	minus	the	result.

It	makes	use	of	a	number	of	algorithms	as	follows:

It	uses	an	algorithm	for	sampling	unbounded	monotone	PDFs,	which	in	turn	is
similar	to	the	inversion-rejection	algorithm	in	(Devroye	1986,	ch.	7,	sec.	4.4)(19).	This	is
needed	because	when	px/py	is	greater	than	1,	the	distribution	of	Upx/py	has	the	PDF	
(py/px)	/	pow(U,	1-py/px),	which	has	an	unbounded	peak	at	0.
It	uses	a	number	of	Bernoulli	factory	algorithms,	including	SampleGeometricBag	and
some	algorithms	described	in	"Bernoulli	Factory	Algorithms".

However,	this	algorithm	currently	only	supports	generating	a	PSRN	with	base-2	(binary)
digits	in	its	fractional	part.

The	power-of-uniform	algorithm	is	as	follows:

1.	 Set	i	to	1.
2.	 Call	the	algorithm	for	(a/b)x/y	described	in	"Bernoulli	Factory	Algorithms",	with

parameters	a	=	1,	b	=	2,	x	=	py,	y	=	px.	If	the	call	returns	1	and	i	is	less	than	n,	add	1	to
i	and	repeat	this	step.	If	the	call	returns	1	and	i	is	n	or	greater,	return	1	if	the
complement	flag	is	1	or	0	otherwise	(or	return	a	uniform	PSRN	with	a	positive	sign,	an
integer	part	of	0,	and	a	fractional	part	filled	with	exactly	n	ones	or	zeros,	respectively).

3.	 As	a	result,	we	will	now	sample	a	number	in	the	interval	[2−i,	2−(i	−	1)).	We	now	have	to
generate	a	uniform	random	variate	X	in	this	interval,	then	accept	it	with	probability	(py	/
(px	*	2i))	/	X1	−	py	/	px;	the	2i	in	this	formula	is	to	help	avoid	very	low	probabilities	for
sampling	purposes.	The	following	steps	will	achieve	this	without	having	to	use	floating-
point	arithmetic.

4.	 Create	a	positive-sign	zero-integer-part	uniform	PSRN,	then	create	a	geobag	input	coin
that	returns	the	result	of	SampleGeometricBag	on	that	PSRN.

5.	 Create	a	powerbag	input	coin	that	does	the	following:	"Call	the	algorithm	for	λx/y,
described	in	'Bernoulli	Factory	Algorithms',	using	the	geobag	input	coin	and	with	x/y
=	1	−	py	/	px,	and	return	the	result."
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6.	 Append	i	−	1	zero-digits	followed	by	a	single	one-digit	to	the	PSRN's	fractional	part.	This
will	allow	us	to	sample	a	uniform	random	variate	limited	to	the	interval	mentioned
earlier.

7.	 Call	the	algorithm	for	ϵ	/	λ,	described	in	"Bernoulli	Factory	Algorithms",	using	the
powerbag	input	coin	(which	represents	b)	and	with	ϵ	=	py/(px	*	2i)	(which	represents	a),
thus	returning	1	with	probability	a/b.	If	the	call	returns	1,	the	PSRN	was	accepted,	so	do
the	following:
1.	 If	the	complement	flag	is	1,	make	each	zero-digit	in	the	PSRN's	fractional	part	a

one-digit	and	vice	versa.
2.	 Optionally,	fill	the	PSRN	with	uniform	random	digits	as	necessary	to	give	its

fractional	part	n	digits	(similarly	to	FillGeometricBag	above),	where	n	is	a
precision	parameter.	Then,	return	the	PSRN.

8.	 If	the	call	to	the	algorithm	for	ϵ	/	λ	returns	0,	remove	all	but	the	first	i	digits	from	the
PSRN's	fractional	part,	then	go	to	step	7.

9	Algorithms	for	the	Beta	and	Exponential
Distributions
	

9.1	Beta	Distribution
All	the	building	blocks	are	now	in	place	to	describe	a	new	algorithm	to	sample	the	beta
distribution,	described	as	follows.	It	takes	three	parameters:	a	>=	1	and	b	>=	1	(or	one
parameter	is	1	and	the	other	is	greater	than	0	in	the	binary	case)	are	the	parameters	to	the
beta	distribution,	and	p	>	0	is	a	precision	parameter.

1.	 Special	cases:
If	a	=	1	and	b	=	1,	return	a	positive-sign	zero-integer-part	uniform	PSRN.
If	a	and	b	are	both	integers,	return	the	result	of	kthsmallest	with	n	=	a	-	b	+	1	and
k	=	a
In	the	binary	case,	if	a	is	1	and	b	is	less	than	1,	call	the	power-of-uniform	sub-
algorithm	described	below,	with	px/py	=	1/b,	and	the	complement	flag	set	to	1,
and	return	the	result	of	that	algorithm	as	is	(without	filling	it	as	described	in
substep	7.2	of	that	algorithm).
In	the	binary	case,	if	b	is	1	and	a	is	less	than	1,	call	the	power-of-uniform	sub-
algorithm	described	below,	with	px/py	=	1/a,	and	the	complement	flag	set	to	0,
and	return	the	result	of	that	algorithm	as	is	(without	filling	it	as	described	in
substep	7.2	of	that	algorithm).

2.	 If	a	>	2	and	b	>	2,	do	the	following	steps,	which	split	a	and	b	into	two	parts	that	are
faster	to	simulate	(and	implement	the	generalized	rejection	strategy	in	(Devroye	1986,
top	of	page	47)(19)):
1.	 Set	aintpart	to	floor(a)	−	1,	set	bintpart	to	floor(b)	−	1,	set	arest	to	a	−	aintpart,

and	set	brest	to	b	−	bintpart.
2.	 Do	a	separate	(recursive)	run	of	this	algorithm,	but	with	a	=	aintpart	and	b	=

bintpart.	Set	bag	to	the	PSRN	created	by	the	run.
3.	 Create	an	input	coin	geobag	that	returns	the	result	of	SampleGeometricBag

using	the	given	PSRN.	Create	another	input	coin	geobagcomp	that	returns	the
result	of	SampleGeometricBagComplement	using	the	given	PSRN.

4.	 Call	the	algorithm	for	λx/y,	described	in	"Bernoulli	Factory	Algorithms",	using
the	geobag	input	coin	and	x/y	=	arest/1,	then	call	the	same	algorithm	using	the
geobagcomp	input	coin	and	x/y	=	brest/1.	If	both	calls	return	1,	return	bag.
Otherwise,	go	to	substep	2.

3.	 Create	an	positive-sign	zero-integer-part	uniform	PSRN.	Create	an	input	coin	geobag
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that	returns	the	result	of	SampleGeometricBag	using	the	given	PSRN.	Create	another
input	coin	geobagcomp	that	returns	the	result	of	SampleGeometricBagComplement
using	the	given	PSRN.

4.	 Remove	all	digits	from	the	PSRN's	fractional	part.	This	will	result	in	an	"empty"	uniform
random	variate	in	the	interval	[0,	1],	U,	for	the	following	steps,	which	will	accept	U	with
probability	Ua−1*(1−U)b−1)	(the	proportional	probability	for	the	beta	distribution),	as	U
is	built	up.

5.	 Call	the	algorithm	for	λx/y,	described	in	"Bernoulli	Factory	Algorithms",	using	the
geobag	input	coin	and	x/y	=	a	−	1)/1	(thus	returning	with	probability	Ua−1).	If	the	result
is	0,	go	to	step	4.

6.	 Call	the	same	algorithm	using	the	geobagcomp	input	coin	and	x/y	=	(b	−	1)/1	(thus
returning	1	with	probability	(1−U)b−1).	If	the	result	is	0,	go	to	step	4.	(Note	that	this
step	and	the	previous	step	don't	depend	on	each	other	and	can	be	done	in	either	order
without	affecting	correctness,	and	this	is	taken	advantage	of	in	the	Python	code	below.)

7.	 U	was	accepted,	so	return	the	result	of	FillGeometricBag.

Once	a	PSRN	is	accepted	by	the	steps	above,	optionally	fill	the	unsampled	digits	of	the
PSRN's	fractional	part	with	uniform	random	digits	as	necessary	to	give	the	number	a	p-digit
fractional	part	(similarly	to	FillGeometricBag),	then	return	the	resulting	number.

Notes:

A	beta	random	variate	with	parameters	1/x	and	1	is	the	same	as	a	uniform
random	variate	in	[0,	1]	raised	to	the	power	of	x.
For	the	beta	distribution,	the	bigger	alpha	or	beta	is,	the	smaller	the	area	of
acceptance	becomes	(and	the	more	likely	random	variates	get	rejected	by
steps	5	and	6,	raising	its	run-time).	This	is	because	max(u^(alpha-1)*(1-u)^(beta-
1)),	the	peak	of	the	PDF,	approaches	0	as	the	parameters	get	bigger.	To	deal
with	this,	step	2	was	included,	which	under	certain	circumstances	breaks	the
PDF	into	two	parts	that	are	relatively	trivial	to	sample	(in	terms	of	bit
complexity).

9.2	Exponential	Distribution
We	also	have	the	necessary	building	blocks	to	describe	how	to	sample	e-rands.	As
implemented	in	the	Python	code,	an	e-rand	consists	of	five	numbers:	the	first	is	a	multiple	of
1/(2x),	the	second	is	x,	the	third	is	the	integer	part	(initially	−1	to	indicate	the	integer	part
wasn't	sampled	yet),	and	the	fourth	and	fifth	are	the	λ	parameter's	numerator	and
denominator,	respectively.	(Because	exponential	random	variates	are	always	0	or	greater,	the
e-rand's	sign	is	implicitly	positive).

To	sample	bit	k	after	the	binary	point	of	an	exponential	random	variate	with	rate	λ	(where	k
=	1	means	the	first	digit	after	the	point,	k	=	2	means	the	second,	etc.),	call	the	LogisticExp
algorithm	with	x	=	λ's	numerator,	y	=	λ's	denominator,	and	prec	=	k.

The	ExpRandLess	algorithm	is	a	special	case	of	the	general	RandLess	algorithm	given
earlier.	It	compares	two	e-rands	a	and	b	(and	samples	additional	bits	from	them	as
necessary)	and	returns	1	if	a	turns	out	to	be	less	than	b,	or	0	otherwise.	(Note	that	a	and	b
are	allowed	to	have	different	λ	parameters.)

1.	 If	a's	integer	part	wasn't	sampled	yet,	call	the	algorithm	for	exp(−x/y)	with	x	=	λ's
numerator	and	y	=	λ's	denominator,	until	the	call	returns	0,	then	set	the	integer	part	to
the	number	of	times	1	was	returned	this	way.	Do	the	same	for	b.

2.	 Return	1	if	a's	integer	part	is	less	than	b's,	or	0	if	a's	integer	part	is	greater	than	b's.
3.	 Set	i	to	0.
4.	 If	a's	fractional	part	has	i	or	fewer	bits,	call	the	LogisticExp	algorithm	with	x	=	λ's

numerator,	y	=	λ's	denominator,	and	prec	=	i	+	1,	and	append	the	result	to	that
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fractional	part's	binary	expansion.	(For	example,	if	the	implementation	stores	the	binary
expansion	as	a	packed	integer	and	a	size,	the	implementation	can	shift	the	packed
integer	by	1,	add	the	result	of	the	algorithm	to	that	integer,	then	add	1	to	the	size.)	Do
the	same	for	b.

5.	 Return	1	if	a's	fractional	part	is	less	than	b's,	or	0	if	a's	fractional	part	is	greater	than
b's.

6.	 Add	1	to	i	and	go	to	step	4.

The	ExpRandFill	algorithm	takes	an	e-rand	and	generates	a	number	whose	fractional	part
has	p	digits	as	follows:

1.	 For	each	position	i	in	\0,	p),	if	the	item	at	that	position	in	the	e-rand's	fractional	part	is
unsampled,	call	the	LogisticExp	algorithm	with	x	=	λ's	numerator,	y	=	λ's	denominator,
and	prec	=	i	+	1,	and	set	the	item	at	position	i	to	the	result	(which	will	be	either	0	or	1),
increasing	the	fractional	part's	capacity	as	necessary.	(Bit	positions	start	at	0	where	0	is
the	most	significant	bit	after	the	point,	1	is	the	next,	etc.	See	also	(Oberhoff	2018,	sec.
8)[(13).)

2.	 Let	sign	be	-1	if	the	e-rand's	sign	is	negative,	or	1	otherwise;	let	ipart	be	the	e-rand's
integer	part;	and	let	bag	be	the	PSRN's	fractional	part.	Take	the	first	p	digits	of	bag	and
return	sign	*	(ipart	+	∑i=0,	...,	p−1	bag[i]	*	2−i−1).

See	the	discussion	in	FillGeometricBag	for	advice	on	how	to	handle	the	case	when	if	it
somehow	happens	that	bits	beyond	p	in	the	PSRN's	fractional	part	were	already	sampled
(that	is,	they	were	already	set	to	a	digit)	after	step	2	of	this	algorithm.

Here	is	a	third	algorithm	(called	ExpRand)	that	generates	a	uniform	PSRN,	rather	than	an	e-
rand,	that	follows	the	exponential	distribution.	In	the	algorithm,	the	rate	λ	is	given	as	a
rational	number	greater	than	0.	The	method	is	based	on	von	Neumann's	algorithm	(von
Neumann	1951)(9).

1.	 Set	recip	to	1/λ,	and	set	highpart	to	0.
2.	 Set	u	to	the	result	of	RandUniformFromReal	with	the	parameter	recip.
3.	 Set	val	to	point	to	the	same	value	as	u,	and	set	accept	to	1.
4.	 Set	v	to	the	result	of	RandUniformFromReal	with	the	parameter	recip.
5.	 Run	the	URandLess	algorithm	on	u	and	v,	in	that	order.	If	the	call	returns	0,	set	u	to	v,

then	set	accept	to	1	minus	accept,	then	go	to	step	4.
6.	 If	accept	is	1,	add	highpart	to	val	via	the	UniformAddRational	algorithm	given	earlier,

then	return	val.
7.	 Add	recip	to	highpart	and	go	to	step	2.

The	following	alternative	version	of	the	previous	algorithm	(called	ExpRand2)	includes
Karney's	improvement	to	the	von	Neumann	algorithm	(Karney	2014)(1),	namely	a	so-called
"early	rejection	step".	The	algorithm	here	allows	an	arbitrary	rate	parameter	(λ),	given	as	a
rational	number	greater	than	0,	unlike	with	the	von	Neumann	and	Karney	algorithms,	where
λ	is	1.

1.	 Set	recip	to	1/λ,	and	set	highpart	to	0.
2.	 Set	u	to	the	result	of	RandUniformFromReal	with	the	parameter	recip.
3.	 Run	the	URandLessThanReal	algorithm	on	u	with	the	parameter	recip/2.	If	the	call

returns	0,	add	recip/2	to	highpart	and	go	to	step	2.	(This	is	Karney's	"early	rejection
step",	where	the	parameter	is	1/2	when	λ	is	1.	However,	Fan	et	al.	(2019)(20)	point	out
that	the	parameter	1/2	in	Karney's	"early	rejection	step"	is	not	optimal.)

4.	 Set	val	to	point	to	the	same	value	as	u,	and	set	accept	to	1.
5.	 Set	v	to	the	result	of	RandUniformFromReal	with	the	parameter	recip.
6.	 Run	the	URandLess	algorithm	on	u	and	v,	in	that	order.	If	the	call	returns	0,	set	u	to	v,

then	set	accept	to	1	minus	accept,	then	go	to	step	5.
7.	 If	accept	is	1,	add	highpart	to	val	via	the	UniformAddRational	algorithm	given	earlier,



then	return	val.
8.	 Add	recip/2	to	highpart	and	go	to	step	2.

10	Sampler	Code
The	following	Python	code	implements	the	beta	sampler	just	described.	It	relies	on	two
Python	modules	I	wrote:

"bernoulli.py",	which	collects	a	number	of	Bernoulli	factories,	some	of	which	are	relied
on	by	the	code	below.
"randomgen.py",	which	collects	a	number	of	random	variate	generation	methods,
including	kthsmallest,	as	well	as	the	RandomGen	class.

Note	that	the	code	uses	floating-point	arithmetic	only	to	convert	the	result	of	the	sampler	to
a	convenient	form,	namely	a	floating-point	number.

This	code	is	far	from	fast,	though,	at	least	in	Python.

import	math
import	random
import	bernoulli
from	randomgen	import	RandomGen
from	fractions	import	Fraction

def	_toreal(ret,	precision):
								#	NOTE:	Although	we	convert	to	a	floating-point
								#	number	here,	this	is	not	strictly	necessary	and
								#	is	merely	for	convenience.
								return	ret*1.0/(1<<precision)

def	_urand_to_geobag(bag):
		return	[(bag[0]>>(bag[1]-1-i))&1	for	i	in	range(bag[1])]

def	_power_of_uniform_greaterthan1(bern,	power,	complement=False,	precision=53):
				return	bern.fill_geometric_bag(
								_power_of_uniform_greaterthan1_geobag(bern,	power,	complement),	precision
				)

def	_power_of_uniform_greaterthan1_geobag(bern,	power,	complement=False,	precision=53):
			if	power<1:
					raise	ValueError("Not	supported")
			if	power==1:
								return	[]		#	Empty	uniform	random	variate
			i=1
			powerfrac=Fraction(power)
			powerrest=Fraction(1)	-	Fraction(1)/powerfrac
			#	Choose	an	interval
			while	bern.zero_or_one_power_ratio(1,2,
									powerfrac.denominator,powerfrac.numerator)	==	1:
						i+=1
			epsdividend	=	Fraction(1)/(powerfrac	*	2**i)
			#	--	A	choice	for	epsdividend	which	makes	eps_div
			#	--	much	faster,	but	this	will	require	floating-point	arithmetic
			#	--	to	calculate	"**powerrest",	which	is	not	the	focus
			#	--	of	this	article.
			#	probx=((2.0**(-i-1))**powerrest)
			#	epsdividend=Fraction(probx)*255/256
			bag=[]
			gb=lambda:	bern.geometric_bag(bag)
			bf	=lambda:	bern.power(gb,	powerrest.numerator,	powerrest.denominator)
			while	True:
						#	Limit	sampling	to	the	chosen	interval
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						bag.clear()
						for	k	in	range(i-1):
									bag.append(0)
						bag.append(1)
						#	Simulate	epsdividend	/	x**(1-1/power)
						if	bern.eps_div(bf,	epsdividend)	==	1:
										#	Flip	all	bits	if	complement	is	true
										bag=[x	if	x==None	else	1-x	for	x	in	bag]	if	complement	else	bag
										return	bag

def	powerOfUniform(b,	px,	py,	precision=53):
								#	Special	case	of	beta,	returning	power	of	px/py
								#	of	a	uniform	random	variate,	provided	px/py
								#	is	in	(0,	1].
								return	betadist(b,	py,	px,	1,	1,	precision)

				return	b.fill_geometric_bag(
								betadist_geobag(b,	ax,	ay,	bx,	by),	precision
				)

def	betadist_geobag(b,	ax=1,	ay=1,	bx=1,	by=1):
				"""	Generates	a	beta-distributed	random	variate	with	arbitrary
										(user-defined)	precision.		Currently,	this	sampler	only	works	if	(ax/ay)	and
										(bx/by)	are	both	1	or	greater,	or	if	one	of	these	parameters	is
									1	and	the	other	is	less	than	1.
									-	b:	Bernoulli	object	(from	the	"bernoulli"	module).
									-	ax,	ay:	Numerator	and	denominator	of	first	shape	parameter.
									-	bx,	by:	Numerator	and	denominator	of	second	shape	parameter.
									-	precision:	Number	of	bits	after	the	point	that	the	result	will	contain.
								"""
				#	Beta	distribution	for	alpha>=1	and	beta>=1
				bag	=	[]
				afrac=(Fraction(ax)	if	ay==1	else	Fraction(ax,	ay))
				bfrac=(Fraction(bx)	if	by==1	else	Fraction(bx,	by))
				bpower	=	bfrac	-	1
				apower	=	afrac	-	1
				#	Special	case	for	a=b=1
				if	bpower	==	0	and	apower	==	0:
								return	bag
				#	Special	case	if	a=1
				if	apower	==	0	and	bpower	<	0:
								return	_power_of_uniform_greaterthan1_geobag(b,	Fraction(by,	bx),	True)
				#	Special	case	if	b=1
				if	bpower	==	0	and	apower	<	0:
								return	_power_of_uniform_greaterthan1_geobag(b,	Fraction(ay,	ax),	False)
				if	apower	<=	-1	or	bpower	<=	-1:
								raise	ValueError
				#	Special	case	if	a	and	b	are	integers
				if	int(bpower)	==	bpower	and	int(apower)	==	apower:
								a	=	int(afrac)
								b	=	int(bfrac)
								return	_urand_to_geobag(randomgen.RandomGen().kthsmallest_psrn(a	+	b	-	1,	a))
				#	Split	a	and	b	into	two	parts	which	are	relatively	trivial	to	simulate
				if	bfrac	>	2	and	afrac	>	2:
								bintpart	=	int(bfrac)	-	1
								aintpart	=	int(afrac)	-	1
								brest	=	bfrac	-	bintpart
								arest	=	afrac	-	aintpart
								#	Generalized	rejection	method,	p.	47
								while	True:
											bag	=	betadist_geobag(b,	aintpart,	1,	bintpart,	1)
											gb	=	lambda:	b.geometric_bag(bag)
											gbcomp	=	lambda:	b.geometric_bag(bag)	^	1
											if	(b.power(gbcomp,	brest)==1	and	\
														b.power(gb,	arest)==1):



														return	bag
				#	Create	a	"geometric	bag"	to	hold	a	uniform	random
				#	number	(U),	described	by	Flajolet	et	al.	2010
				gb	=	lambda:	b.geometric_bag(bag)
				#	Complement	of	"geometric	bag"
				gbcomp	=	lambda:	b.geometric_bag(bag)	^	1
				bp1=lambda:	(1	if	b.power(gbcomp,	bpower)==1	and	\
												b.power(gb,	apower)==1	else	0)
				while	True:
								#	Create	a	uniform	random	variate	(U)	bit-by-bit,	and
								#	accept	it	with	probability	U^(a-1)*(1-U)^(b-1),	which
								#	is	the	unnormalized	PDF	of	the	beta	distribution
								bag.clear()
								if	bp1()	==	1:
												#	Accepted
												return	ret

def	_fill_geometric_bag(b,	bag,	precision):
								ret=0
								lb=min(len(bag),	precision)
								for	i	in	range(lb):
											if	i>=len(bag)	or	bag[i]==None:
														ret=(ret(1))<sup>**(21)**</sup>	1)	+	1
								return	ret|(a[2]<<bits)
				#	Fill	the	fractional	part	if	necessary.
				while	a[1]	<	bits:
							index	=	a[1]
							a[1]+=1
							a[0]=(a[0]<<1)|logisticexp(a[3],	a[4],	index+1)
				return	a[0]|(a[2]<<bits)

def	exprandless(a,	b):
								"""	Determines	whether	one	partially-sampled	exponential	number
											is	less	than	another;	returns
											true	if	so	and	false	otherwise.		During
											the	comparison,	additional	bits	will	be	sampled	in	both	numbers
											if	necessary	for	the	comparison.	"""
								#	Check	integer	part	of	exponentials
								if	a[2]	==	-1:
												a[2]	=	0
												while	zero_or_one_exp_minus(a[3],	a[4])	==	1:
																a[2]	+=	1
								if	b[2]	==	-1:
												b[2]	=	0
												while	zero_or_one_exp_minus(b[3],	b[4])	==	1:
																b[2]	+=	1
								if	a[2]	<	b[2]:
												return	True
								if	a[2]	>	b[2]:
												return	False
								index	=	0
								while	True:
												#	Fill	with	next	bit	in	a's	exponential	number
												if	a[1]	<	index:
																raise	ValueError
												if	b[1]	<	index:
																raise	ValueError
												if	a[1]	<=	index:
																a[1]	+=	1
																a[0]	=	logisticexp(a[3],	a[4],	index	+	1)	|	(a[0]	<<	1)
												#	Fill	with	next	bit	in	b's	exponential	number
												if	b[1]	<=	index:
																b[1]	+=	1
																b[0]	=	logisticexp(b[3],	b[4],	index	+	1)	|	(b[0]	<<	1)
												aa	=	(a[0]	>>	(a[1]	-	1	-	index))	&	1



												bb	=	(b[0]	>>	(b[1]	-	1	-	index))	&	1
												if	aa	<	bb:
																return	True
												if	aa	>	bb:
																return	False
												index	+=	1

def	zero_or_one(px,	py):
								"""	Returns	1	at	probability	px/py,	0	otherwise.
												Uses	Bernoulli	algorithm	from	Lumbroso	appendix	B,
												with	one	exception	noted	in	this	code.	"""
								if	py	<=	0:
												raise	ValueError
								if	px	==	py:
												return	1
								z	=	px
								while	True:
												z	=	z	*	2
												if	z	>=	py:
																if	random.randint(0,1)	==	0:
																				return	1
																z	=	z	-	py
												#	Exception:	Condition	added	to	help	save	bits
												elif	z	==	0:	return	0
												else:
																if	random.randint(0,1)	==	0:
																			return	0

def	zero_or_one_exp_minus(x,	y):
								"""	Generates	1	with	probability	exp(-px/py);	0	otherwise.
															Reference:	Canonne	et	al.	2020.	"""
								if	y	<=	0	or	x	<	0:
												raise	ValueError
								if	x==0:	return	1
								if	x	>	y:
												xf	=	int(x	/	y)		#	Get	integer	part
												x	=	x	%	y		#	Reduce	to	fraction
												if	x	>	0	and	zero_or_one_exp_minus(x,	y)	==	0:
																return	0
												for	i	in	range(xf):
																if	zero_or_one_exp_minus(1,	1)	==	0:
																				return	0
												return	1
								r	=	1
								ii	=	1
								while	True:
												if	zero_or_one(x,	y*ii)	==	0:
																return	r
												r=1-r
												ii	+=	1

<h1>Example	of	use</h1>

def	exprand(lam):
			return	exprandfill(exprandnew(lam),53)*1.0/(1<<53)

In	the	following	Python	code,	add_psrns	is	a	method	to	generate	the	result	of	multiplying	or
adding	two	uniform	PSRNs,	respectively.

def	psrn_reciprocal(psrn1,	digits=2):
				"""	Generates	the	reciprocal	of	a	partially-sampled	random	number.
								psrn1:	List	containing	the	sign,	integer	part,	and	fractional	part
												of	the	first	PSRN.		Fractional	part	is	a	list	of	digits
												after	the	point,	starting	with	the	first.



								digits:	Digit	base	of	PSRNs'	digits.		Default	is	2,	or	binary.	"""
				if	psrn1[0]	==	None	or	psrn1[1]	==	None:
								raise	ValueError
				for	i	in	range(len(psrn1[2])):
								psrn1[2][i]	=	(
												random.randint(0,	digits	-	1)	if	psrn1[2][i]	==	None	else	psrn1[2][i]
								)
				digitcount	=	len(psrn1[2])
				#	Perform	multiplication
				frac1	=	psrn1[1]
				for	i	in	range(digitcount):
								frac1	=	frac1	*	digits	+	psrn1[2][i]
				while	frac1	==	0:
								#	Avoid	degenerate	cases
								d1	=	random.randint(0,	digits	-	1)
								psrn1[2].append(d1)
								frac1	=	frac1	*	digits	+	d1
								digitcount	+=	1
				while	True:
								dcount	=	digitcount
								ddc	=	digits	**	dcount
								small	=	Fraction(ddc,	frac1	+	1)
								large	=	Fraction(ddc,	frac1)
								if	small>large:	raise	ValueError
								if	small==0:	raise	ValueError
								while	True:
											dc	=	int(small	*	ddc)
											if	dc!=0:	break
											dcount+=1
											ddc*=digits
								if	dc	==	0:
													
print(["dc",dc,"dc/ddc",float(Fraction(dc,ddc)),"small",float(small),"dcount",dcount,"psrn",psrn1])

								dc2	=	int(large	*	ddc)	+	1
								rv	=	random.randint(dc,	dc2	-	1)
								rvx	=	random.randint(0,	dc	-	1)
								#	print([count,float(small),	float(large),dcount,	dc/ddc,	dc2/ddc])
								while	True:
												rvsmall	=	Fraction(rv,	ddc)
												rvlarge	=	Fraction(rv	+	1,	ddc)
												if	rvsmall	>=	small	and	rvlarge	<	large:
																rvd	=	Fraction(dc,	ddc)
																rvxf	=	Fraction(rvx,	dc)
																rvxf2	=	Fraction(rvx	+	1,	dc)
																#	
print(["dcs",rvx,"rvsmall",float(rvsmall),"rvlarge",float(rvlarge),"small",float(small),
																#			"rvxf",float(rvxf),float(rvxf2),"rvd",float(rvd),
																#			"sl",float((rvd*rvd)/(rvlarge*rvlarge)),float((rvd*rvd)/(rvsmall*rvsmall))])
																if	rvxf2	<	(rvd	*	rvd)	/	(rvlarge	*	rvlarge):
																				cpsrn	=	[1,	0,	[0	for	i	in	range(dcount)]]
																				cpsrn[0]	=	psrn1[0]
																				sret	=	rv
																				for	i	in	range(dcount):
																								cpsrn[2][dcount	-	1	-	i]	=	sret	%	digits
																								sret	//=	digits
																				cpsrn[1]	=	sret
																				return	cpsrn
																elif	rvxf	>	(rvd	*	rvd)	/	(rvsmall	*	rvsmall):
																				break
												elif	rvsmall	>	large	or	rvlarge	<	small:
																break
												rv	=	rv	*	digits	+	random.randint(0,	digits	-	1)
												rvx	=	rvx	*	digits	+	random.randint(0,	digits	-	1)
												dcount	+=	1



												ddc	*=	digits
												dc	*=	digits

def	multiply_psrn_by_fraction(psrn1,	fraction,	digits=2):
				"""	Multiplies	a	partially-sampled	random	number	by	a	fraction.
								psrn1:	List	containing	the	sign,	integer	part,	and	fractional	part
												of	the	first	PSRN.		Fractional	part	is	a	list	of	digits
												after	the	point,	starting	with	the	first.
								fraction:	Fraction	to	multiply	by.
								digits:	Digit	base	of	PSRNs'	digits.		Default	is	2,	or	binary.	"""
				if	psrn1[0]	==	None	or	psrn1[1]	==	None:
								raise	ValueError
				fraction	=	Fraction(fraction)
				for	i	in	range(len(psrn1[2])):
								psrn1[2][i]	=	(
												random.randint(0,	digits	-	1)	if	psrn1[2][i]	==	None	else	psrn1[2][i]
								)
				digitcount	=	len(psrn1[2])
				#	Perform	multiplication
				frac1	=	psrn1[1]
				fracsign	=	-1	if	fraction	<	0	else	1
				absfrac	=	abs(fraction)
				for	i	in	range(digitcount):
								frac1	=	frac1	*	digits	+	psrn1[2][i]
				while	True:
								dcount	=	digitcount
								ddc	=	digits	**	dcount
								small	=	Fraction(frac1,	ddc)	*	absfrac
								large	=	Fraction(frac1	+	1,	ddc)	*	absfrac
								dc	=	int(small	*	ddc)
								dc2	=	int(large	*	ddc)	+	1
								rv	=	random.randint(dc,	dc2	-	1)
								while	True:
												rvsmall	=	Fraction(rv,	ddc)
												rvlarge	=	Fraction(rv	+	1,	ddc)
												if	rvsmall	>=	small	and	rvlarge	<	large:
																cpsrn	=	[1,	0,	[0	for	i	in	range(dcount)]]
																cpsrn[0]	=	psrn1[0]	*	fracsign
																sret	=	rv
																for	i	in	range(dcount):
																				cpsrn[2][dcount	-	1	-	i]	=	sret	%	digits
																				sret	//=	digits
																cpsrn[1]	=	sret
																return	cpsrn
												elif	rvsmall	>	large	or	rvlarge	<	small:
																break
												else:
																rv	=	rv	*	digits	+	random.randint(0,	digits	-	1)
																dcount	+=	1
																ddc	*=	digits

def	add_psrns(psrn1,	psrn2,	digits=2):
				"""	Adds	two	uniform	partially-sampled	random	numbers.
								psrn1:	List	containing	the	sign,	integer	part,	and	fractional	part
												of	the	first	PSRN.		Fractional	part	is	a	list	of	digits
												after	the	point,	starting	with	the	first.
								psrn2:	List	containing	the	sign,	integer	part,	and	fractional	part
												of	the	second	PSRN.
								digits:	Digit	base	of	PSRNs'	digits.		Default	is	2,	or	binary.	"""
				if	psrn1[0]	==	None	or	psrn1[1]	==	None	or	psrn2[0]	==	None	or	psrn2[1]	==	None:
								raise	ValueError
				for	i	in	range(len(psrn1[2])):
								psrn1[2][i]	=	(
												random.randint(0,	digits	-	1)	if	psrn1[2][i]	==	None	else	psrn1[2][i]
								)



				for	i	in	range(len(psrn2[2])):
								psrn2[2][i]	=	(
												random.randint(0,	digits	-	1)	if	psrn2[2][i]	==	None	else	psrn2[2][i]
								)
				while	len(psrn1[2])	<	len(psrn2[2]):
								psrn1[2].append(random.randint(0,	digits	-	1))
				while	len(psrn1[2])	>	len(psrn2[2]):
								psrn2[2].append(random.randint(0,	digits	-	1))
				digitcount	=	len(psrn1[2])
				if	len(psrn2[2])	!=	digitcount:
								raise	ValueError
				#	Perform	addition
				frac1	=	psrn1[1]
				frac2	=	psrn2[1]
				for	i	in	range(digitcount):
								frac1	=	frac1	*	digits	+	psrn1[2][i]
				for	i	in	range(digitcount):
								frac2	=	frac2	*	digits	+	psrn2[2][i]
				small	=	frac1	*	psrn1[0]	+	frac2	*	psrn2[0]
				mid1	=	frac1	*	psrn1[0]	+	(frac2	+	1)	*	psrn2[0]
				mid2	=	(frac1	+	1)	*	psrn1[0]	+	frac2	*	psrn2[0]
				large	=	(frac1	+	1)	*	psrn1[0]	+	(frac2	+	1)	*	psrn2[0]
				minv	=	min(small,	mid1,	mid2,	large)
				maxv	=	max(small,	mid1,	mid2,	large)
				#	Difference	is	expected	to	be	a	multiple	of	two
				if	abs(maxv	-	minv)	%	2	!=	0:
								raise	ValueError
				vs	=	[small,	mid1,	mid2,	large]
				vs.sort()
				midmin	=	vs[1]
				midmax	=	vs[2]
				while	True:
								rv	=	random.randint(0,	maxv	-	minv	-	1)
								if	rv	<	0:
												raise	ValueError
								side	=	0
								start	=	minv
								if	rv	<	midmin	-	minv:
												#	Left	side	of	sum	density;	rising	triangular
												side	=	0
												start	=	minv
								elif	rv	>=	midmax	-	minv:
												#	Right	side	of	sum	density;	falling	triangular
												side	=	1
												start	=	midmax
								else:
												#	Middle,	or	uniform,	part	of	sum	density
												sret	=	minv	+	rv
												cpsrn	=	[1,	0,	[0	for	i	in	range(digitcount)]]
												if	sret	<	0:
																sret	+=	1
																cpsrn[0]	=	-1
												sret	=	abs(sret)
												for	i	in	range(digitcount):
																cpsrn[2][digitcount	-	1	-	i]	=	sret	%	digits
																sret	//=	digits
												cpsrn[1]	=	sret
												return	cpsrn
								if	side	==	0:		#	Left	side
												pw	=	rv
												b	=	midmin	-	minv
								else:
												pw	=	rv	-	(midmax	-	minv)
												b	=	maxv	-	midmax
								newdigits	=	0



								y	=	random.randint(0,	b	-	1)
								while	True:
												lowerbound	=	pw	if	side	==	0	else	b	-	1	-	pw
												if	y	<	lowerbound:
																#	Success
																sret	=	start	*	(digits	**	newdigits)	+	pw
																cpsrn	=	[1,	0,	[0	for	i	in	range(digitcount	+	newdigits)]]
																if	sret	<	0:
																				sret	+=	1
																				cpsrn[0]	=	-1
																sret	=	abs(sret)
																for	i	in	range(digitcount	+	newdigits):
																				idx	=	(digitcount	+	newdigits)	-	1	-	i
																				while	idx	>=	len(cpsrn[2]):
																								cpsrn[2].append(None)
																				cpsrn[2][idx]	=	sret	%	digits
																				sret	//=	digits
																cpsrn[1]	=	sret
																return	cpsrn
												elif	y	>	lowerbound	+	1:		#	Greater	than	upper	bound
																#	Rejected
																break
												pw	=	pw	*	digits	+	random.randint(0,	digits	-	1)
												y	=	y	*	digits	+	random.randint(0,	digits	-	1)
												b	*=	digits
												newdigits	+=	1

def	add_psrn_and_fraction(psrn,	fraction,	digits=2):
				if	psrn[0]	==	None	or	psrn[1]	==	None:
								raise	ValueError
				fraction	=	Fraction(fraction)
				fracsign	=	-1	if	fraction	<	0	else	1
				absfrac	=	abs(fraction)
				origfrac	=	fraction
				isinteger	=	absfrac.denominator	==	1
				#	Special	cases
				#	positive+pos.	integer	or	negative+neg.	integer
				if	((fracsign	<	0)	==	(psrn[0]	<	0))	and	isinteger	and	len(psrn[2])	==	0:
								return	[fracsign,	psrn[1]	+	int(absfrac),	[]]
				#	PSRN	has	no	fractional	part,	fraction	is	integer
				if	(
								isinteger
								and	psrn[0]	==	1
								and	psrn[1]	==	0
								and	len(psrn[2])	==	0
								and	fracsign	<	0
				):
								return	[fracsign,	int(absfrac)	-	1,	[]]
				if	(
								isinteger
								and	psrn[0]	==	1
								and	psrn[1]	==	0
								and	len(psrn[2])	==	0
								and	fracsign	>	0
				):
								return	[fracsign,	int(absfrac),	[]]
				if	fraction	==	0:		#	Special	case	of	0
								return	[psrn[0],	psrn[1],	[x	for	x	in	psrn[2]]]
				#	End	special	cases
				for	i	in	range(len(psrn[2])):
								psrn[2][i]	=	random.randint(0,	digits	-	1)	if	psrn[2][i]	==	None	else	psrn[2][i]
				digitcount	=	len(psrn[2])
				#	Perform	addition
				frac1	=	psrn[1]
				frac2	=	int(absfrac)



				fraction	=	absfrac	-	frac2
				for	i	in	range(digitcount):
								frac1	=	frac1	*	digits	+	psrn[2][i]
				for	i	in	range(digitcount):
								digit	=	int(fraction	*	digits)
								fraction	=	(fraction	*	digits)	-	digit
								frac2	=	frac2	*	digits	+	digit
				ddc	=	digits	**	digitcount
				small	=	Fraction(frac1	*	psrn[0],	ddc)	+	origfrac
				large	=	Fraction((frac1	+	1)	*	psrn[0],	ddc)	+	origfrac
				minv	=	min(small,	large)
				maxv	=	max(small,	large)
				while	True:
								newdigits	=	0
								b	=	1
								ddc	=	digits	**	digitcount
								mind	=	int(minv	*	ddc)
								maxd	=	int(maxv	*	ddc)
								rvstart	=	mind	-	1	if	minv	<	0	else	mind
								rvend	=	maxd	if	maxv	<	0	else	maxd	+	1
								rv	=	random.randint(0,	rvend	-	rvstart	-	1)
								rvs	=	rv	+	rvstart
								if	rvs	>=	rvend:
												raise	ValueError
								while	True:
												rvstartbound	=	mind	if	minv	<	0	else	mind	+	1
												rvendbound	=	maxd	-	1	if	maxv	<	0	else	maxd
												if	rvs	>	rvstartbound	and	rvs	<	rvendbound:
																sret	=	rvs
																cpsrn	=	[1,	0,	[0	for	i	in	range(digitcount	+	newdigits)]]
																if	sret	<	0:
																				sret	+=	1
																				cpsrn[0]	=	-1
																sret	=	abs(sret)
																for	i	in	range(digitcount	+	newdigits):
																				idx	=	(digitcount	+	newdigits)	-	1	-	i
																				cpsrn[2][idx]	=	sret	%	digits
																				sret	//=	digits
																cpsrn[1]	=	sret
																return	cpsrn
												elif	rvs	<=	rvstartbound:
																rvd	=	Fraction(rvs	+	1,	ddc)
																if	rvd	<=	minv:
																				#	Rejected
																				break
																else:
																				#	print(["rvd",rv+rvstart,float(rvd),float(minv)])
																				newdigits	+=	1
																				ddc	*=	digits
																				rvstart	*=	digits
																				rvend	*=	digits
																				mind	=	int(minv	*	ddc)
																				maxd	=	int(maxv	*	ddc)
																				rv	=	rv	*	digits	+	random.randint(0,	digits	-	1)
																				rvs	=	rv	+	rvstart
												else:
																rvd	=	Fraction(rvs,	ddc)
																if	rvd	>=	maxv:
																				#	Rejected
																				break
																else:
																				newdigits	+=	1
																				ddc	*=	digits
																				rvstart	*=	digits
																				rvend	*=	digits



																				mind	=	int(minv	*	ddc)
																				maxd	=	int(maxv	*	ddc)
																				rv	=	rv	*	digits	+	random.randint(0,	digits	-	1)
																				rvs	=	rv	+	rvstart

10.1	Exponential	Sampler:	Extension
The	code	above	supports	rational-valued	λ	parameters.	It	can	be	extended	to	support	any
real-valued	λ	parameter	greater	than	0,	as	long	as	λ	can	be	rewritten	as	the	sum	of	one	or
more	components	whose	fractional	parts	can	each	be	simulated	by	a	Bernoulli	factory
algorithm	that	outputs	heads	with	probability	equal	to	that	fractional	part.(22).

More	specifically:

1.	 Decompose	λ	into	n	>	0	positive	components	that	sum	to	λ.	For	example,	if	λ	=	3.5,	it
can	be	decomposed	into	only	one	component,	3.5	(whose	fractional	part	is	trivial	to
simulate),	and	if	λ	=	π,	it	can	be	decomposed	into	four	components	that	are	all	(π	/	4),
which	has	a	not-so-trivial	simulation	described	in	"Bernoulli	Factory	Algorithms".

2.	 For	each	component	LC[i]	found	this	way,	let	LI[i]	be	floor(LC[i])	and	let	LF[i]	be	LC[i]	−
floor(LC[i])	(LC[i]'s	fractional	part).

The	code	above	can	then	be	modified	as	follows:

exprandnew	is	modified	so	that	instead	of	taking	lamdanum	and	lamdaden,	it	takes	a	list	of	the
components	described	above.	Each	component	is	stored	as	LI[i]	and	an	algorithm	that
simulates	LF[i].

zero_or_one_exp_minus(a,	b)	is	replaced	with	the	algorithm	for	exp(−	z)	described	in
"Bernoulli	Factory	Algorithms",	where	z	is	the	real-valued	λ	parameter.

logisticexp(a,	b,	index+1)	is	replaced	with	the	algorithm	for	1	/	1	+	exp(z	/	2index	+	1))
(LogisticExp)	described	in	"Bernoulli	Factory	Algorithms",	where	z	is	the	real-
valued	λ	parameter.

11	Correctness	Testing
	

11.1	Beta	Sampler
To	test	the	correctness	of	the	beta	sampler	presented	in	this	document,	the	Kolmogorov–
Smirnov	test	was	applied	with	various	values	of	alpha	and	beta	and	the	default	precision	of	53,
using	SciPy's	kstest	method.	The	code	for	the	test	is	very	simple:	kst	=	
scipy.stats.kstest(ksample,	lambda	x:	scipy.stats.beta.cdf(x,	alpha,	beta)),	where	ksample	is	a
sample	of	random	variates	generated	using	the	sampler	above.	Note	that	SciPy	uses	a	two-
sided	Kolmogorov–Smirnov	test	by	default.

See	the	results	of	the	correctness	testing.	For	each	pair	of	parameters,	five	samples	with
50,000	numbers	per	sample	were	taken,	and	results	show	the	lowest	and	highest
Kolmogorov–Smirnov	statistics	and	p-values	achieved	for	the	five	samples.	Note	that	a	p-
value	extremely	close	to	0	or	1	strongly	indicates	that	the	samples	do	not	come	from	the
corresponding	beta	distribution.

11.2	ExpRandFill
To	test	the	correctness	of	the	exprandfill	method	(which	implements	the	ExpRandFill
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algorithm),	the	Kolmogorov–Smirnov	test	was	applied	with	various	values	of	λ	and	the	default
precision	of	53,	using	SciPy's	kstest	method.	The	code	for	the	test	is	very	simple:	kst	=	
scipy.stats.kstest(ksample,	lambda	x:	scipy.stats.expon.cdf(x,	scale=1/lamda)),	where	ksample	is	a
sample	of	random	variates	generated	using	the	exprand	method	above.	Note	that	SciPy	uses	a
two-sided	Kolmogorov–Smirnov	test	by	default.

The	table	below	shows	the	results	of	the	correctness	testing.	For	each	parameter,	five
samples	with	50,000	numbers	per	sample	were	taken,	and	results	show	the	lowest	and
highest	Kolmogorov–Smirnov	statistics	and	p-values	achieved	for	the	five	samples.	Note	that
a	p-value	extremely	close	to	0	or	1	strongly	indicates	that	the	samples	do	not	come	from	the
corresponding	exponential	distribution.

λ Statistic p-value
1/10 0.00233-0.00435 0.29954-0.94867
1/4 0.00254-0.00738 0.00864-0.90282
1/2 0.00195-0.00521 0.13238-0.99139
2/3 0.00295-0.00457 0.24659-0.77715
3/4 0.00190-0.00636 0.03514-0.99381
9/10 0.00226-0.00474 0.21032-0.96029
1 0.00267-0.00601 0.05389-0.86676
2 0.00293-0.00684 0.01870-0.78310
3 0.00284-0.00675 0.02091-0.81589
5 0.00256-0.00546 0.10130-0.89935
10 0.00279-0.00528 0.12358-0.82974

11.3	ExpRandLess
To	test	the	correctness	of	exprandless,	a	two-independent-sample	T-test	was	applied	to	scores
involving	e-rands	and	scores	involving	the	Python	random.expovariate	method.	Specifically,	the
score	is	calculated	as	the	number	of	times	one	exponential	number	compares	as	less	than
another;	for	the	same	λ	this	event	should	be	as	likely	as	the	event	that	it	compares	as
greater.	(In	fact,	this	should	be	the	case	for	any	pair	of	independent	random	variates	of	the
same	non-degenerate	distribution;	see	proposition	2	in	my	note	on	randomness	extraction.)
The	Python	code	that	follows	the	table	calculates	this	score	for	e-rands	and	expovariate.	Even
here,	the	code	for	the	test	is	very	simple:	kst	=	scipy.stats.ttest_ind(exppyscores,	
exprandscores),	where	exppyscores	and	exprandscores	are	each	lists	of	20	results	from	exppyscore
or	exprandscore,	respectively,	and	the	results	contained	in	exppyscores	and	exprandscores	were
generated	independently	of	each	other.

The	table	below	shows	the	results	of	the	correctness	testing.	For	each	pair	of	parameters,
results	show	the	lowest	and	highest	T-test	statistics	and	p-values	achieved	for	the	20	results.
Note	that	a	p-value	extremely	close	to	0	or	1	strongly	indicates	that	exponential	random
variates	are	not	compared	as	less	or	greater	with	the	expected	probability.

Left	λ Right	λ Statistic p-value
1/10 1/10 -1.21015	–	0.93682 0.23369	–	0.75610
1/10 1/2 -1.25248	–	3.56291 0.00101	–	0.39963
1/10 1 -0.76586	–	1.07628 0.28859	–	0.94709
1/10 2 -1.80624	–	1.58347 0.07881	–	0.90802
1/10 5 -0.16197	–	1.78700 0.08192	–	0.87219
1/2 1/10 -1.46973	–	1.40308 0.14987	–	0.74549
1/2 1/2 -0.79555	–	1.21538 0.23172	–	0.93613
1/2 1 -0.90496	–	0.11113 0.37119	–	0.91210
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1/2 2 -1.32157	–	-0.07066 0.19421	–	0.94404
1/2 5 -0.55135	–	1.85604 0.07122	–	0.76994
1 1/10 -1.27023	–	0.73501 0.21173	–	0.87314
1 1/2 -2.33246	–	0.66827 0.02507	–	0.58741
1 1 -1.24446	–	0.84555 0.22095	–	0.90587
1 2 -1.13643	–	0.84148 0.26289	–	0.95717
1 5 -0.70037	–	1.46778 0.15039	–	0.86996
2 1/10 -0.77675	–	1.15350 0.25591	–	0.97870
2 1/2 -0.23122	–	1.20764 0.23465	–	0.91855
2 1 -0.92273	–	-0.05904 0.36197	–	0.95323
2 2 -1.88150	–	0.64096 0.06758	–	0.73056
2 5 -0.08315	–	1.01951 0.31441	–	0.93417
5 1/10 -0.60921	–	1.54606 0.13038	–	0.91563
5 1/2 -1.30038	–	1.43602 0.15918	–	0.86349
5 1 -1.22803	–	1.35380 0.18380	–	0.64158
5 2 -1.83124	–	1.40222 0.07491	–	0.66075
5 5 -0.97110	–	2.00904 0.05168	–	0.74398

def	exppyscore(ln,ld,ln2,ld2):
								return	sum(1	if	random.expovariate(ln*1.0/ld)<random.expovariate(ln2*1.0/ld2)	\
														else	0	for	i	in	range(1000))

def	exprandscore(ln,ld,ln2,ld2):
								return	sum(1	if	exprandless(exprandnew(ln,ld),	exprandnew(ln2,ld2))	\
														else	0	for	i	in	range(1000))

12	Accurate	Simulation	of	Continuous
Distributions	Supported	on	0	to	1
The	beta	sampler	in	this	document	shows	one	case	of	a	general	approach	to	simulating	a
wide	class	of	continuous	distributions	supported	on	[0,	1],	thanks	to	Bernoulli	factories.	This
general	approach	can	sample	a	number	that	follows	one	of	these	distributions,	using	the
algorithm	below.	The	algorithm	allows	any	arbitrary	base	(or	radix)	b	(such	as	2	for	binary).
(See	also	(Devroye	1986,	ch.	2,	sec.	3.8,	exercise	14)(19).)

1.	 Create	an	uniform	PSRN	with	a	positive	sign,	an	integer	part	of	0,	and	an	empty
fractional	part.	Create	a	SampleGeometricBag	Bernoulli	factory	that	uses	that	PSRN.

2.	 As	the	PSRN	builds	up	a	uniform	random	variate,	accept	the	PSRN	with	a	probability
that	can	be	represented	by	a	Bernoulli	factory	algorithm	(that	takes	the
SampleGeometricBag	factory	from	step	1	as	part	of	its	input),	or	reject	it	otherwise.	(A
number	of	these	algorithms	can	be	found	in	"Bernoulli	Factory	Algorithms".)	Let	f(U)
be	the	probability	density	function	(PDF)	modeled	by	this	Bernoulli	factory,	where	U	is
the	uniform	random	variate	built	up	by	the	PSRN.	f	has	a	domain	equal	to	the	open
interval	(0,	1)	or	a	subset	of	that	interval,	and	returns	a	value	of	[0,	1]	everywhere	in	its
domain.	f	is	the	PDF	for	the	underlying	continuous	distribution,	or	the	PDF	times	a
(possibly	unknown)	constant	factor.	As	shown	by	Keane	and	O'Brien	(6),	however,	this
step	works	if	and	only	if—

f(λ)	is	constant	on	its	domain,	or
f(λ)	is	continuous	and	polynomially	bounded	on	its	domain	(polynomially	bounded
means	that	both	f(λ)	and	1−f(λ)	are	bounded	from	below	by	min(λn,	(1−λ)n)	for
some	integer	n),
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and	they	show	that	2	*	λ	with	domain	[0,	1/2),	is	one	function	that	does	not	admit	a
Bernoulli	factory.	Notice	that	the	probability	can	be	a	constant,	including	an	irrational
number;	see	"Algorithms	for	Irrational	Constants"	for	ways	to	simulate	constant
probabilities.

3.	 If	the	PSRN	is	accepted,	optionally	fill	the	PSRN	with	uniform	random	digits	as
necessary	to	give	its	fractional	part	n	digits	(similarly	to	FillGeometricBag	above),
where	n	is	a	precision	parameter,	then	return	the	PSRN.

However,	the	speed	of	this	algorithm	depends	crucially	on	the	mode	(highest	point)	of	f	in	[0,
1].(23)	As	the	mode	approaches	0,	the	average	rejection	rate	increases.	Effectively,	this	step
generates	a	point	uniformly	at	random	in	a	1×1	area	in	space.	If	the	mode	is	close	to	0,	f	will
cover	only	a	tiny	portion	of	this	area,	so	that	the	chance	is	high	that	the	generated	point	will
fall	outside	the	area	of	f	and	have	to	be	rejected.

The	beta	distribution's	PDF	at	(1)	fits	the	requirements	of	Keane	and	O'Brien	(for	alpha	and	
beta	both	greater	than	1),	thus	it	can	be	simulated	by	Bernoulli	factories	and	is	covered	by
this	general	algorithm.

This	algorithm	can	be	modified	to	produce	random	variates	in	the	interval	[m,	m	+	y]	(where
m	and	y	are	rational	numbers	and	y	is	greater	than	0),	rather	than	[0,	1],	as	follows:

1.	 Apply	the	algorithm	above,	except	that	a	modified	function	f′(x)	=	f(x	*	y	+	m)	is	used
rather	than	f,	where	x	is	the	number	in	[0,	1]	that	is	built	up	by	the	PSRN,	and	that	the
choice	is	not	made	to	fill	the	PSRN	as	given	in	step	3	of	that	algorithm.

2.	 Multiply	the	resulting	random	PSRN	by	y	via	the	second	algorithm	in	"Multiplication".
(Note	that	if	y	has	the	form	bi,	this	step	is	relatively	trivial.)

3.	 Add	m	to	the	resulting	random	PSRN	via	the	second	algorithm	in	"Addition	and
Subtraction".

Note	that	here,	the	function	f′	must	meet	the	requirements	of	Keane	and	O'Brien.	(For
example,	take	the	function	sqrt((x	-	4)	/	2),	which	isn't	a	Bernoulli	factory	function.	If	we
now	seek	to	sample	from	the	interval	[4,	4+21]	=	[4,	6],	the	f	used	in	step	2	is	now	sqrt(x),
which	is	a	Bernoulli	factory	function	so	that	we	can	apply	this	algorithm.)

12.1	An	Example:	The	Continuous	Bernoulli	Distribution
The	continuous	Bernoulli	distribution	(Loaiza-Ganem	and	Cunningham	2019)(24)	was
designed	to	considerably	improve	performance	of	variational	autoencoders	(a	machine
learning	model)	in	modeling	continuous	data	that	takes	values	in	the	interval	[0,	1],	including
"almost-binary"	image	data.

The	continous	Bernoulli	distribution	takes	one	parameter	lamda	(a	number	in	[0,	1]),	and	takes
on	values	in	the	interval	[0,	1]	with	a	probability	proportional	to—

pow(lamda,	x)	*	pow(1	-	lamda,	1	-	x).

Again,	this	function	meets	the	requirements	stated	by	Keane	and	O'Brien,	so	it	can	be
simulated	via	Bernoulli	factories.	Thus,	this	distribution	can	be	simulated	in	Python	as
described	below.

The	algorithm	for	sampling	the	continuous	Bernoulli	distribution	follows.	It	uses	an	input	coin
that	returns	1	with	probability	lamda.

1.	 Create	a	positive-sign	zero-integer-part	uniform	PSRN.
2.	 Create	a	complementary	lambda	Bernoulli	factory	that	returns	1	minus	the	result	of

the	input	coin.
3.	 Remove	all	digits	from	the	uniform	PSRN's	fractional	part.	This	will	result	in	an	"empty"
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uniform	random	variate,	U,	in	the	interval	[0,	1]	for	the	following	steps,	which	will
accept	U	with	probability	lamdaU*(1−lamda)1−U)	(the	proportional	probability	for	the	beta
distribution),	as	U	is	built	up.

4.	 Call	the	algorithm	for	λμ	described	in	"Bernoulli	Factory	Algorithms",	using	the
input	coin	as	the	λ-coin,	and	SampleGeometricBag	as	the	μ-coin	(which	will	return	1
with	probability	lamdaU).	If	the	result	is	0,	go	to	step	3.

5.	 Call	the	algorithm	for	λμ	using	the	complementary	lambda	Bernoulli	factory	as	the
λ-coin	and	SampleGeometricBagComplement	algorithm	as	the	μ-coin	(which	will
return	1	with	probability	(1-lamda)1−U).	If	the	result	is	0,	go	to	step	3.	(Note	that	steps	4
and	5	don't	depend	on	each	other	and	can	be	done	in	either	order	without	affecting
correctness.)

6.	 U	was	accepted,	so	return	the	result	of	FillGeometricBag.

The	Python	code	that	samples	the	continuous	Bernoulli	distribution	follows.

def	_twofacpower(b,	fbase,	fexponent):
				"""	Bernoulli	factory	B(p,	q)	=>	B(p^q).
											-	fbase,	fexponent:	Functions	that	return	1	if	heads	and	0	if	tails.
													The	first	is	the	base,	the	second	is	the	exponent.
													"""
				i	=	1
				while	True:
								if	fbase()	==	1:
												return	1
								if	fexponent()	==	1	and	\
												b.zero_or_one(1,	i)	==	1:
												return	0
								i	=	i	+	1

def	contbernoullidist(b,	lamda,	precision=53):
				#	Continuous	Bernoulli	distribution
				bag=[]
				lamda=Fraction(lamda)
				gb=lambda:	b.geometric_bag(bag)
				#	Complement	of	"geometric	bag"
				gbcomp=lambda:	b.geometric_bag(bag)^1
				fcoin=b.coin(lamda)
				lamdab=lambda:	fcoin()
				#	Complement	of	"lambda	coin"
				lamdabcomp=lambda:	fcoin()^1
				acc=0
				while	True:
							#	Create	a	uniform	random	variate	(U)	bit-by-bit,	and
							#	accept	it	with	probability	lamda^U*(1-lamda)^(1-U),	which
							#	is	the	unnormalized	PDF	of	the	beta	distribution
							bag.clear()
							#	Produce	1	with	probability	lamda^U
							r=_twofacpower(b,	lamdab,	gb)
							#	Produce	1	with	probability	(1-lamda)^(1-U)
							if	r==1:	r=_twofacpower(b,	lamdabcomp,	gbcomp)
							if	r	==	1:
													#	Accepted,	so	fill	up	the	"bag"	and	return	the
													#	uniform	number
													ret=_fill_geometric_bag(b,	bag,	precision)
													return	ret
							acc+=1

13	Complexity
The	bit	complexity	of	an	algorithm	that	generates	random	variates	is	measured	as	the
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number	of	unbiased	random	bits	that	algorithm	uses	on	average.

13.1	General	Principles
Existing	work	shows	how	to	calculate	the	bit	complexity	for	any	probability	distribution:

For	a	1-dimensional	continuous	distribution,	the	bit	complexity	is	bounded	from	below
by	DE	+	prec	-	1	random	bits,	where	DE	is	the	differential	entropy	for	the	distribution	and
prec	is	the	number	of	bits	in	the	random	variate's	fractional	part	(Devroye	and	Gravel
2020)(3).
For	a	discrete	distribution	(a	distribution	of	random	integers	with	separate	probabilities
of	occurring),	the	bit	complexity	is	bounded	from	below	by	the	binary	entropies	of	all	the
probabilities	involved,	summed	together	(Knuth	and	Yao	1976)(25).	(For	a	given
probability	p,	the	binary	entropy	is	0	-	p*log2(p)	where	log2(x)	=	ln(x)/ln(2).)	An	optimal
algorithm	will	come	within	2	bits	of	this	lower	bound	on	average.

For	example,	in	the	case	of	the	exponential	distribution,	DE	is	log2(exp(1)/λ),	so	the	minimum
bit	complexity	for	this	distribution	is	log2(exp(1)/λ)	+	prec	−	1,	so	that	if	prec	=	20,	this
minimum	is	about	20.443	bits	when	λ	=	1,	decreases	when	λ	goes	up,	and	increases	when	λ
goes	down.	In	the	case	of	any	other	continuous	distribution,	DE	is	the	integral	of	f(x)	*	
log2(1/f(x))	over	all	valid	values	x,	where	f	is	the	distribution's	PDF.

Although	existing	work	shows	lower	bounds	on	the	number	of	random	bits	an	algorithm	will
need	on	average,	most	algorithms	will	generally	not	achieve	these	lower	bounds	in	practice.

In	general,	if	an	algorithm	calls	other	algorithms	that	generate	random	variates,	the	total
expected	bit	complexity	is—

the	expected	number	of	calls	to	each	of	those	other	algorithms,	times
the	bit	complexity	for	each	such	call.

13.2	Complexity	of	Specific	Algorithms
The	beta	and	exponential	samplers	given	here	will	generally	use	many	more	bits	on	average
than	the	lower	bounds	on	bit	complexity,	especially	since	they	generate	a	PSRN	one	digit	at	a
time.

The	zero_or_one	method	generally	uses	2	random	bits	on	average,	due	to	its	nature	as	a
Bernoulli	trial	involving	random	bits,	see	also	(Lumbroso	2013,	Appendix	B)(26).	However,	it
uses	no	random	bits	if	both	its	parameters	are	the	same.

For	SampleGeometricBag	with	base	2,	the	bit	complexity	has	two	components.

One	component	comes	from	sampling	the	number	of	heads	from	a	fair	coin	until	the	first
tails,	as	follows:

Optimal	lower	bound:	Since	the	binary	entropy	of	the	random	variate	is	2,	the
optimal	lower	bound	is	2	bits.
Optimal	upper	bound:	4	bits.

The	other	component	comes	from	filling	the	partially-sampled	random	number's
fractional	part	with	random	bits.	The	complexity	here	depends	on	the	number	of	times
SampleGeometricBag	is	called	for	the	same	PSRN,	call	it	n.	Then	the	expected	number
of	bits	is	the	expected	number	of	bit	positions	filled	this	way	after	n	calls.

SampleGeometricBagComplement	has	the	same	bit	complexity	as
SampleGeometricBag.

FillGeometricBag's	bit	complexity	is	rather	easy	to	find.	For	base	2,	it	uses	only	one	bit	to



sample	each	unfilled	digit	at	positions	less	than	p.	(For	bases	other	than	2,	sampling	each
digit	this	way	might	not	be	optimal,	since	the	digits	are	generated	one	at	a	time	and	random
bits	are	not	recycled	over	several	digits.)	As	a	result,	for	an	algorithm	that	uses	both
SampleGeometricBag	and	FillGeometricBag	with	p	bits,	these	two	contribute,	on	average,
anywhere	from	p	+	g	*	2	to	p	+	g	*	4	bits	to	the	complexity,	where	g	is	the	number	of	calls	to
SampleGeometricBag.	(This	complexity	could	be	increased	by	1	bit	if	FillGeometricBag	is
implemented	with	a	rounding	mechanism	other	than	simple	truncation.)

14	Application	to	Weighted	Reservoir	Sampling
Weighted	reservoir	sampling	(choosing	an	item	at	random	from	a	list	of	unknown	size)	is
often	implemented	by—

assigning	each	item	a	weight	(an	integer	0	or	greater)	as	it's	encountered,	call	it	w,
giving	each	item	an	exponential	random	variate	with	λ	=	w,	call	it	a	key,	and
choosing	the	item	with	the	smallest	key

(see	also	(Efraimidis	2015)(27)).	However,	using	fully-sampled	exponential	random	variates
as	keys	(such	as	the	naïve	idiom	-ln(1-X)/w,	where	X	is	a	uniform	random	variate	in	the
interval	[0,	1],	in	common	floating-point	arithmetic)	can	lead	to	inexact	sampling,	since	the
keys	have	a	limited	precision,	it's	possible	for	multiple	items	to	have	the	same	random	key
(which	can	make	sampling	those	items	depend	on	their	order	rather	than	on	randomness),
and	the	maximum	weight	is	unknown.	Partially-sampled	e-rands,	as	given	in	this	document,
eliminate	the	problem	of	inexact	sampling.	This	is	notably	because	the	exprandless	method
returns	one	of	only	two	answers—either	"less"	or	"greater"—and	samples	from	both	e-rands
as	necessary	so	that	they	will	differ	from	each	other	by	the	end	of	the	operation.	(This	is	not	a
problem	because	randomly	generated	real	numbers	are	expected	to	differ	from	each	other
with	probability	1.)	Another	reason	is	that	partially-sampled	e-rands	have	potentially
arbitrary	precision.

15	Open	Questions
The	following	is	an	open	question	on	PSRNs.	Doing	an	arithmetic	operation	between	two
PSRNs	is	akin	to	doing	an	interval	operation	between	those	PSRNs,	since	a	PSRN	is
ultimately	a	random	variate	that	lies	in	an	interval.	However,	as	explained	in
"Arithmetic	and	Comparisons	with	PSRNs",	the	result	of	the	operation	is	an	interval
that	bounds	a	random	variate	that	is	not	always	uniformly	distributed	in	that	interval.
For	example,	in	the	case	of	addition	this	distribution	is	triangular	with	a	peak	in	the
middle.	What	are	the	exact	distributions	of	this	kind	for	other	interval	arithmetic
operations,	such	as	division,	ln,	exp,	sin,	or	other	mathematical	functions?
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19	Appendix

19.1	Equivalence	of	SampleGeometricBag	Algorithms
For	the	SampleGeometricBag,	there	are	two	versions:	one	for	binary	(base	2)	and	one	for
other	bases.	Here	is	why	these	two	versions	are	equivalent	in	the	binary	case.	Step	2	of	the
first	algorithm	samples	a	temporary	random	variate	N.	This	can	be	implemented	by
generating	unbiased	random	bits	(that	is,	each	bit	is	either	0	or	1,	chosen	with	equal
probability)	until	a	zero	is	generated	this	way.	There	are	three	cases	relevant	here.

The	generated	bit	is	one,	which	will	occur	at	a	50%	chance.	This	means	the	bit	position
is	skipped	and	the	algorithm	moves	on	to	the	next	position.	In	algorithm	3,	this
corresponds	to	moving	to	step	3	because	a's	fractional	part	is	equal	to	b's,	which
likewise	occurs	at	a	50%	chance	compared	to	the	fractional	parts	being	unequal	(since	a
is	fully	built	up	in	the	course	of	the	algorithm).
The	generated	bit	is	zero,	and	the	algorithm	samples	(or	retrieves)	a	zero	bit	at	position
N,	which	will	occur	at	a	25%	chance.	In	algorithm	3,	this	corresponds	to	returning	0
because	a's	fractional	part	is	less	than	b's,	which	will	occur	with	the	same	probability.
The	generated	bit	is	zero,	and	the	algorithm	samples	(or	retrieves)	a	one	bit	at	position
N,	which	will	occur	at	a	25%	chance.	In	algorithm	3,	this	corresponds	to	returning	1
because	a's	fractional	part	is	greater	than	b's,	which	will	occur	with	the	same
probability.

19.2	Uniform	of	Uniforms	Produces	a	Product	of
Uniforms
This	section	shows	that	the	algorithm	given	in	note	2	of	the	section	"Multiplication"	correctly
produces	the	product	of	two	uniform	random	variates,	one	in	[0,	b]	and	the	other	in	[c,	d],	at
least	when	c	=	0.

The	probability	density	function	(PDF)	for	a	uniform(α,	β)	random	variate	is	1/(β−α)	if	x	is	in
[α,	β],	and	0	elsewhere.	It	will	be	called	UPDF(x,	α,	β)	here.

Let	K	=	b*(d−c).	To	show	the	result,	we	find	two	PDFs	as	described	below.

To	find	the	PDF	for	the	algorithm,	find	the	expected	value	of	UPDF(x,	0,	Z+b*c),	where
Z	is	distributed	as	uniform(0,	K).	This	is	done	by	finding	the	integral	(area	under	the
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graph)	with	respect	to	z	of	UPDF(x,	0,	z+b*c)*UPDF(z,	0,	K)	in	the	interval	[0,	K]	(the
set	of	values	Z	can	take	on).	The	result	is	PDF1(x)	=	ln(b**2*c**2	-	b**2*c*d	+	(b*c	-	
b*d)*min(b*(-c	+	d),	max(0,	-b*c	+	x)))/(b*c	-	b*d)	-	ln(b**2*c**2	-	b**2*c*d	+	b*(-c	+	d)*
(b*c	-	b*d))/(b*c	-	b*d).
The	second	PDF	is	the	PDF	for	the	product	of	two	uniform	random	variates,	one	in	[0,	b]
and	the	other	in	[c,	d].	By	Rohatgi's	formula	(see	also	(Glen	et	al.	2004)(28)),	it	can	be
found	by	finding	the	integral	with	respect	to	z	of	UPDF(z,	0,	b)*UPDF(x/z,	c,	d)/z,	in	the
interval	[0,	∞)	(noting	that	z	is	never	negative	here).	The	result	is	PDF2(x)	=	
(ln(max(c,x/b))	-	ln(max(c,d,x/b)))/(b*c-b*d).

Now	it	must	be	shown	that	PDF1	and	PDF2	are	equal	whenever	x	is	in	the	interval	(0,	b*d).
Subtracting	one	PDF	from	the	other	and	simplifying,	it	is	seen	that:

Both	PDFs	are	equal	at	least	when	c	=	0	(and	when	b,	d,	and	x	are	all	greater	than	0),
and	they	are	equal	in	all	calculations	so	far	when	b,	c,	and	d	are	replaced	with	specific
values.
The	simplified	difference	between	the	PDFs	has	an	integral	equal	to	0,	which	strongly
suggests	the	PDFs	are	equal	(this	is	not	conclusive	because	the	simplified	difference	can
be	negative).

19.3	Oberhoff's	"Exact	Rejection	Sampling"	Method
The	following	describes	an	algorithm	described	by	Oberhoff	for	sampling	a	continuous
distribution	supported	on	the	interval	[0,	1],	as	long	as	its	probability	density	function	(PDF)
is	continuous	"almost	everywhere"	and	bounded	from	above	(Oberhoff	2018,	section	3)(13),
see	also	(Devroye	and	Gravel	2020)(3).	(Note	that	if	the	PDF's	domain	is	wider	than	[0,	1],
then	the	function	needs	to	be	divided	into	one-unit-long	pieces,	one	piece	chosen	at	random
with	probability	proportional	to	its	area,	and	that	piece	shifted	so	that	it	lies	in	[0,	1]	rather
than	its	usual	place;	see	Oberhoff	pp.	11-12.)

1.	 Set	pdfmax	to	an	upper	bound	of	the	PDF	(or	the	PDF	times	a	possibly	unknown
constant	factor)	on	the	domain	at	[0,	1].	Let	base	be	the	base,	or	radix,	of	the	digits	in
the	return	value	(such	as	2	for	binary	or	10	for	decimal).

2.	 Set	prefix	to	0	and	prefixLength	to	0.
3.	 Set	y	to	a	uniform	random	variate	in	the	interval	[0,	pdfmax].
4.	 Let	pw	be	base−prefixLength.	Set	lower	and	upper	to	a	lower	or	upper	bound,

respectively,	of	the	value	of	the	PDF	(or	the	PDF	times	a	possibly	unknown	constant
factor)	on	the	domain	at	[prefix	*	pw,	prefix	*	pw	+	pw].

5.	 If	y	turns	out	to	be	greater	than	upper,	the	prefix	was	rejected,	so	go	to	step	2.
6.	 If	y	turns	out	to	be	less	than	lower,	the	prefix	was	accepted.	Now	do	the	following:

1.	 While	prefixLength	is	less	than	the	desired	precision,	set	prefix	to	prefix	*	base	+	r,
where	r	is	a	uniform	random	digit,	then	add	1	to	prefixLength.

2.	 Return	prefix	*	base−prefixLength.	(If	prefixLength	is	somehow	greater	than	the
desired	precision,	then	the	algorithm	could	choose	to	round	the	return	value	to	a
number	whose	fractional	part	has	the	desired	number	of	digits,	with	a	rounding
mode	of	choice.)

7.	 Set	prefix	to	prefix	*	base	+	r,	where	r	is	a	uniform	random	digit,	then	add	1	to
prefixLength,	then	go	to	step	4.

Because	this	algorithm	requires	evaluating	the	PDF	(or	a	constant	times	the	PDF)	and	finding
its	maximum	and	minimum	values	at	an	interval	(which	often	requires	floating-point
arithmetic	and	is	often	not	trivial),	this	algorithm	appears	here	in	the	appendix	rather	than	in
the	main	text.	Moreover,	there	is	additional	approximation	error	from	generating	y	with	a
fixed	number	of	digits,	unless	y	is	a	uniform	PSRN	(see	also	"Application	to	Weighted
Reservoir	Sampling").	For	practical	purposes,	the	lower	and	upper	bounds	calculated	in
step	4	should	depend	on	prefixLength	(the	higher	prefixLength	is,	the	more	accurate).



Oberhoff	also	describes	prefix	distributions	that	sample	a	box	that	covers	the	PDF,	with
probability	proportional	to	the	box's	area,	but	these	distributions	will	have	to	support	a	fixed
maximum	prefix	length	and	so	will	only	approximate	the	underlying	continuous	distribution.

19.4	Setting	Digits	by	Digit	Probabilities
In	principle,	a	partially-sampled	random	number	is	possible	by	finding	a	sequence	of	digit
probabilities	and	setting	that	number's	digits	according	to	those	probabilities.	However,	the
uniform	and	exponential	distributions	are	the	only	practical	distributions	of	this	kind.	Details
follow.

Let	X	be	a	random	variate	of	the	form	0.bbbbbbb...,	where	each	b	is	an	independent	random
binary	digit	(0	or	1).

Let	aj	be	the	probability	that	the	digit	at	position	j	equals	1	(starting	with	j	=	1	for	the	first
digit	after	the	point).

Then	Kakutani's	theorem	(Kakutani	1948)(29)	says	that	X	has	an	absolutely	continuous(12)
distribution	if	and	only	if	the	sum	of	squares	of	(aj	−	1/2)	converges.	In	other	words,	the
binary	digits	become	less	and	less	biased	as	they	move	farther	and	farther	from	the	binary
point.	See	also	(Marsaglia	1971)(30),	(Chatterji	1964)(31).

This	kind	of	absolutely	continuous	distribution	can	thus	be	built	if	we	can	find	an	infinite
sequence	aj	that	converges	to	1/2,	and	set	X's	binary	digits	using	those	probabilities.
However,	as	Marsaglia	(1971)(30)	showed,	the	absolutely	continuous	distribution	can	only	be
one	of	the	following:

1.	 The	distribution's	probability	density	function	(PDF)	is	zero	somewhere	in	every	open
interval	in	(0,	1),	without	being	0	on	all	of	[0,	1].	Thus,	the	PDF	is	not	continuous.

2.	 The	PDF	is	positive	at	1/2,	1/4,	1/8,	and	so	on,	so	the	PDF	is	continuous	and	positive	on
all	of	(0,	1),	and	the	sequence	has	the	form—

aj	=	exp(w/2j)/(1	+	exp(w/2j)),

where	w	is	a	constant.

3.	 The	PDF	is	not	described	in	Case	2	above,	but	is	positive	on	some	open	interval	in	(0,	1),
so	the	PDF	will	be	piecewise	continuous,	and	X	can	be	multiplied	by	an	integer	power	of
2	so	that	the	new	variate's	distribution	has	a	PDF	described	in	Case	2.

As	Marsaglia	also	showed,	similar	results	apply	when	the	base	of	the	random	digits	is	other
than	2	(binary).	See	also	my	Stack	Exchange	question.

Case	2	has	several	special	cases,	including:

The	uniform	distribution	(w	=	0).
The	fractional	part	of	an	exponential	random	variate	with	rate	1	(w	=	−1;	(Devroye	and
Gravel	2020)(3)).
More	general,	the	fractional	part	of	an	exponential	variate	with	rate	λ	(w	=	−λ).
1	minus	the	fractional	part	of	an	exponential	variate	with	rate	w	when	w	>	0.
aj	=	yv/2

j/(1	+	yv/2j),	with	w	=	ln(y)*v	where	y	>	0	and	v	are	constants.
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