
Supplemental Notes for Bernoulli Factory Algorithms

Peter Occil

Supplemental Notes for Bernoulli Factory Algorithms

This version of the document is dated 2023-07-10.

Peter Occil

1 Contents
• Contents
• About This Document
• Definitions
• General Factory Functions

– Building the Lower and Upper Polynomials
– Another General Algorithm
– Request for Additional Methods

• Approximate Bernoulli Factories
• Achievable Simulation Rates
• Notes
• Appendix

– Examples of Well-Behaved Functions
– Results Used in Approximate Bernoulli Factories
– How Many Coin Flips Are Needed to Simulate a Polynomial?
– Proofs for Polynomial-Building Schemes

∗ A Conjecture on Polynomial Approximation
∗ Example of Polynomial-Building Scheme

– Which functions don’t require outside randomness to simulate?
– Multiple-Output Bernoulli Factory
– Pushdown Automata and Algebraic Functions

∗ Finite-State and Pushdown Generators
• License

2 About This Document
This is an open-source document; for an updated version, see the source code1 or its rendering
on GitHub2. You can send comments on this document on the GitHub issues page3. See
“Open Questions on the Bernoulli Factory Problem4” for a list of things about this document
that I seek answers to.

1https://github.com/peteroupc/peteroupc.github.io/raw/master/bernsupp.md
2https://github.com/peteroupc/peteroupc.github.io/blob/master/bernsupp.md
3https://github.com/peteroupc/peteroupc.github.io/issues
4https://peteroupc.github.io/bernreq.html

1

mailto:poccil14@gmail.com
https://github.com/peteroupc/peteroupc.github.io/raw/master/bernsupp.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/bernsupp.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/bernsupp.md
https://github.com/peteroupc/peteroupc.github.io/issues
https://peteroupc.github.io/bernreq.html

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus. It should be read in conjunction with the article “Bernoulli Factory
Algorithms5”.

I encourage readers to implement any of the algorithms given in this page, and report their implementation
experiences. In particular, I seek comments on the following aspects6:

• Are the algorithms in this article (in conjunction with “Bernoulli Factory Algorithms”) easy to imple-
ment? Is each algorithm written so that someone could write code for that algorithm after reading the
article?

• Does this article have errors that should be corrected?
• Are there ways to make this article more useful to the target audience?

Comments on other aspects of this document are welcome.

3 Definitions
This section describes certain math terms used on this page for programmers to understand.

The closed unit interval (written as [0, 1]) means the set consisting of 0, 1, and every real number in between.

The following terms can describe a function 𝑓(𝑥), specifically how “well-behaved” 𝑓 is.

• A continuous function 𝑓 has the property that there is a function ℎ(𝑥, 𝜖) (where 𝑥 is in 𝑓 ’s domain and
𝜖 > 0), such that 𝑓(𝑥) and 𝑓(𝑦) are no more than 𝜖 apart whenever 𝑥 and 𝑦 are in 𝑓 ’s domain and no
more than ℎ(𝑥, 𝜖) apart.Roughly speaking, for each 𝑥 in 𝑓 ’s domain, 𝑓(𝑥) and 𝑓(𝑦) are “close” if 𝑥 and
𝑦 are “close” and belong in the domain.

• If 𝑓 is continuous, its derivative is, roughly speaking, its “slope” function or “velocity” function or
“instantaneous-rate-of-change” function. The derivative (or first derivative) is denoted 𝑓 ′ or 𝑓 (1). The
second derivative (“slope-of-slope”) of 𝑓 , denoted 𝑓″ or 𝑓 (2), is the derivative of 𝑓 ′; the third derivative,
denoted 𝑓 (3), is the derivative of 𝑓″; and so on. The 0-th derivative of a function 𝑓 is 𝑓 itself and
denoted 𝑓 (0).

• A Hölder continuous7 function (with M being the Hölder constant and 𝛼 being the Hölder exponent)
is a continuous function f such that f (x) and f (y) are no more than M* 𝛿 𝛼 apart whenever x and y
are in the function’s domain and no more than 𝛿 apart.Here, 𝛼 satisfies 0 < 𝛼 ≤ 1.Roughly speaking,
the function’s “steepness” is no greater than that of M*x𝛼.

• A Lipschitz continuous function with constant L (the Lipschitz constant) is Hölder continuous with
Hölder exponent 1 and Hölder constant L.Roughly speaking, the function’s “steepness” is no greater
than that of L*x.If the function has a derivative on its domain, L can be the maximum of the absolute
value of that derivative.

• A convex function 𝑓 has the property that 𝑓((𝑥+𝑦)/2) ≤ (𝑓(𝑥)+𝑓(𝑦))/2 whenever 𝑥, 𝑦, and (𝑥+𝑦)/2
are in the function’s domain.Roughly speaking, if the function’s “slope” never goes down, then it’s
convex.

• A concave function 𝑓 has the property that 𝑓((𝑥+𝑦)/2) ≥ (𝑓(𝑥)+𝑓(𝑦))/2 whenever 𝑥, 𝑦, and (𝑥+𝑦)/2
are in the function’s domain.Roughly speaking, if the function’s “slope” never goes up, then it’s concave.

Note: The “good behavior” of a function can be important when designing Bernoulli factory
algorithms. This page mostly cares how 𝑓 behaves when its domain is the closed unit interval,
that is, when 0 ≤ 𝑥 ≤ 1.

5https://peteroupc.github.io/bernoulli.html
6https://github.com/peteroupc/peteroupc.github.io/issues/18
7https://en.wikipedia.org/wiki/Hölder_condition

2

https://peteroupc.github.io/bernoulli.html
https://peteroupc.github.io/bernoulli.html
https://github.com/peteroupc/peteroupc.github.io/issues/18
https://en.wikipedia.org/wiki/Hölder_condition

4 General Factory Functions
As a reminder, the Bernoulli factory problem is: Suppose there is a coin that shows heads with an unknown
probability, 𝜆 , and the goal is to use that coin (and possibly also a fair coin) to build a “new” coin that
shows heads with a probability that depends on 𝜆 , call it f (𝜆).
The algorithm for general factory functions8, described in my main article on Bernoulli factory algorithms,
works by building randomized upper and lower bounds for a function f (𝜆), based on flips of the input coin.
Roughly speaking, the algorithm works as follows:

1. Generate a random variate, U, uniformly distributed, greater than 0 and less than 1.
2. Flip the input coin, then build an upper and lower bound for f (𝜆), based on the outcomes of the flips

so far.
3. If U is less than or equal to the lower bound, return 1. If U is greater than the upper bound, return

0. Otherwise, go to step 2.

These randomized upper and lower bounds come from two sequences of polynomials as follows:

1. One sequence approaches the function f (𝜆) from above, the other from below, and both sequences must
converge to f.

2. For each sequence, the first polynomial has degree 1 (so is a linear function), and each other polynomial’s
degree is 1 higher than the previous.

3. The consistency requirement must be met, namely—
• the difference between the degree-(n − 1) upper polynomial and the degree-n upper polynomial,

and
• the difference between the degree-n lower polynomial and the degree-(n − 1) lower polynomial,

must have nonnegative Bernstein coefficients, once each of these differences is rewritten as a polynomial
of degree exactly n.

The consistency requirement ensures that the upper polynomials “decrease” and the lower polynomials
“increase”. Unfortunately, the reverse is not true in general; even if the upper polynomials “decrease” and
the lower polynomials “increase” to f, this does not ensure the consistency requirement by itself.

Example (Nacu & Peres [2005]9): The polynomial 𝑥2 +(1−𝑥)2 is of degree 2 with Bernstein
coefficients [1, 0, 1]. The polynomial 𝑥(1 − 𝑥) is of degree 2 with Bernstein coefficients [0, 1/2, 0].
Although (𝑥2 + (1 − 𝑥)2) minus (𝑥(1 − 𝑥)) is non-negative, this difference’s Bernstein coefficients
of degree 2 are not always non-negative, namely, the Bernstein coefficients are [1, -1/2, 1].

In this document, fbelow(n, k) and fabove(n, k) mean the k 𝑡ℎ Bernstein coefficient for the lower or upper
degree-n polynomial, respectively, where 0 ≤ k ≤ n is an integer.

The section “Building the Lower and Upper Polynomials” are ways to build sequences of polynomials that
appropriately converge to a factory function if that function meets certain conditions.

To determine if the methods are right for f (𝜆), a deep mathematical analysis of f is required; it would be
helpful to plot that function using a computer algebra system to see if it is described in the next section.

4.1 Building the Lower and Upper Polynomials
The rest of this section assumes f (𝜆) is not a constant. For examples of functions, see “Examples of
Well-Behaved Functions”, in the appendix.

Concave functions. If f is concave, then fbelow(n, k) can equal f (k/n), thanks to Jensen’s inequality.

Convex functions. If f is convex, then fabove(n, k) can equal f (k/n), thanks to Jensen’s inequality.
8https://peteroupc.github.io/bernoulli.html#General_Factory_Functions
9Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

3

https://peteroupc.github.io/bernoulli.html#General_Factory_Functions
https://projecteuclid.org/euclid.aoap/1106922322

Hölder and Lipschitz continuous functions. I have found a way to extend the results of Nacu and
Peres (2005)10 to certain functions with a slope that tends to a vertical slope. The following scheme, proved
in the appendix, implements fabove and fbelow if f (𝜆)—

• is Hölder continuous11 on the closed unit interval, with Hölder constant m or less and Hölder expo-
nent 𝛼 (see “Definitions” as well as “Examples of Well-Behaved Functions”, in the appendix),
and

• on the closed unit interval—
– has a minimum of greater than 0 and a maximum of less than 1, or
– is convex and has a minimum of greater than 0, or
– is concave and has a maximum of less than 1.

For every integer n that’s a power of 2:

• D(n) = m*(2/7) 𝛼/2 /((2 𝛼/2 − 1)*n 𝛼/2).
• fbelow(n, k) = f (k/n) if f is concave; otherwise, min(fbelow(4,0), fbelow(4,1), …, fbelow(4,4)) if n

< 4; otherwise, f (k/n) − D(n).
• fabove(n, k) = f (k/n) if f is convex; otherwise, max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n

< 4; otherwise, f (k/n) + D(n).

Notes:

1. If 𝛼 is 1, D(n) can be m*322613/(250000*sqrt(n)), which is an upper bound. If 𝛼 is 1/2,
D(n) can be m*154563/(40000*n 1/4), which is an upper bound.

2. The function 𝑓(𝑥) = min(𝜆𝑡, 1 − 𝜖), where 𝜖 ≥ 0 and 𝑡 ≥ 1, is Lipschitz continuous with
Lipschitz constant t. Because 𝑓 is linear between 0 and 1/t, ways to build polynomials that
converge to this kind of function were discussed by Thomas and Blanchet (2012)12 13 and
Nacu & Peres (2005)14 15.

Functions with a Lipschitz continuous derivative. The following method, proved in the appendix,
implements fabove and fbelow if f (𝜆)—

• has a Lipschitz continuous derivative (see “Definitions” as well as “Examples of Well-Behaved
Functions”, in the appendix), and

• in the closed unit interval—
– has a minimum of greater than 0 and a maximum of less than 1, or
– is convex and has a minimum of greater than 0, or
– is concave and has a maximum of less than 1.

10Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

11https://en.wikipedia.org/wiki/Hölder_condition
12Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],

2012. https://arxiv.org/abs/1106.2508v3
13Thomas and Blanchet (2012) dealt with building polynomials that approach piecewise linear functions “fast”. Their strategy

for 𝑓(𝜆) = min(𝑚𝑢𝑙𝑡 × 𝜆, 1 − 2𝜀) is to first compute a low-degree polynomial 𝑃 satisfying 𝑃(0) = 0 and otherwise greater than
𝑓, and then compute further polynomials of increasing degree that each come between 𝑓 and the previous polynomial and
satisfy the consistency requirement. These polynomials approach 𝑓 rapidly when 𝜆 is near 0, and extremely slowly when 𝜆 is
near 1. In their strategy, fbelow(n, k) is min((k/n)*mult, 1 − 𝜀), and fabove(n, k) is min((k/n)*y/x,y), where:x = − ((y −
(1 − 𝜀))/ 𝜀)5/mult + y/mult. (This formula doesn’t appear in their paper, but in the supplemental source code uploaded
by A. C. Thomas at my request.)y satisfies 0<y<1 and is chosen so that the degree-n polynomial is between 𝑓 and the previous
polynomial and meets the consistency requirement. The supplemental source code seems to choose y in an ad hoc manner.n is
the polynomial’s degree. https://github.com/acthomasca/rberfac/blob/main/rberfac-public-2.R

14Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

15In Nacu and Peres (2005), the following polynomial sequences were suggested to simulate min(2𝜆, 1 − 2𝜀) (using the
algorithms from the section “General Factory Functions” in “Bernoulli Factory Algorithms”), provided 𝜀 < 1/8, where n is
a power of 2. However, with these sequences, each simulation will require an extraordinary number of input coin flips. fbelow(n,
k) = min(2(𝑘/𝑛), 1 − 2𝜀). fabove(n, k) = min(2(𝑘/𝑛), 1 − 2𝜀) + 2×max(0,𝑘/𝑛+3𝜀−1/2)

𝜀(2−
√

2) √2/𝑛 + 72×max(0,𝑘/𝑛−1/9)
1−exp(−2×𝜀2) exp(−2𝑛 × 𝜀2).

https://peteroupc.github.io/bernoulli.html

4

https://en.wikipedia.org/wiki/Hölder_condition
https://projecteuclid.org/euclid.aoap/1106922322
https://arxiv.org/abs/1106.2508v3
https://github.com/acthomasca/rberfac/blob/main/rberfac-public-2.R
https://projecteuclid.org/euclid.aoap/1106922322
https://peteroupc.github.io/bernoulli.html

Let m be the Lipschitz constant of f ’s derivative, or a greater number than that constant. Then for every
integer n that’s a power of 2:

• For every 𝑛 such that fbelow(n,k) is 0 or greater for every k, fbelow(n, k) = f (k/n) if f is concave;
otherwise, min(fbelow(4,0), fbelow(4,1), …, fbelow(4,4)) if n < 4; otherwise, f (k/n) − m/(7*n). For
every other 𝑛, fbelow(n,k) = 0.

• For every 𝑛 such that fabove(n,k) is 1 or less for every k, fabove(n, k) = f (k/n) if f is convex;
otherwise, max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n < 4; otherwise, f (k/n) + m/(7*n). For
every other 𝑛, fabove(n,k) = 1.

Certain functions that equal 0 at 0. This approach involves transforming the function f so that it no
longer equals 0 at the point 0. This can be done by dividing f by a function (High(𝜆)) that “dominates” f
everywhere on the closed unit interval. Unlike for the original function, there might be a polynomial-building
scheme described earlier in this section for the transformed function.

More specifically, High(𝜆) must meet the following requirements:

• High(𝜆) is continuous on the closed unit interval.
• High(0) = 0. (This is required to ensure correctness in case 𝜆 is 0.)
• 1 ≥ High(1) ≥ f (1) ≥ 0.
• 1 > High(𝜆) > f (𝜆) > 0 whenever 0 < 𝜆 < 1.
• If f (1) = 0, then High(1) = 0. (This is required to ensure correctness in case 𝜆 is 1.)

Also, High is a Bernoulli factory function that should admit a simple Bernoulli factory algorithm. For
example, High can be the following degree-n polynomial: 1 − (1 − 𝜆)𝑛, where n ≥ 1 is an integer.16

The algorithm is now described.

Let g(𝜆) = lim 𝜈 → 𝜆 f (𝜈)/High(𝜈) (roughly speaking, the value that f (𝜈)/High(𝜈) approaches as 𝜈 ap-
proaches 𝜆 .) If—

• f (0) = 0 and f (1) < 1, and
• g(𝜆) is continuous on the closed unit interval and belongs in one of the classes of functions given earlier,

then f can be simulated using the following algorithm:

1. Run a Bernoulli factory algorithm for High. If the call returns 0, return 0. (For example, if High(𝜆)
= 𝜆 , then this step amounts to the following: “Flip the input coin. If it returns 0, return 0.”)

2. Run a Bernoulli factory algorithm for g(.) and return the result of that algorithm. This can be one of
the general factory function algorithms17 if there is a way to calculate polynomials that converge
to g(.) in a manner needed for that algorithm (for example, if g is described earlier in this section).

Notes:

1. It may happen that g(0) = 0. In this case, step 2 of this algorithm can involve running this
algorithm again, but with new g and High functions that are found based on the current g
function. (This will eventually result in g(0) being nonzero if f is a nonconstant Bernoulli
factory function.) See the second example below.

2. High(𝜆) can also equal 1 instead of be described in this section. That leads to the original
Bernoulli factory algorithm for f (𝜆).

Examples:

1. If f (𝜆) = (sinh(𝜆)+cosh(𝜆) − 1)/4, then f is less than or equal to High(𝜆) = 𝜆 , so g(𝜆) is
1/4 if 𝜆 = 0, and (exp(𝜆) − 1)/(4* 𝜆) otherwise. The following code in Python that uses the
SymPy computer algebra library computes this example: fx = (sinh(x)+cosh(x)-1)/4;

16In this case, an algorithm to simulate High(𝜆) is: Flip the input coin n times or until a flip returns 1, whichever comes first,
then output the last coin flip result.

17https://peteroupc.github.io/bernoulli.html#General_Factory_Functions

5

https://peteroupc.github.io/bernoulli.html#General_Factory_Functions

h = x; pprint(Piecewise((limit(fx/h,x,0), Eq(x,0)), ((fx/h).simplify(),
True))).

2. If f (𝜆) = cosh(𝜆) − 1, then f is less than or equal to High(𝜆) = 𝜆 , so g(𝜆) is 0 if 𝜆 = 0, and
(cosh(𝜆) − 1)/ 𝜆 otherwise. Now, since g(0) = 0, find new functions g and High based on
the current g. The current g is less than or equal to High(𝜆) = 𝜆 *3*(2 − 𝜆)/5 (a degree-2
polynomial that has Bernstein coefficients [0, 6/10, 6/10]), so G(𝜆) = 5/12 if 𝜆 = 0, and −
(5*cosh(𝜆) − 5)/(3* 𝜆 2*(𝜆 − 2)) otherwise. G is bounded away from 0 and 1, resulting in
the following algorithm:

1. (Simulate High.) Flip the input coin. If it returns 0, return 0.
2. (Simulate High.) Flip the input coin twice. If both flips return 0, return 0. Otherwise,

with probability 4/10 (that is, 1 minus 6/10), return 0.
3. Run a Bernoulli factory algorithm for G (which might involve building polynomials that

converge to G, noticing that G’s derivative is Lipschitz continuous) and return the result
of that algorithm.

Certain functions that equal 0 at 0 and 1 at 1. Let f, g, and High be functions as defined earlier,
except that f (0) = 0 and f (1) = 1. Define the following additional functions:

• Low(𝜆) is a function that meets the following requirements:
– Low(𝜆) is continuous on the closed unit interval.
– Low(0) = 0 and Low(1) = 1.
– 1 > f (𝜆) > Low(𝜆) > 0 whenever 0 < 𝜆 < 1.

• q(𝜆) = lim 𝜈 → 𝜆 Low(𝜈)/High(𝜈).
• r(𝜆) = lim 𝜈 → 𝜆 (1 − g(𝜈))/(1 − q(𝜈)).

Roughly speaking, Low is a function that bounds f from below, just as High bounds f from above. Low
is a Bernoulli factory function that should admit a simple Bernoulli factory algorithm; one example is the
polynomial 𝜆 𝑛 where n ≥ 1 is an integer. If both Low and High are polynomials of the same degree, q
will be a ratio of polynomials with a relatively simple Bernoulli factory algorithm (see “Certain Rational
Functions18”).

Now, if r(𝜆) is continuous on the closed unit interval, then f can be simulated using the following algorithm:

1. Run a Bernoulli factory algorithm for High. If the call returns 0, return 0. (For example, if High(𝜆)
= 𝜆 , then this step amounts to the following: “Flip the input coin. If it returns 0, return 0.”)

2. Run a Bernoulli factory algorithm for q(.). If the call returns 1, return 1.
3. Run a Bernoulli factory algorithm for r(.), and return 1 minus the result of that call. The Bernoulli

factory algorithm can be one of the general factory function algorithms19 if there is a way to
calculate polynomials that converge to r(.) in a manner needed for that algorithm (for example, if r is
described earlier in this section).

Notes:

1. Quick proof: Rewrite 𝑓 = High ⋅ (𝑞 ⋅ 1 + (1 − 𝑞) ⋅ (1 − 𝑟)) + (1 − High) ⋅ 0.
2. High(𝜆) is allowed to equal 1 if the r(.) in step 3 is allowed to equal 0 at 0.

Example: If f (𝜆) = (1 − exp(𝜆))/(1 − exp(1)), then f is less than or equal to High(𝜆) =
𝜆 , and greater than or equal to Low(𝜆) = 𝜆 2. As a result, q(𝜆) = 𝜆 , and r(𝜆) = (2 −
exp(1))/(1 − exp(1)) if 𝜆 = 0; 1/(exp(1) − 1) if 𝜆 = 1; and (− 𝜆 *(1 − exp(1)) − exp(𝜆)
+ 1)/(𝜆 *(1 − exp(1))*(𝜆 − 1)) otherwise. This can be computed using the following code
in Python that uses the SymPy computer algebra library: fx=(1-exp(x))/(1-exp(1));
high=x; low=x**2; q=(low/high); r=(1-fx/high)/(1-q); r=Piecewise((limit(r, x,
0), Eq(x,0)), (limit(r,x,1),Eq(x,1)), (r,True)).simplify(); pprint(r).

18https://peteroupc.github.io/bernoulli.html#Certain_Rational_Functions
19https://peteroupc.github.io/bernoulli.html#General_Factory_Functions

6

https://peteroupc.github.io/bernoulli.html#Certain_Rational_Functions
https://peteroupc.github.io/bernoulli.html#Certain_Rational_Functions
https://peteroupc.github.io/bernoulli.html#General_Factory_Functions

Other functions that equal 0 or 1 at the endpoint 0, 1, or both. The table below accounts for these
Bernoulli factory functions f (1):

If f (0) = And f (1) = Method
> 0 and < 1 1 Use the algorithm for certain

functions that equal 0 at 0,
but with f (𝜆) = 1 − f (1 −
𝜆).Inverted coin: Instead of the
usual input coin, use a coin that
does the following: “Flip the
input coin and return 1 minus the
result.”Inverted result: If the
overall algorithm would return 0,
it returns 1 instead, and vice
versa.

> 0 and < 1 0 Algorithm for certain functions
that equal 0 at 0, but with f (𝜆)
= f (1 − 𝜆). (For example,
cosh(𝜆) − 1 becomes cosh(1 − 𝜆)
− 1.)Inverted coin.

1 0 Algorithm for certain functions
that equal 0 at 0 and 1 at 1,
but with f (𝜆) = 1 −
f (𝜆).Inverted result.

1 > 0 and ≤ 1 Algorithm for certain functions
that equal 0 at 0, but with f (𝜆)
= 1 − f (𝜆).Inverted result.

4.2 Another General Algorithm
The algorithm I’ve developed in this section simulates 𝑓(𝜆) when 𝑓 belongs in a large class of functions, as
long as the following is known:

• 𝑓 is continuous and has a minimum of greater than 0 and a maximum of less than 1.
• There is a family of polynomials (𝐿1(𝑓), 𝐿2(𝑓), 𝐿4(𝑓), 𝐿8(𝑓), …) that come close to 𝑓 with a known

error bound, where the number after 𝐿 is the degree of the polynomial.
• There is a way to find the Bernstein coefficients of each polynomial 𝐿𝑛(𝑓) in the family of polynomials.

For examples of suitable polynomials, see “Approximations in Bernstein Form”20.

In effect, the algorithm writes 𝑓 as an infinite sum of polynomials, whose maximums must sum to 1 or
less (called T in the algorithm below), then simulates an appropriate convex combination21 of these
polynomials. To build the convex combination, each polynomial in the infinite sum is divided by an upper
bound on its maximum (which is why error bounds on 𝐿𝑛(𝑓) are crucial here).22 To simulate 𝑓 , the
algorithm—

• selects a polynomial in the convex combination with probability proportional to its upper bound, or a
“leftover” zero polynomial with probability T, then

20https://peteroupc.github.io/bernapprox.html
21https://peteroupc.github.io/bernoulli.html#Convex_Combinations
22With this infinite sum and these upper bounds, Lemma 4 of Holtz et al. (2011) says that a Bernoulli factory algorithm for

𝑓(𝜆) is possible.

7

https://peteroupc.github.io/bernapprox.html
https://peteroupc.github.io/bernoulli.html#Convex_Combinations

• simulates the chosen polynomial (which is easy to do; see Goyal and Sigman (2012)23).

• In the algorithm, denote:
– 𝜖(𝑓, 𝑛) as an upper bound on the absolute value of the difference between 𝑓 and the degree-𝑛

polynomial 𝐿𝑛(𝑓). 𝜖(𝑓, 𝑛) must increase nowhere as 𝑛 increases, and must converge to 0.
∗ For best results, this should be written as 𝜖(𝑓, 𝑛) = 𝐶/𝑛𝑟, where 𝐶 is a constant and 𝑟 > 0
is a multiple of 1/2, since then it’s easy to find the value of ErrShift(f, n), below. In this
case, the algorithm should be limited to functions with a continuous (2𝑟)-th derivative or
a Lipschitz continuous (2𝑟 − 1)-th derivative (see “Achievable Simulation Rates”, later).
(For example, if the error bound is 𝐶/𝑛2, the function 𝑓 should have a continuous fourth
derivative or a Lipschitz continuous third derivative.)

∗ For examples of error bounds, see “Approximations in Bernstein Form”24.
– ErrShift(𝑓, 𝑚) as 1.01 ⋅ ∑𝑖≥𝑚 𝜖(𝑓, 2𝑖). The factor 1.01 is needed to ensure each difference polyno-

mial is strictly between 0 and 1.
∗ Example: If 𝜖(𝑓, 𝑛) = 𝐶/𝑛𝑟, then ErrShift(𝑓, 𝑚) = 1.01 ⋅ 𝐶 ⋅ 2𝑟/(((2𝑟) − 1) ⋅ 2𝑟𝑚).

– DiffWidth(𝑓, 𝑚) as 1.01 ⋅2(𝜖(𝑓, 2𝑚) + 𝜖(𝑓, 2𝑚+1)). This is an upper bound on the maximum
difference between the shifted degree-2𝑚 and the shifted degree-(2𝑚+1) polynomial.

• The technique breaks 𝑓 into a starting polynomial and a family of difference polynomials.To find
the starting polynomial:
1. Set 𝑚 to 0.
2. Find the Bernstein coefficients of 𝐿2𝑚 , then subtract ErrShift(𝑓, 𝑚) from them. If those coeffi-

cients now all lie in the closed unit interval, go to the next step. Otherwise, add 1 to m and repeat
this step.

3. Calculate StartWidth as ceil(𝑐⋅65536)/65536, where 𝑐 is the maximum Bernstein coefficient from
step 2, then divide each Bernstein coefficient by StartWidth. (65536 is arbitrary and ensures
StartWidth is a rational number that is close to, but no lower than, the maximum Bernstein
coefficient, for convenience.)

4. The starting polynomial now has Bernstein coefficients found in step 3. Set StartOrder to m.
• To find the difference polynomial of order 𝑚:

1. Find the Bernstein coefficients of 𝐿2𝑚 , then subtract ErrShift(𝑓, 𝑚) from them. Rewrite them to
Bernstein coefficients of degree 2𝑚+1. Call the coefficients LowerCoeffs.

2. Find the Bernstein coefficients of 𝐿2𝑚+1 , then subtract ErrShift(𝑓, 𝑚 + 1) from them. Call the
resulting values UpperCoeffs.

3. Subtract UpperCoeffs from LowerCoeffs, and call the result DiffCoeffs. Divide each coef-
ficient in DiffCoeffs by DiffWidth(𝑓, 𝑚). The result is the Bernstein coefficients of a positive
polynomial of degree 2𝑚+1 bounded by 0 and 1, but these coefficients are not necessarily bounded
by 0 and 1. Thus, if any coefficient in DiffCoeffs is less than 0 or greater than 1, add 1 to m
and rewrite DiffCoeffs to Bernstein coefficients of degree 2𝑚+1 until no coefficient is less than 0
or greater than 1 anymore.

4. The difference polynomial now has Bernstein coefficients given by DiffCoeffs.
• The probabilities for X are as follows:

– First, find the starting polynomial, then calculate T as StartWidth + ∑𝑖≥0 DiffWidth(𝑓 ,
StartOrder+i). If T is greater than 1, this algorithm can’t be used.
∗ Example: If 𝜖(𝑓, 𝑛) = 𝐶/𝑛𝑟, then T = StartWidth + 1.01 ⋅(2⋅2−𝑟⋅StartOrder𝐶(1+2−𝑟))/(1−

2−𝑟).
– X is 0 with probability 1 − T.
– X is 1 with probability equal to StartWidth.
– For each m ≥ 2, X is m with probability equal to DiffWidth(𝑓 ,StartOrder + m − 2).

23Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.

24https://peteroupc.github.io/bernapprox.html

8

https://peteroupc.github.io/bernapprox.html

Then an algorithm to toss heads with probability equal to 𝑓 would be:

1. Generate X at random with the probabilities given above.
2. If X is 0, return 0. Otherwise, if X is 1, find the starting polynomial and its Bernstein coeffi-

cients. Otherwise (if X is 2 or greater), find the difference polynomial of order m and its Bernstein
coefficients, where m = (X − 2) + StartOrder.

3. Flip the input coin (with probability of heads 𝜆), 𝑛 − 1 times, where 𝑛 is the number of Bernstein
coefficients in the polynomial found in step 2 (its degree plus one), and let 𝑗 be the number of heads.

4. Return 1 with probability equal to the polynomial’s 𝑗th Bernstein coefficient (𝑗 starts at 0), or 0
otherwise (see also Goyal and Sigman 2012 for an algorithm to simulate polynomials).

If T turns out to be greater than 1 in this algorithm, but still finite, one way to simulate 𝑓 is to create a
coin that simulates 𝑓(𝜆)/𝑇 instead, and use that coin as the input to a linear Bernoulli factory25 that
simulates 𝑇 ⋅ (𝑓(𝜆)/𝑇). (This is possible especially because 𝑓(𝜆) is assumed to have a maximum of less than
1.)

Example: The following parameters allow this algorithm to work if 𝑓 is concave, has a maximum
of less than 1, and has a Lipschitz-continuous derivative with Lipschitz constant M or less. In
this case, it is allowed that 𝑓(0) = 0, 𝑓(1) = 0, or both.
• The family of polynomials 𝐿𝑛(𝑓) is simply the family of Bernstein polynomials of 𝑓 . The

Bernstein coefficients of 𝐿𝑛(𝑓) are 𝑓(0/𝑛), 𝑓(1/𝑛), ..., 𝑓(𝑛/𝑛).
• The error bound is 𝜖(𝑓, 𝑛) = 𝑀/(8𝑛) (Lorentz 1963)26.
• The starting polynomial is found as follows. Let c = max(𝑓(0), 𝑓(1)). Then the starting

polynomial has two Bernstein coefficients both equal to 𝑐; StartWidth is equal to ceil(𝑐 ⋅
65536)/65536, and StartOrder is equal to 0.

• ErrShift(𝑓, 𝑚) = 0. The reason for 0 is that 𝑓 is concave, so its Bernstein polynomials
naturally “increase” with increasing degree (Temple 1954)27, (Moldovan 1962)28.

• DiffWidth(𝑓, 𝑚) = 1.01 ⋅ 3𝑀/(8 ⋅ 2𝑚). For the same reason as the previous point, and
because the Bernstein polynomials are always “below” 𝑓 , DiffWidth(𝑓, 𝑚) can also equal
1.01 ⋅𝜖(𝑓, 2𝑚) = 1.01 ⋅ 𝑀/(8 ⋅ 2𝑚). This is what is used to calculate T, below.

• T is calculated as StartWidth + 1.01 ⋅ 𝑀/4.

4.3 Request for Additional Methods
Readers are requested to let me know of additional solutions to the following problem:

Let 𝑓(𝜆) be continuous and satisfy 0 < 𝑓(𝜆) < 1 whenever 0 ≤ 𝜆 ≤ 1. Given that 𝑓(𝜆) belongs to a large
class of functions (for example, it has a continuous, Lipschitz continuous, concave, or nowhere decreasing
𝑘-th derivative for some integer 𝑘, or any combination of these), compute the Bernstein coefficients for two
sequences of polynomials as follows: one of them approaches 𝑓(𝜆) from above, the other from below, and the
consistency requirement must be met (see “General Factory Functions”).
The polynomials need to be computed only for degrees 2, 4, 8, 16, and higher powers of 2.

The rate of convergence must be no slower than 1/𝑛𝑟/2 if the given class has only functions with continuous
𝑟-th derivative.

Methods that use only integer arithmetic and addition and multiplication of rational numbers are preferred
(thus, methods that involve cosines, sines, 𝜋, exp, and ln are not preferred).

See also the open questions29.
25https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
26G.G. Lorentz, “Inequalities and saturation classes for Bernstein polynomials”, 1963.
27Temple, W.B., “Steltjes integral representation of convex functions”, 1954.
28Moldovan, E., “Observations sur la suite des polynômes de S. N. Bernstein d’une fonction continue”, 1962.
29https://peteroupc.github.io/bernreq.html#Polynomials_that_approach_a_factory_function_fast

9

https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
https://peteroupc.github.io/bernreq.html#Polynomials_that_approach_a_factory_function_fast

5 Approximate Bernoulli Factories
An approximate Bernoulli factory for a function f (𝜆) is a Bernoulli factory algorithm that simulates
another function, g(𝜆), that approximates f in some sense.

Usually g is a polynomial, but can also be a rational function (ratio of polynomials) or another function with
an easy-to-implement Bernoulli factory algorithm.

Meanwhile, f (𝜆) can be any function that maps the closed unit interval to itself, even if it isn’t continuous
or a factory function (examples include the “step function” 0 if 𝜆 < 1/2 and 1 otherwise, or the function
2*min(𝜆 , 1 − 𝜆)). If the function is continuous, it can be approximated arbitrarily well by an approximate
Bernoulli factory (as a result of the so-called “Weierstrass approximation theorem”), but generally not if the
function is discontinuous.

To build an approximate Bernoulli factory with a polynomial:

1. First, find a polynomial in Bernstein form of degree n that is close enough to the desired function f (𝜆).
The simplest choice for this polynomial, known simply as a Bernstein polynomial, has n+1 Bernstein
coefficients and its j 𝑡ℎ coefficient (starting at 0) is found as f (j/n). For this choice, if f is continuous,
the polynomial can be brought arbitrarily close to f by choosing n high enough.

Other choices for this polynomial are given in the page “Approximations in Bernstein Form”30.

Whatever polynomial is used, the polynomial’s Bernstein coefficients must all lie on the closed unit
interval.

The polynomial can be in homogeneous form (also known as scaled Bernstein form (Farouki and
Rajan 1988)31) instead of in Bernstein form, with scaled Bernstein coefficients 𝑠0, ..., 𝑠𝑛, as long as
0 ≤ 𝑠𝑖 ≤ (𝑛

𝑖) where 0 ≤ 𝑖 ≤ 𝑛.
2. The rest of the process is to toss heads with probability equal to that polynomial, given its Bernstein

coefficients. To do this, first flip the input coin n times, and let j be the number of times the coin
returned 1 this way.

3. Then, with probability equal to—

• the polynomial’s Bernstein coefficient at position j (which will be 𝑓(𝑗/𝑛) in the case of the Bern-
stein polynomial 𝐵𝑛(𝑓)), or

• the polynomial’s scaled Bernstein coefficient at position j, divided by choose(n, j)

(0 ≤ j ≤ n), return 1. Otherwise, return 0.

If the probability can be an irrational number, see “Algorithms for General Irrational Con-
stants32” for ways to exactly sample a probability equal to that irrational number.

Notes:

1. More sophisticated ways to implement steps 2 and 3 are found in the section “Certain
Polynomials33” in the main article “Bernoulli Factory Algorithms”.

2. There are other kinds of functions, besides polynomials and rational functions, that serve to
approximate continuous functions. But many of them work poorly as approximate Bernoulli
factory functions because their lack of “smoothness” means there is no simple Bernoulli
factory for them. For example, a spline, which is a continuous function made up of a finite

30https://peteroupc.github.io/bernapprox.html
31Farouki, Rida T., and V. T. Rajan. “Algorithms for polynomials in Bernstein form”. Computer Aided Geometric

Design 5, no. 1 (1988): 1-26. https://www.sciencedirect.com/science/article/pii/0167839688900167
32https://peteroupc.github.io/bernoulli.html#Algorithms_for_General_Irrational_Constants
33https://peteroupc.github.io/bernoulli.html

10

https://peteroupc.github.io/bernapprox.html
https://peteroupc.github.io/bernoulli.html#Algorithms_for_General_Irrational_Constants
https://peteroupc.github.io/bernoulli.html#Algorithms_for_General_Irrational_Constants
https://peteroupc.github.io/bernoulli.html
https://peteroupc.github.io/bernoulli.html
https://www.sciencedirect.com/science/article/pii/0167839688900167

number of polynomial pieces, is generally not “smooth” at the points where the spline’s
pieces meet.

3. Bias and variance are the two sources of error in a randomized estimation algorithm. Let
g(𝜆) be an approximation of f (𝜆). The original Bernoulli factory for f, if it exists, has bias
0 and variance f (𝜆)*(1 − f (𝜆)), but the approximate Bernoulli factory has bias g(𝜆) − f (𝜆)
and variance g(𝜆)*(1 − g(𝜆)). (“Variance reduction” methods are outside the scope of this
document.) An estimation algorithm’s mean squared error equals variance plus square of
bias.

4. There are two known approximations to the linear function 𝑓(𝜆) = 2𝜆 using a polynomial in
Bernstein form of degree 𝑛 that maps the open interval (0, 1) to itself. In each case, if g(𝜆)
is that polynomial and if 0 ≤ 𝜆 ≤ 1/2, then the error in approximating f (𝜆) is no greater
than 1 − g(1/2).
• In Henderson and Glynn (2003, Remark 4)34, the polynomial’s j 𝑡ℎ Bern-

stein coefficient (starting at 0) is min((j/n)*2, 1 − 1/n). The polynomial g
can be computed with the SymPy computer algebra library as follows: from
sympy.stats import *; g=2*E(Min(sum(Bernoulli(("B%d" % (i)),z) for i in
range(n))/n,(S(1)-S(1)/n)/2)).

• In Nacu and Peres (2005, section 6)35, the polynomial’s j 𝑡ℎ Bernstein coefficient (start-
ing at 0) is min((j/i)*2, 1). It corresponds to the following algorithm: Flip the input
coin n times or until the ratio of “heads” to “flips” becomes at least 1/2, whichever
comes first, then if n flips were made without the ratio becoming at least 1/2, return 0;
otherwise, return 1.

6 Achievable Simulation Rates
In general, the number of input coin flips needed by any Bernoulli factory algorithm for a factory function
f (𝜆) depends on how “smooth” the function f is.

The following table summarizes the rate of simulation (in terms of the number of input coin flips needed)
that can be achieved in theory depending on f (𝜆), assuming the input coin’s probability of heads is unknown.
In the table below:

• 𝜆 , the unknown probability of heads, is 𝜀 or greater and (1 − 𝜀) or less for some 𝜀 > 0.
• The simulation makes use of unbiased random bits in addition to input coin flips.
• Δ (n, r, 𝜆) = max(sqrt(𝜆 *(1 − 𝜆)/n),1/n)𝑟.

Property of simulation Property of f
Requires no more than n input coin
flips.

If and only if f can be written as a polynomial of degree n with
Bernstein coefficients in the closed unit interval (Goyal and Sigman
2012)36.

Requires a finite number of flips on
average. Also known as “realizable”
by Flajolet et al. (2010)37.

Only if f is Lipschitz continuous (Nacu and Peres
2005)38.Whenever f admits a fast simulation (Mendo 2019)39.

Number of flips required, raised to
power of r, is bounded by a finite
number on average and has a tail
that drops off uniformly over f ’s
domain.

Only if f has continuous r-th derivative (Nacu and Peres 2005)40.

34Henderson, S.G., Glynn, P.W., “Nonexistence of a class of variate generation schemes”, Operations Research Letters 31
(2003).

35Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

11

https://projecteuclid.org/euclid.aoap/1106922322

Property of simulation Property of f
Requires more than n flips with at
most a probability proportional to
Δ (n, r + 1, 𝜆), for integer r ≥ 0
and every 𝜆 , and for large enough n.
(The greater r is, the faster the
simulation.)

Only if f has an r-th derivative that is continuous and in the
Zygmund class (see note below) (Holtz et al. 2011, Theorem 13)41.

Requires more than n flips with at
most a probability proportional to
Δ (n, 𝛼 , 𝜆), for non-integer 𝛼 > 0
and every 𝜆 , and for large enough n.
(The greater 𝛼 is, the faster the
simulation.)

If and only if f has an r-th derivative that is Hölder continuous with
Hölder exponent (𝛼 − r) or greater, where r = floor(𝛼) (Holtz et
al. 2011, Theorem 8)42. Assumes f is bounded away from 0 and 1.

“Fast simulation” (requires more
than n flips with a probability that
decays exponentially as n gets large).
Also known as “strongly realizable”
by Flajolet et al. (2010)43.

If and only if f is analytic at every point in its domain (see note
below) (Nacu and Peres 2005)44.

Average number of flips greater than
or equal to (f ′ (𝜆))2* 𝜆 *(1 −
𝜆)/(f (𝜆)*(1 − f (𝜆))), where f ′ is
the first derivative of f.

Whenever f admits a fast simulation (Mendo 2019)45.

Note: A function 𝑓(𝜆) is:

• Analytic at a point 𝑧 if there is a positive number 𝑟 such that 𝑓 is writable as—

𝑓(𝜆) = 𝑓(𝑧) + 𝑓 (1)(𝑧)(𝜆 − 𝑧)1/1! + 𝑓 (2)(𝑧)(𝜆 − 𝑧)2/2! + ...,

whenever |𝜆 − 𝑧| < 𝑟, where 𝑓 (𝑖) is the 𝑖-th derivative of 𝑓 .
• In the Zygmund class if it is continuous and there is a constant 𝐷 > 0 with the following

property: For each step size 𝜖 > 0, abs(𝑔(𝑥 − ℎ) + 𝑔(𝑥 + ℎ) − 2𝑔(𝑥)) ≤ 𝐷 × 𝜖 wherever
the left-hand side is defined and 0 < ℎ ≤ 𝜖. The Zygmund class includes the two smaller
classes of Lipschitz continuous functions (see “Definitions”) and functions with a continuous
derivative.

36Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.

37Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

38Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

39Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

40Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

41Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:
//link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf

42Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:
//link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf

43Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

44Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

45Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

12

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322
https://link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
https://link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
https://link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
https://link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://projecteuclid.org/euclid.aoap/1106922322

7 Notes

8 Appendix
8.1 Examples of Well-Behaved Functions
In the following examples, f (𝜆) is a function defined on the closed unit interval.

Concave and convex functions. The following table shows examples of functions that are convex, concave,
or neither. Also, review the definitions.

Function f (𝜆) Convex or concave? Notes
1 − 𝜆 2. Concave.
𝜆 2. Convex.
𝜆 2 − 𝜆 3. Neither.
𝜆 𝑧, where 0< z ≤ 1. Concave.
𝜆 𝑧, where z ≥ 1. Convex.
exp(− 𝜆 /4). Concave.

Hölder and Lipschitz continuous functions. The following table shows some functions that are Hölder
continuous and some that are not. Also, review the definitions.

Function f (𝜆):

Hölder exponent (𝛼) and an
upper bound of the Hölder
constant (L): Notes

𝜆𝑧 ⋅ 𝑡. 𝛼 =z.L=abs(t). 0 < 𝑧 ≤ 1, 𝑡 ≠ 0.
𝜆𝑧 ⋅ 𝑡. 𝛼 =1 (Lipschitz

continuous).L=z*abs(t).
𝑧 ≥ 1, 𝑡 is a real number.

𝜆1/3/4 + 𝜆2/3/5. 𝛼 =1/3.L=9/20. 𝛼 is the minimum of Hölder
exponents, min(1/3, 2/3), and L
is the sum of Hölder constants,
1/4+1/5.

1/2 − (1 − 2𝜆)𝑧/2 if 𝜆 < 1/2 and
1/2 + (2𝜆 − 1)𝑧/2 otherwise.

𝛼 =z.L=2𝑧/2. 0 < 𝑧 ≤ 1. In this example, 𝑓 has
a “vertical” slope at 1/2, unless z
is 1.

3/4 − √𝜆(1 − 𝜆). 𝛼 =1/2.L=1. Has a “vertical” slope at 0 and 1.
Continuous and piecewise
linear.

𝛼 =1.L is the greatest absolute
value of the slope among all
pieces’ slopes.

f (𝜆) is piecewise linear if it’s
made up of multiple linear
functions defined on a finite
number of “pieces”, or non-empty
subintervals, that together make
up 𝑓 ’s domain (in this case, the
closed unit interval).

Piecewise linear; equals 0 at 0,
3/4 at 2/3 and 1/4 at 1, and
these points are connected by
linear functions.

𝛼 =1.L = 1.5. L = max(abs((3/4 − 0)/(2/3)),
abs((1/4 − 3/4)/(1/3))).Concave
because the first piece’s slope is
greater than the second piece’s.

13

Function f (𝜆):

Hölder exponent (𝛼) and an
upper bound of the Hölder
constant (L): Notes

min(𝜆 *mult, 1 − 𝜀). 𝛼 =1.L = mult. mult > 0, 𝜀 > 0. Piecewise linear;
equals 0 at 0, 1 − 𝜀 at (1 −
𝜀)/mult, and 1 − 𝜀 at
1.L=max(mult, 0).Concave.

1/10 if 𝜆 is 0; − 1/(2*ln(𝜆 /2)) +
1/10 otherwise.

Not Hölder continuous. Has a slope near 0 that’s steeper
than every “nth” root.

Note: A Hölder continuous function with Hölder exponent 𝛼 and Hölder constant L is also
Hölder continuous with Hölder exponent 𝛽 and Hölder constant bounded above by L, where 0 <
𝛽 < 𝛼 .

Finding parameters 𝛼 and L for Hölder continuous functions. If 𝑓(𝜆) is continuous, the following
is one way to find the Hölder exponent (𝛼) and Hölder constant (L) of 𝑓 , to determine whether 𝑓 is Hölder
continuous, not just continuous.

First, if 𝑓 has a continuous first derivative on its domain, then 𝛼 is 1 (𝑓 is Lipschitz continuous) and L is
the maximum of the absolute value of that derivative.

Otherwise, consider the function ℎ(𝜆, 𝑐) = abs(𝑓(𝜆) − 𝑓(𝑐))/((abs(𝜆 − 𝑐))𝛼), or 0 if 𝜆 = 𝑐, where 0 < 𝛼 ≤ 1
is a Hölder exponent to test. For a given 𝛼, let 𝑔(𝜆) be the maximum of ℎ(𝜆, 𝑐) over all points 𝑐 where 𝑓 has
a “vertical slope” or the “steepest slope exhibited”. If 𝑔(𝜆) is bounded for a given 𝛼 on 𝑓 ’s domain (in this
case, the closed unit interval), then 𝑓 is Hölder continuous with Hölder exponent 𝛼 and Hölder constant (L)
equal to or greater than the maximum value of 𝑔(𝜆) on its domain.

The following example, which uses the SymPy computer algebra library, plots max(ℎ(𝜆, 0), ℎ(𝜆, 1))
when 𝑓 = √𝜆(1 − 𝜆) and 𝛼 = 1/2: lamda,c=symbols('lamda c'); func=sqrt(lamda*(1-lamda));
alpha=S(1)/2; h=Abs(func-func.subs(lamda,c))/Abs(lamda-c)**alpha; plot(Max(h.subs(c, 0),
h.subs(c,1)), (lamda, 0, 1)).

Functions with a Hölder continuous or Lipschitz continuous derivative. The following table shows
some functions whose derivatives are Hölder continuous, and others where that is not the case. (In the
SymPy library, a function’s derivative can be found using the diff method.) In the table below, if 𝑓 has a
continuous second derivative on its domain, then 𝛼 is 1 (the first derivative is Lipschitz continuous) and L
is the maximum of the absolute value of that second derivative.

Function 𝑓(𝜆)

Derivative’s Hölder exponent (𝛼)
and an upper bound of the
derivative’s Hölder constant (L): Notes

𝜆 1+𝛽 𝛼 = 𝛽 .L = 1+ 𝛽 . 0 < 𝛽 ≤ 1.
3/4 − √𝜆(1 − 𝜆). Derivative is not Hölder

continuous.
Derivative is not Hölder
continuous because 𝑓 is not
Lipschitz continuous.

cosh(𝜆) − 3/4. 𝛼 =1 (derivative is Lipschitz
continuous).L = cosh(1).

Continuous second derivative,
namely cosh(𝜆). Convex. cosh is
the hyperbolic cosine function.

𝜆 ⋅ sin(𝑧𝜆)/4 + 1/2. 𝛼 =1.L = 𝑧(2 + 𝑧𝜆)/4. Continuous second derivative. L
is an upper bound of its absolute
value. 𝑧 > 0.

14

Function 𝑓(𝜆)

Derivative’s Hölder exponent (𝛼)
and an upper bound of the
derivative’s Hölder constant (L): Notes

sin(𝑧𝜆)/4 + 1/2. 𝛼 =1.L = (𝑧2)/4. Continuous second derivative; L
is an upper bound of its absolute
value, namely
abs(− sin(𝑧𝜆) ⋅ 𝑧2/4). 𝑧 > 0.

𝜆 2/2 + 1/10 if 𝜆 ≤ 1/2; 𝜆 /2 −
1/40 otherwise.

𝛼 =1.L = 1. Lipschitz continuous derivative,
with Lipschitz constant 1.

exp(− 𝜆). 𝛼 =1.L = 1. Lipschitz continuous derivative,
with Lipschitz constant 1.46

𝜆 /2 if 𝜆 ≤ 1/2; (4* 𝜆 − 1)/(8* 𝜆)
otherwise.

𝛼 =1.L=1. Concave. Lipschitz continuous
derivative with Lipschitz constant
2.

8.2 Results Used in Approximate Bernoulli Factories
See the appendix of the page “Approximations in Bernstein Form”47.

8.3 How Many Coin Flips Are Needed to Simulate a Polynomial?
Let 𝑝(𝜆) be a polynomial that maps the closed unit interval to itself and satisfies 0 < 𝑝(𝜆) < 1 whenever
0 < 𝜆 < 1.
Then 𝑝’s coin-flipping degree (Wästlund 1999)48 is the smallest value of 𝑛 such that 𝑝’s Bernstein coefficients
of degree 𝑛 lie in the closed unit interval. 49 (This is broader than the use of the term in Wästlund, where
a polynomial can have a coin-flipping degree only if its “power” coefficients are integers.) The coin-flipping
degree is the smallest value of 𝑛 such that the algorithm of Goyal and Sigman (2012)50 can toss heads with
probability 𝑝(𝜆) using exactly 𝑛 biased coin flips (in addition to a fair coin).

The following results give upper bounds on 𝑝’s coin-flipping degree.

Suppose 𝑝 is in Bernstein form of degree 𝑚 with Bernstein coefficients 𝑏0, ..., 𝑏𝑚. Then:

• If 0 ≤ min(𝑏0, ..., 𝑏𝑚) ≤ max(𝑏0, ..., 𝑏𝑚) ≤ 1, then the coin-flipping degree is bounded above by 𝑚.

• If 0 ≤ min(𝑏0, ..., 𝑏𝑚) and max(𝑏0, ..., 𝑏𝑚) > 1, then the coin-flipping degree is bounded above by—

𝑚 + iceil(𝑚(𝑚 − 1)
2

max(1 − 𝑏0, ..., 1 − 𝑏𝑚)
1 − Pmax − 𝑚) ,

where iceil(𝑥) is 𝑥 + 1 if 𝑥 is an integer, or ceil(𝑥) otherwise, and where Pmax is the maximum value
of 𝑝(𝜆) on the closed unit interval (Powers and Reznick 2001)51.

46This function’s second derivative’s absolute value can be plotted using the SymPy library as follows:
plot(diff(Abs(exp(-x)),(x,2)),(x,0,1)). In this plot, the maximum is 1, the same as the first derivative’s Lipschitz constant.

47https://peteroupc.github.io/bernapprox.html
48Wästlund, J., “Functions arising by coin flipping”, 1999.
49The coin-flipping degree is very similar to the so-called Bernstein degree or Lorentz degree, which is the smallest integer 𝑛

such that 𝑝’s Bernstein coefficients of degree 𝑛 are all non-negative, assuming that 𝑝 is non-negative.
50Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 22(2), pp.1-5.
51Powers, V., Reznick, B., “A new bound for Pólya’s Theorem with applications to polynomials positive on

polyhedra”, Journal of Pure and Applied Algebra 164 (24 October 2001). https://www.sciencedirect.com/science/article/pii/
S0022404900001559

15

https://peteroupc.github.io/bernapprox.html
http://www.math.chalmers.se/~wastlund/coinFlip.pdf
https://www.sciencedirect.com/science/article/pii/S0022404900001559
https://www.sciencedirect.com/science/article/pii/S0022404900001559

• If min(𝑏0, ..., 𝑏𝑚) < 0 and max(𝑏0, ..., 𝑏𝑚) ≤ 1, then the coin-flipping degree is bounded above by—

𝑚 + iceil(𝑚(𝑚 − 1)
2

max(𝑏0, ..., 𝑏𝑚)
Pmin − 𝑚) ,

where Pmin is the minimum value of 𝑝(𝜆) on the closed unit interval (Powers and Reznick 2001)52.

• Suppose 𝑚 ≥ 2, that 𝑏0 = 0 or 𝑏𝑚 = 0 or both, and that the following necessary conditions are satisfied
(Mok and To 2008; Theorem 1 and Corollary 3)53:

– For every 𝑖 such that 𝑏𝑖 < 0, if 𝑏𝑚 = 0, there must be 𝑗 > 𝑖 such that 𝑏𝑗 > 0.
– For every 𝑖 such that 𝑏𝑖 < 0, if 𝑏0 = 0, there must be 𝑗 < 𝑖 such that 𝑏𝑗 > 0.
– For every 𝑖 such that 1 − 𝑏𝑖 < 0, if 1 − 𝑏𝑚 = 0, there must be 𝑗 > 𝑖 such that 1 − 𝑏𝑗 > 0.
– For every 𝑖 such that 1 − 𝑏𝑖 < 0, if 1 − 𝑏0 = 0, there must be 𝑗 < 𝑖 such that 1 − 𝑏𝑗 > 0.

Then the coin-flipping degree is bounded above by—

max(𝑀(𝑏0, ..., 𝑏𝑚), 𝑀(1 − 𝑏0, ..., 1 − 𝑏𝑚)),

where—
𝑀(𝛽0, ..., 𝛽𝑚) = ceil(max(2𝑚, 𝑚(𝑚 − 1)

2(1 − 𝑐)
𝑎max
𝑎min

)) ,

and where:

– 𝑎max = max(max(0, 𝛽0), ...,max(0, 𝛽𝑚)).
– 𝑎min is the minimum of (𝛽𝑖(𝑚

𝑖)) over all values of 𝑖 such that 𝛽𝑖 > 0.
– 𝑐 is the smallest number 𝑟 that satisfies 𝐹𝑁(𝜆)/𝐹𝑃(𝜆) ≤ 𝑟 where 0 < 𝜆 < 1. 𝑐 can also be a

greater number but less than 1.
– 𝐹𝑃(𝜆) = ∑𝑚

𝑘=0 max(0, 𝛽𝑘)(𝑚
𝑘)𝜆𝑘(1 − 𝜆)𝑚−𝑘.

– 𝐹𝑁(𝜆) = ∑𝑚
𝑘=0 abs(min(0, 𝛽𝑘))(𝑚

𝑘)𝜆𝑘(1 − 𝜆)𝑚−𝑘.

(Mok and To 2008; Theorem 2 and remark 1.5(v))54.

Examples:

1. Let 𝑝(𝜆) = 1 − 8𝜆 + 20𝜆2 − 13𝜆3, a polynomial of degree 𝑚 = 3. 𝑝’s Bernstein coefficients
are 𝑏0 = 1, 𝑏1 = −5/3, 𝑏2 = 7/3, 𝑏3 = 0, and its coin-flipping degree is 46 (Wästlund 1999,
Example 4.4)55. 𝑝 meets the conditions to use the coin-flipping degree derived from Mok
and To (2008)56. In this case, after some calculations, the coin-flipping degree is bounded
above by—

ceil(max(max(2 ⋅ 3, 3(3 − 1)
2(1 − 0.94492)

7/3
1) ,max(2 ⋅ 3, 3(3 − 1)

2(1 − 0.70711)
8/3
1))) ≤ 128.

2. An exhaustive search shows that 46 is the highest possible coin-flipping degree for a degree-3
polynomial whose “power” coefficients are integers.

3. The degree-4 polynomial −43𝜆4 + 81𝜆3 − 47𝜆2 + 9𝜆 has a coin-flipping degree of 5284.
52Powers, V., Reznick, B., “A new bound for Pólya’s Theorem with applications to polynomials positive on

polyhedra”, Journal of Pure and Applied Algebra 164 (24 October 2001). https://www.sciencedirect.com/science/article/pii/
S0022404900001559

53Mok, H-N., To, W-K., “Effective Pólya semi-positivity for non-negative polynomials on the simplex”, Journal
of Complexity 24 (2008). https://doi.org/10.1016/j.jco.2008.01.003

54Mok, H-N., To, W-K., “Effective Pólya semi-positivity for non-negative polynomials on the simplex”, Journal
of Complexity 24 (2008). https://doi.org/10.1016/j.jco.2008.01.003

55Wästlund, J., “Functions arising by coin flipping”, 1999.
56Mok, H-N., To, W-K., “Effective Pólya semi-positivity for non-negative polynomials on the simplex”, Journal

of Complexity 24 (2008). https://doi.org/10.1016/j.jco.2008.01.003

16

https://www.sciencedirect.com/science/article/pii/S0022404900001559
https://www.sciencedirect.com/science/article/pii/S0022404900001559
https://doi.org/10.1016/j.jco.2008.01.003
https://doi.org/10.1016/j.jco.2008.01.003
http://www.math.chalmers.se/~wastlund/coinFlip.pdf
https://doi.org/10.1016/j.jco.2008.01.003

Note: If a polynomial’s “power” coefficients can be rational numbers (ratios of two integers),
even a degree-2 polynomial can have an arbitrarily high coin-flipping degree. An example is the
family of degree-2 polynomials 𝑟𝜆 − 𝑟𝜆2, where 𝑟 is a rational number greater than 0 and less
than 4.

Lemma: Let 𝑝(𝜆) = 𝑎0𝜆0 + ... + 𝑎𝑛𝜆𝑛 be a polynomial that maps the closed unit interval to itself. Then
the values 𝑎0, ..., 𝑎𝑛 must sum to a value that is 0 or greater and 1 or less.

Proof : This can be seen by evaluating 𝑝(1) = 𝑎0 + ... + 𝑎𝑛. If 𝑝(1) is less than 0 or greater than 1, then 𝑝
does not meet the hypothesis of the lemma. []

In the following lemmas, let 𝑝(𝜆) = 𝑎0𝜆0 + ... + 𝑎𝑛𝜆𝑛 be a polynomial that maps the closed unit interval to
itself and satisfies 0 < 𝑝(𝜆) < 1 whenever 0 < 𝜆 < 1.
Lemma: If 𝑝’s coin-flipping degree is 𝑛, then |𝑎𝑖| ≤ 2𝑖(𝑛

𝑖).
Proof : Consider the matrix that transforms a polynomial’s Bernstein coefficients to “power” coefficients,
which is 𝑛 × 𝑛 if the polynomial’s degree is 𝑛 (Ray and Nataraj 2012, eq. (8))57. Given the hypothesis of the
lemma, each Bernstein coefficient must lie in the closed unit interval and the required matrix size is 𝑛, which
is 𝑝’s coin-flipping degree. For each row of the matrix (0 ≤ 𝑖 ≤ 𝑛), the corresponding “power” coefficient
of the polynomial equals a linear combination of that row with a vector of Bernstein coefficients. Thus, the
𝑖-th power coefficient equals 𝑎𝑖 and its absolute value is bounded above by ∑𝑖

𝑚=0 (𝑛
𝑚)(𝑛−𝑚

𝑖−𝑚) = 2𝑖(𝑛
𝑖). []

Lemma: |𝑎𝑖| ≤ |𝑏𝑖|, where 𝑏𝑖 is the corresponding power coefficient of the following polynomial:

𝑞(𝜆) = 𝑏0𝜆0 + ... + 𝑏𝑛𝜆𝑛 = (𝑇𝑛(1 − 2𝜆) + 1)/2,
and where 𝑇𝑛(𝑥) is the Chebyshev polynomial of the first kind58 of degree 𝑛.
See MathOverflow for a proof of this lemma59 by Fedor Petrov.

8.4 Proofs for Polynomial-Building Schemes
This section shows mathematical proofs for some of the polynomial-building schemes of this page.

In the following results:

• A strictly bounded factory function means a continuous function on the closed unit interval, with a
minimum of greater than 0 and a maximum of less than 1.

• A function f (𝜆) is polynomially bounded if both f (𝜆) and 1 − f (𝜆) are greater than or equal to min(𝜆
𝑛, (1 − 𝜆)𝑛) for some integer n (Keane and O’Brien 1994)60. For examples, see “About Bernoulli
Factories61”.

• A modulus of continuity of a function f means a nonnegative and nowhere decreasing function 𝜔 on
the closed unit interval, for which 𝜔 (0) = 0, and for which abs(f(x) − f(y)) ≤ 𝜔 (abs(x − y)) whenever
x and y are in f ’s domain. Loosely speaking, a modulus of continuity 𝜔 (𝛿) is greater than or equal to
f ’s maximum range in a window of size 𝛿 .

Lemma 1. Omitted.

Lemma 6(i) of Nacu and Peres (2005)62 can be applied to continuous functions beyond just Lipschitz con-
tinuous functions. This includes the larger class of Hölder continuous functions (see “Definitions”).

57S. Ray, P.S.V. Nataraj, “A Matrix Method for Efficient Computation of Bernstein Coefficients”, Reliable Com-
puting 17(1), 2012. https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf

58https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
59https://mathoverflow.net/questions/449135
60Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.
61https://peteroupc.github.io/bernoulli.html#About_Bernoulli_Factories
62Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

17

https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
https://mathoverflow.net/questions/449135
https://peteroupc.github.io/bernoulli.html#About_Bernoulli_Factories
https://peteroupc.github.io/bernoulli.html#About_Bernoulli_Factories
https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf
https://projecteuclid.org/euclid.aoap/1106922322

Lemma 2. Let f(𝜆) be a continuous function that maps the closed unit interval to itself, let X be a
hypergeometric(2*n, k, n) random variable, and let 𝑛 ≥ 1 be an integer.

1. Let 𝜔 (x) be a modulus of continuity of f. If 𝜔 is continuous and concave, then the expression—
abs(E[f(X/n)] − f(k/(2*n))), (1)is less than or equal to each of the following:
• _ 𝜔 (sqrt(1/(8*n − 4)))._
• _ 𝜔 (sqrt(1/(7*n))) if n ≥ 4._
• _ 𝜔 (sqrt(1/(2*n)))._
• _ 𝜔 (sqrt((k/(2*n)) * (1 − k/(2*n)) / (2*n − 1)))._

2. If f is Hölder continuous with Hölder constant M and with Hölder exponent 𝛼 such that 0 < 𝛼 ≤ 1,
then the expression (1) is less than or equal to—
• M*(1/(2*n))𝛼/2,
• M*(1/(7*n))𝛼/2 if n ≥ 4, and
• M*(1/(8*n − 4))𝛼/2.

3. If f has a Lipschitz continuous derivative with Lipschitz constant M, then the expression (1) is less
than or equal to—
• (M/2)*(1/(7*n)) if n ≥ 4, and
• (M/2)*(1/(8*n − 4)).

Proof.

1. 𝜔 is assumed to be nonnegative because absolute values are nonnegative. To prove the first and second
bounds: abs(E[f (X/n)] − f (k/(2 * n))) ≤ E[abs(f (X/n) − f (k/(2 * n))] ≤ E[𝜔 (abs(X/n − k/(2 *
n))] (by the definition of 𝜔) ≤ 𝜔 (E[abs(X/n − k/(2 * n))]) (by Jensen’s inequality and because 𝜔 is
concave) ≤ 𝜔 (sqrt(E[abs(X/n − k/(2 * n))]2)) = 𝜔 (sqrt(Var[X/n])) = 𝜔 (sqrt((k*(2 * n − k)/(4*(2
* n − 1)*n2)))) ≤ 𝜔 (sqrt((n2/(4*(2 * n − 1)*n2)))) = 𝜔 (sqrt((1/(8*n − 4)))) = 𝜌 , and for every
integer n ≥ 4, 𝜌 ≤ 𝜔 (sqrt(1/(7*n))). To prove the third bound: abs(E[f (X/n)] − f (k/(2 * n))) ≤ 𝜔
(sqrt(Var[X/n])) ≤ 𝜔 (sqrt(1/(2*n))). To prove the fourth bound: abs(E[f (X/n)] − f (k/(2 * n))) ≤
𝜔 (sqrt((n2/(4*(2 * n − 1)*n2)))) = 𝜔 (sqrt((k/(2*n)) * (1 − k/(2*n)) / (2*n − 1))).

2. By the definition of Hölder continuous functions, take 𝜔 (x) = M*x𝛼. Because 𝜔 is a concave modulus
of continuity on the closed unit interval, the result follows from part 1.

3. (Much of this proof builds on Nacu and Peres 2005, Proposition 6(ii)63.) The expected value (see note
1) of 𝑋 is 𝐸[𝑋/𝑛] = 𝑘/(2𝑛). Since 𝐸[𝑋/𝑛 − 𝑘/(2𝑛)] = 0, it follows that 𝑓 ′(𝑋/𝑛)𝐸(𝑋/𝑛 − 𝑘/(2𝑛)) = 0.
Moreover, |𝑓(𝑥) − 𝑓(𝑠) − 𝑓 ′(𝑥)(𝑥 − 𝑠)| ≤ (𝑀/2)(𝑥 − 𝑠)2 (see Micchelli 1973, Theorem 3.2)64, so—

𝐸[|𝑓(𝑋/𝑛) − 𝑓(𝑘/(2𝑛))|] = |𝐸[𝑓(𝑋/𝑛) − 𝑓(𝑘/(2𝑛)) − 𝑓 ′(𝑘/(2𝑛))(𝑋/𝑛 − 𝑘/(2𝑛))]|
≤ (𝑀/2)(𝑋/𝑛 − 𝑘/(2𝑛))2 ≤ (𝑀/2)𝑉 𝑎𝑟(𝑋/𝑛).

By part 1’s proof, it follows that (M/2)*Var[X/n] = (M/2)*(k*(2 * n − k)/(4*(2 * n − 1)*n2))
≤ (M/2)*(n2/(4*(2 * n − 1)*n2)) = (M/2)*(1/(8*n − 4)) = 𝜌 . For every integer n ≥ 4, 𝜌 ≤
(M/2)*(1/(7*n)). []

Notes:

1. E[.] means expected value (“long-run average”), and Var[.] means variance. A hyperge-
ometric(2 * n, k, n) random variable is the number of “good” balls out of n balls taken
uniformly at random, all at once, from a bag containing 2 * n balls, k of which are “good”.

2. Parts 1 through 3 exploit a tighter bound on Var[X/n] than the bound given in Nacu and
Peres (2005, Lemma 6(i) and 6(ii), respectively)65. However, for technical reasons, different
bounds are proved for different ranges of integers n.

63Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

64Micchelli, Charles. “The saturation class and iterates of the Bernstein polynomials.” Journal of Approximation Theory 8,
no. 1 (1973): 1-18.

65Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

18

https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322

3. All continuous functions that map the closed unit interval to itself, including all of them
that admit a Bernoulli factory, have a modulus of continuity. The proof of part 1 remains
valid even if 𝜔 (0) > 0, because the bounds proved remain correct even if 𝜔 is overestimated.
The following functions have a simple modulus of continuity that satisfies the lemma:
1. If f is strictly increasing and convex, 𝜔 (x) can equal f (1) − f (1 − x) (Gal 1990)66; (Gal

1995)67.
2. If f is strictly decreasing and convex, 𝜔 (x) can equal f (0) − f (x) (Gal 1990)68; (Gal

1995)69.
3. If f is strictly increasing and concave, 𝜔 (x) can equal f (x) − f (0) (by symmetry with

2).
4. If f is strictly decreasing and concave, 𝜔 (x) can equal f (1 − x) − f (1) (by symmetry

with 1).
5. If f is concave and is strictly increasing then strictly decreasing, then 𝜔 (h) can equal

(f (min(h, 𝜎))+(f (1 − min(h, 1 − 𝜎)) − f (1)), where 𝜎 is the point where f stops
increasing and starts decreasing (Anastassiou and Gal 2012)70.

There are weaker bounds for Lemma 2, part 1, which work even if 𝑓 ’s modulus of continuity 𝜔 is not concave.
According to Pascu et al. (2017, Lemma 5.1)71:

|𝔼[𝑓(𝑌)] − 𝑓(𝔼[𝑌])| ≤ 𝜔(𝛿) + 𝜔(𝛿)Var[𝑌]/𝛿2,

where 𝑓 is a continuous function, 𝑌 is a discrete random variable on a closed interval, and 𝛿 > 0. Given that
𝑌 = 𝑋/𝑛 (where 𝑋 is as in Lemma 2), taking 𝛿 = 1/𝑛1/2 leads to:

|𝔼[𝑓(𝑌)] − 𝑓(𝔼[𝑌])| = |𝔼[𝑓(𝑌)] − 𝑓(𝑘/(2𝑛))| ≤ 𝜔(1/𝑛1/2)(1 + 𝑛 ⋅ Var[𝑌]),

and in turn, plugging in bounds for Var[𝑌] leads to the following bounds for Lemma 2, part 1:

• 𝜔(1/𝑛1/2)(1 + 𝑛/(8𝑛 − 4)).
• 𝜔(1/𝑛1/2)(1 + 𝑛/(7𝑛)) = 8

7 𝜔(1/𝑛1/2) if n ≥ 4.
• 𝜔(1/𝑛1/2)(1 + 𝑛/(2𝑛)) = 3

2 𝜔(1/𝑛1/2).
Lemma 2A. _Let f(𝜆) map the closed unit interval to itself, and let 𝐶 = 15. Suppose 𝑓 is in the Zygmund
class with constant 𝐷 or less. Then, for every integer 𝑛 ≥ 1, the expression (1) in Lemma 2 is less than or
equal to (𝐶/2)𝐷√1/(8𝑛 − 4).
Proof. Strukov and Timan (1977)72 proved the following bound:

|𝔼[𝑓(𝑌)] − 𝑓(𝔼[𝑌])| ≤ 𝐶𝜔2((Var[𝑌])1/2/2),

where Y is a random variable and 𝜔 2(.) is a second-order modulus of continuity of f (see note below), and
where 𝐶 is 3 if 𝑌 takes on any value in the real line, or 15 if 𝑌 takes on only values in a closed interval, such
as the closed unit interval in this case.

Suppose Y = X/n, where X is as in Lemma 2. Then Y ’s variance (Var[Y]) is less than or equal to 1/(8*n
− 4), and the left-hand side of Strukov and Timan’s bound is the same as the expression (1).

66Gal, S.G., “Calculus of the modulus of continuity for nonconcave functions and applications”, Calcolo 27 (1990)
67Gal, S.G., 1995. Properties of the modulus of continuity for monotonous convex functions and applications. International

Journal of Mathematics and Mathematical Sciences 18(3), pp.443-446.
68Gal, S.G., “Calculus of the modulus of continuity for nonconcave functions and applications”, Calcolo 27 (1990)
69Gal, S.G., 1995. Properties of the modulus of continuity for monotonous convex functions and applications. International

Journal of Mathematics and Mathematical Sciences 18(3), pp.443-446.
70Anastassiou, G.A., Gal, S.G., Approximation Theory: Moduli of Continuity and Global Smoothness Preservation,

Birkhäuser, 2012.
71Pascu, M.N., Pascu, N.R., Tripşa, F., “A new Bernstein-type operator based on Pólya’s urn model with negative

replacement”, arXiv:1710.08818 [math.CA], 2017. https://arxiv.org/abs/1710.08818
72Strukov, L.I., Timan, A.F., “Mathematical expectation of continuous functions of random variables. Smoothness and

variance”, Siberian Mathematical Journal 18 (1977).

19

https://arxiv.org/abs/1710.08818

Since f is in the Zygmund class, there is an 𝜔2 for it such that 𝜔2(ℎ) ≤ 𝐷ℎ. Therefore, applying Strukov
and Timan’s bound and the bound on Y ’s variance leads to—

abs(𝔼[𝑓(𝑌)] − 𝑓(𝔼[𝑌])) ≤ 𝐶𝜔2((Var[𝑌])1/2/2)

≤ 𝐶𝐷((Var[𝑌])1/2/2) = 𝐶𝐷√1/(8𝑛 − 4)/2.
[]

Note: A second-order modulus of continuity is a nonnegative and nowhere decreasing function
𝜔 2(h) with h ≥ 0, for which _ 𝜔 2_(0) = 0, and for which abs(𝑓(𝑥) + 𝑓(𝑦) − 2𝑓((𝑥 + 𝑦)/2)) ≤
𝜔2(abs((𝑦 − 𝑥)/2)) whenever f is continuous and x and y are in f ’s domain.

Theorem 1. Let 𝑓 be a strictly bounded factory function, let 𝑛0 ≥ 1 be an integer, and let 𝜙(𝑛) be a function
that takes on a nonnegative value. Suppose 𝑓 is such that the expression (1) in Lemma 2 is less than or
equal to 𝜙(𝑛) whenever 𝑛 ≥ 𝑛0 is an integer power of 2. Let—

𝜂(𝑛) = ∑
𝑘≥log2(𝑛)

𝜙(2𝑘),

for every integer n ≥ 1 that’s a power of 2. If the series �(n) converges to a finite value for each such 𝑛, and
if it converges to 0 as 𝑛 gets large, then the following scheme for f(𝜆) is valid in the following sense:

There are polynomials 𝑔𝑛 and ℎ𝑛 (where 𝑛 ≥ 1 is an integer power of 2) as follows. The 𝑘-th Bernstein
coefficient of 𝑔𝑛 and ℎ𝑛 is fbelow(n, k) and fabove(n, k), respectively (where 0 ≤ 𝑘 ≤ 𝑛), where:
If 𝑛0 = 1:

• fbelow(n, k) = 𝑓(𝑘/𝑛) − 𝜂(𝑛).
• fabove(n, k) = 𝑓(𝑘/𝑛) + 𝜂(𝑛).

If 𝑛0 > 1:
• fbelow(n, k) = min(fbelow(𝑛0,0), fbelow(𝑛0,1), …, fbelow(𝑛0,𝑛0)) if 𝑛 < 𝑛0; 𝑓(𝑘/𝑛) − 𝜂(𝑛) other-

wise.
• fabove(n, k) = max(fabove(𝑛0,0), fabove(𝑛0,1), …, fbelow(𝑛0,𝑛0)) if 𝑛 < 𝑛0; 𝑓(𝑘/𝑛) + 𝜂(𝑛) other-

wise.

The polynomials 𝑔𝑛 and ℎ𝑛 satisfy:

1. 𝑔𝑛 ≤ ℎ𝑛.
2. 𝑔𝑛 and ℎ𝑛 converge to 𝑓 as 𝑛 gets large.
3. (𝑔𝑛+1 − 𝑔𝑛) and (ℎ𝑛 − ℎ𝑛+1) are polynomials with nonnegative Bernstein coefficients once they are

rewritten to polynomials in Bernstein form of degree exactly 𝑛 + 1.
Proof. For simplicity, this proof assumes first that 𝑛0 = 1.
For the series 𝜂 (n) in the theorem, because 𝜙(𝑛) is nonnegative, each term of the series is nonnegative
making the series nonnegative and, by the assumption that the series converges, 𝜂 (n) is nowhere increasing
with increasing n.

Item 1 is trivial. If 𝑛 ≥ 𝑛0, 𝑔𝑛 is simply the Bernstein polynomial of 𝑓 minus a nonnegative value, and ℎ𝑛
is the Bernstein polynomial of 𝑓 plus that same value, and if 𝑛 is less than 𝑛0, 𝑔𝑛 is a constant value not
less than the lowest point reachable by the lower polynomials, and ℎ𝑛 is a constant value not less than the
highest point reachable by the upper polynomials.

Item 2 is likewise trivial. A well known result is that the Bernstein polynomials of 𝑓 converge to 𝑓 as their
degree 𝑛 gets large. And because the series 𝜂 (in Theorem 1) sums to a finite value that goes to 0 as 𝑛

20

increases, the upper and lower shifts will converge to 0 so that 𝑔𝑛 and ℎ𝑛 converge to the degree-𝑛 Bernstein
polynomials and thus to 𝑓 .
Item 3 is the consistency requirement described earlier in this page. This is ensured as in Proposition
10 of Nacu and Peres (2005)73 by bounding, from below, the offset by which to shift the approximating
polynomials. This lower bound is 𝜂 (n), a solution to the equation 0 = 𝜂 (n) − 𝜂 (2 * n) − 𝜙 (n) (see note
below), where 𝜙 (n) is a function that takes on a nonnegative value.

𝜙 (n) is, roughly speaking, the minimum distance between one polynomial and the next so that the consis-
tency requirement is met between those two polynomials. Compare the assumptions on 𝜙 in Theorem 1 with
equations (10) and (11) in Nacu and Peres (2005).

The solution for 𝜂(𝑛) given in the statement of the theorem is easy to prove by noting that this is a recursive
process: we start by calculating the series for n = 2*n, then adding 𝜙 (n) to it (which will be positive), in
effect working backwards and recursively, and we can easily see that we can calculate the series for n = 2*n
only if the series converges, hence the assumption of a converging series.

Now to prove the result assuming that 𝑛0 > 1.
Doing this involves taking advantage of the observation in Remark B of Nacu and Peres (2005)74 that we
can start defining the polynomials at any 𝑛 greater than 0, including 𝑛 = 𝑛0; in that case, the upper and
lower polynomials of degree 1 or greater, but less than 𝑛0, would be constant functions, so that the Bernstein
coefficients of each polynomial would be equal. The lower constants are no greater than 𝑔𝑛0

’s lowest Bernstein
coefficient, and the upper constants are no less than 𝑔𝑛0

’s highest Bernstein coefficients; they meet Item 3
because these lower and upper constants, when rewritten as polynomials in Bernstein form of degree 𝑛0,
have Bernstein coefficients that are still no greater or no less, respectively, than the corresponding degree-𝑛0
polynomial. With the 𝜙 given in this theorem, the series 𝜂 (n) in the theorem remains nonnegative. Moreover,
since 𝜂 is assumed to converge, 𝜂 (n) still decreases with increasing n. []

Notes:

1. There is only one solution 𝜂 (n) in the case at hand. Unlike so-called functional equa-
tions75 and linear recurrences, with a solution that varies depending on the starting value,
there is only one solution in the case at hand, namely the solution that makes the series
converge, if it exists at all. Alternatively, the equation can be expanded to 0 = 𝜂 (n) − 𝜂
(4 * n) − 𝜙 (2*n) − 𝜙 (n) = 𝜂 (n) − 𝜂 (8 * n) − 𝜙 (4*n) − 𝜙 (2*n) − 𝜙 (n) = …

2. log2(𝑛) is the number 𝑥 such that 2𝑥 = 𝑛.
Proposition 1A. If a scheme satisfies Theorem 1, the polynomials 𝑔𝑛 and ℎ𝑛 in the scheme can be made
to satisfy conditions (i), (iii), and (iv) of Proposition 3 of Nacu and Peres (2005)76 as follows:

• 𝑔𝑛 = 𝑔𝑛−1 and ℎ𝑛 = ℎ𝑛−1 whenever 𝑛 is an integer greater than 1 and not a power of 2.
• If fabove(n, k) > 1 for a given 𝑛 and some 𝑘, the Bernstein coefficients of ℎ𝑛 (the upper polynomial)

are all 1.
• If fbelow(n, k) < 0 for a given 𝑛 and some 𝑘, the Bernstein coefficients of 𝑔𝑛 (the lower polynomial)

are all 0.

Proof: Condition (i) of Proposition 3 says that each Bernstein coefficient of the polynomials must be 0 or
greater and 1 or less. This is ensured starting with a large enough value of n greater than 0 that’s a power
of 2, call it n1, as shown next.

73Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

74Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

75https://math.stackexchange.com/questions/3993739
76Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

21

https://math.stackexchange.com/questions/3993739
https://math.stackexchange.com/questions/3993739
https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322

Let 𝜀 be a positive distance between 0 and the minimum or between 1 and the maximum of f, whichever
is smaller. This 𝜀 exists by the assumption that f is bounded away from 0 and 1. Because the series 𝜂 (in
Theorem 1) sums to a finite value that goes to 0 as 𝑛 increases, 𝜂 (n) will eventually stay less than 𝜀 . And
if 𝑛 ≥ 𝑛0 is a power of 2 (where 𝑛0 is as in Theorem 1), the f(k/n) term is bounded by the minimum
and maximum of f by construction. This combined means that the lower and upper polynomials’ Bernstein
coefficients will eventually be bounded by 0 and 1 for every integer n starting with n1.

For n less than n1, condition (i) is ensured by setting the lower or upper polynomial’s Bernstein coefficient
to 0 or 1, respectively, whenever a Bernstein coefficient of the degree-n polynomial would otherwise be less
than 0 or greater than 1, respectively.

Condition (iii) of Proposition 3 is mostly ensured by item 2 of Theorem 1. The only thing to add is that for
𝑛 less than n1, the lower and upper polynomials 𝑔𝑛 and ℎ𝑛 can be treated as 0 or 1, respectively, without
affecting convergence, and that for 𝑛 other than a power of 2, defining 𝑔𝑛 = 𝑔𝑛−1 and ℎ𝑛 = ℎ𝑛−1 maintains
condition (iii) by Remark B of Nacu and Peres (2005)77.

Condition (iv) of Proposition 3 is mostly ensured by item 3 of Theorem 1. For n=n1, condition (iv) is
maintained by noting that the degree-n1 polynomial’s Bernstein coefficients must be bounded by 0 and 1 by
condition (i) so they will likewise be bounded by those of the lower and upper polynomials of degree less
than n1, and those polynomials are the constant 0 and the constant 1, respectively, as are their Bernstein
coefficients. Finally, for 𝑛 other than a power of 2, defining 𝑔𝑛 = 𝑔𝑛−1 and ℎ𝑛 = ℎ𝑛−1 maintains condition
(iv) by Remark B of Nacu and Peres (2005)78. []

Note: The last condition of Proposition 3, condition (ii), says fabove(n, k)*choose(n,k) and
fbelow(n, k)*choose(n,k) must be integers. 79 But Proposition 3 assumes only the biased coin
and no other randomness is used, and that the coin doesn’t show heads every time or tails every
time. Therefore, f (0), if it exists, must be an integer, and the same is true for f (1), so that
condition (ii) is redundant with condition (iii) due to a result that goes back to Kantorovich
(1931)80; see also Remark C of Nacu and Peres (2005)81.

Corollary 1. Let f(𝜆) be a strictly bounded factory function. If that function is Hölder continuous with
Hölder constant M and Hölder exponent 𝛼, then the following scheme determined by fbelow and fabove is
valid in the sense of Theorem 1:

• fbelow(n, k) = f(k/n) − D(n).
• fabove(n, k) = f(k/n) + D(n).

Where 𝐷(𝑛) = 𝑀
((2𝛼/2−1)𝑛𝛼/2 .

Or:

• fbelow(n, k) = min(fbelow(4,0), fbelow(4,1), …, fbelow(4,4)) if n < 4; otherwise, f(k/n) − �(n).
• fabove(n, k) = max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n < 4; otherwise, f(k/n) + �(n).

Where 𝜂(𝑛) = 𝑀(2/7)𝛼−2/((2𝛼/2 − 1)𝑛𝛼/2).
77Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
78Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
79choose(n, k) = (1*2*3*…*n)/((1*…*k)*(1*…*(n − k))) = n!/(k! * (n − k)!) = (𝑛

𝑘) is a binomial coefficient, or the number
of ways to choose k out of n labeled items. It can be calculated, for example, by calculating i/(n − i+1) for each integer
i satisfying n − k+1 ≤ i ≤ n, then multiplying the results (Yannis Manolopoulos. 2002. “Binomial coefficient computation:
recursion or iteration?”, SIGCSE Bull. 34, 4 (December 2002), 65–67. DOI: https://doi.org/10.1145/820127.820168). For
every m>0, choose(m, 0) = choose(m, m) = 1 and choose(m, 1) = choose(m, m − 1) = m; also, in this document, choose(n, k)
is 0 when k is less than 0 or greater than n.n! = 1*2*3*…*n is also known as n factorial; in this document, (0!) = 1.

80Kantorovich, L.V., “Some remarks on the approximation of functions by means of polynomials with integer coefficients”,
1931.

81Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

22

https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322
https://doi.org/10.1145/820127.820168
https://projecteuclid.org/euclid.aoap/1106922322

Proof. Because 𝑓 is Hölder continuous, it admits the modulus of continuity 𝜔(𝑥) = 𝑀𝑥𝛼. By part 1 of
lemma 2:

• For each integer 𝑛 ≥ 1 that’s a power of 2 (𝑛0 = 1 in Theorem 1), 𝜙(𝑛) = 𝜔(√1/(2𝑛)) = 𝑀(1/(2𝑛))𝛼/2

can be taken for each such integer 𝑛, and thus 𝜂(𝑛) = 𝐷(𝑛) = 𝑀
((2𝛼/2−1)𝑛𝛼/2 (where 𝜂(𝑛) is as in Theorem

1).
• For each integer 𝑛 ≥ 4 that’s a power of 2 (𝑛0 = 4 in Theorem 1), 𝜙(𝑛) = 𝜔(√1/(2𝑛)) = 𝑀(1/(7𝑛))𝛼/2

can be taken for each such integer 𝑛, and thus 𝜂(𝑛) = M*(2/7)𝛼/2/((2𝛼/2 − 1)*n𝛼/2).

In both cases 𝜂(𝑛) is finite and converges to 0 as 𝑛 increases.

The result then follows from Theorem 1. []

Note: For specific values of 𝛼 , the equation D(n) = D(2 * n) + 𝜙 (n) can be solved via linear re-
currences; an example for 𝛼 = 1/2 is the following code in Python that uses the SymPy computer
algebra library: alpha=(S(1)/2); rsolve(Eq(f(n), f(n+1)+z*(1/(2*2**n))**(alpha/2)),
f(n)).subs(n,ln(n,2)).simplify(). Trying different values of 𝛼 suggested the following for-
mula for Hölder continuous functions with 𝛼 of 1/j or greater: (M* ∑2𝑗−1

𝑖=0 2𝑖/(2𝑗))/n 1/(2) = M /
((2 1/(2) − 1)*n 1/(2)); and generalizing the latter expression led to the term in the theorem.

Corollary 2. Let f(𝜆) be a strictly bounded factory function. If that function is Lipschitz continuous with
Lipschitz constant M, then the following scheme determined by fbelow and fabove is valid in the sense of
Theorem 1:

• fbelow(n, k) = f(k/n) − M/((sqrt(2) − 1)*sqrt(n)).
• fabove(n, k) = f(k/n) + M/((sqrt(2) − 1)*sqrt(n)).

Or:

• fbelow(n, k) = min(fbelow(4,0), fbelow(4,1), …, fbelow(4,4)) if n < 4; otherwise, f(k/n) −
M*sqrt(2/7)/((sqrt(2) − 1)*sqrt(n)).

• fabove(n, k) = max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n < 4; otherwise, f(k/n) +
M*sqrt(2/7)/((sqrt(2) − 1)*sqrt(n)).

Proof. Because Lipschitz continuous functions are Hölder continuous with Hölder constant M and exponent
1, the result follows from Corollary 1. []

Note: The first scheme given here is a special case of Theorem 1 that was already found by Nacu
and Peres (2005)82.

Corollary 3. Let f(𝜆) be a strictly bounded factory function. If that function has a Lipschitz continuous
derivative with Lipschitz constant L, then the following scheme determined by fbelow and fabove is valid in
the sense of Theorem 1:

• fbelow(n, k) = min(fbelow(4,0), fbelow(4,1), …, fbelow(4,4)) if n < 4; otherwise, f(k/n) − L/(7*n).
• fabove(n, k) = max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n < 4; otherwise, f(k/n) + L/(7*n).

Proof. By part 3 of lemma 2, for each integer 𝑛 ≥ 4 that’s a power of 2 (𝑛0 = 4 in Theorem 1), 𝜙(𝑛) =
(𝐿/2)(1/(7𝑛)) can be taken for each such integer 𝑛, and thus 𝜂(𝑛) = 𝐿/(7𝑛) (where 𝜂(𝑛) is as in Theorem
1). 𝜂(𝑛) is finite and converges to 0 as 𝑛 increases. The result then follows from Theorem 1. []

Note: Nacu and Peres (2005)83 already proved a looser scheme in the case when 𝑓 has a second
derivative on the closed unit interval that is not greater than a constant (a slightly stronger
condition than having a Lipschitz continuous derivative on that domain).

82Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

83Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

23

https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322

Theorem 2. _Let f(𝜆) be a strictly bounded factory function. If that function is convex and nowhere
decreasing, then Theorem 1 remains valid with 𝜑 (n) = E[f(Y/n)] (where Y is a hypergeometric(2*n, n, n)
random variable), rather than as given in that theorem._

Proof. Follows from Theorem 1 and part 4 of Lemma 2 above. With the 𝜙 given in this theorem, the series
𝜂 (n) in Theorem 1 remains nonnegative; also, this theorem adopts Theorem 1’s assumption that the series
converges, so that 𝜂 (n) still decreases with increasing n. []

Proposition 1.

1. Let f be as given in Theorem 1 or 2 or Corollary 1 to 3, except that f must be concave and polynomially
bounded and may have a minimum of 0. Then the schemes of those results remain valid if fbelow(n,
k) = f(k/n), rather than as given in those results.

2. Let f be as given in Theorem 1 or 2 or Corollary 1 to 3, except that f must be convex and polynomially
bounded and may have a maximum of 1. Then the schemes of those results remain valid if fabove(n,
k) = f(k/n), rather than as given in those results.

3. Theorems 1 and 2 and Corollaries 1 to 3 can be extended to all integers n ≥ 1, not just those that are
powers of 2, by defining—

• fbelow(n, k) = (k/n)*fbelow(n − 1, max(0, k − 1)) + ((n − k)/n)*fbelow(n − 1, min(n − 1,
k)), and

• fabove(n, k) = (k/n)*fabove(n − 1, max(0, k − 1)) + ((n − k)/n)*fabove(n − 1, min(n − 1,
k)),

for every integer n ≥ 1 other than a power of 2. Parts 1 and 2 of this proposition still apply to the
modified scheme.

Proof. Parts 1 and 2 follow from Theorem 1 or 2 or Corollary 1 to 3, as the case may be. For part 1, the
lower polynomials are replaced by the degree-n Bernstein polynomials of f, and they meet the conditions in
those theorems by Jensen’s inequality. For part 2, the upper polynomials are involved instead of the lower
polynomials. Part 3 also follows from Remark B of Nacu and Peres (2005)84. []

The following lemma shows that if a scheme for 𝑓(𝜆) shifts polynomials upward and downward, the pre-shifted
polynomials are close to 𝑓(𝜆) by the amount of the shift.

Lemma 3. Let 𝑓 be a strictly bounded factory function. Let 𝑆 be an infinite set of positive integers. For
each integer 𝑛 ≥ 1, let 𝑊𝑛(𝜆) be a function, and let 𝜖𝑛(𝑓) be a nonnegative constant that depends on 𝑓 and
𝑛. Suppose that there are polynomials 𝑔𝑛 and ℎ𝑛 (for each 𝑛 in 𝑆) as follows:

1. 𝑔𝑛 and ℎ𝑛 have Bernstein coefficients 𝑊𝑛(𝑘/𝑛) − 𝜖𝑛(𝑓) and 𝑊𝑛(𝑘/𝑛) + 𝜖𝑛(𝑓), respectively (0 ≤ 𝑘 ≤ 𝑛).
2. 𝑔𝑛 ≤ ℎ𝑛.
3. 𝑔𝑛 and ℎ𝑛 converge to 𝑓 as 𝑛 gets large.
4. (𝑔𝑚 −𝑔𝑛) and (ℎ𝑛 −ℎ𝑚) are polynomials with nonnegative Bernstein coefficients once they are rewritten

to polynomials in Bernstein form of degree exactly 𝑚, where 𝑚 is the smallest number greater than 𝑛
in 𝑆.

Then for each 𝑛 in 𝑆, |𝑓(𝜆) − 𝐵𝑛(𝑊𝑛(𝜆))| ≤ 𝜖𝑛(𝑓) whenever 0 ≤ 𝜆 ≤ 1, where 𝐵𝑛(𝑊𝑛(𝜆)) is the Bernstein
polynomial of degree 𝑛 of the function 𝑊𝑛(𝜆).
Proof: 𝑊𝑛(𝑘/𝑛) is the 𝑘-th Bernstein coefficient of 𝐵𝑛(𝑊𝑛(𝜆)), which is 𝑔𝑛 and ℎ𝑛 before they are shifted
downward and upward, respectively, by 𝜖𝑛(𝑓). Moreover, property 4 in the lemma corresponds to condition
(iv) of Nacu and Peres (2005)85, which implies that, for every 𝑚 > 𝑛, 𝑔𝑛(𝜆) ≤ 𝑔𝑚(𝜆) ≤ 𝑓(𝜆) (the lower

84Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

85Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

24

https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322

polynomials “increase”) and ℎ𝑛(𝜆) ≥ ℎ𝑚(𝜆) ≥ 𝑓(𝜆) (the upper polynomials “decrease”) for every 𝑛 ≥ 1
(Nacu and Peres 2005, Remark A)86.

Then if 𝐵𝑛(𝑊𝑛(𝜆)) < 𝑓(𝜆) for some 𝜆 in the closed unit interval, shifting the left-hand side upward by 𝜖𝑛(𝑓)
(a nonnegative constant) means that ℎ𝑛 = 𝐵𝑛(𝑊𝑛(𝜆)) + 𝜖𝑛(𝑓) ≥ 𝑓(𝜆), and rearranging this expression leads
to 𝑓(𝜆) − 𝐵𝑛(𝑊𝑛(𝜆)) ≤ 𝜖𝑛(𝑓).
Likewise, if 𝐵𝑛(𝑊𝑛(𝜆)) > 𝑓(𝜆) for some 𝜆 in the closed unit interval, shifting the left-hand side downward
by 𝜖𝑛(𝑓) means that 𝑔𝑛 = 𝐵𝑛(𝑊𝑛(𝜆))−𝜖𝑛(𝑓) ≤ 𝑓(𝜆), and rearranging this expression leads to 𝐵𝑛(𝑊𝑛(𝜆))−
𝑓(𝜆) ≤ 𝜖𝑛(𝑓).
This combined means that |𝑓(𝑥) − 𝐵𝑛(𝑊𝑛(𝜆))| ≤ 𝜖𝑛(𝑓) whenever 0 ≤ 𝜆 ≤ 1. []
Corollary 4. If 𝑓(𝜆) satisfies a scheme given in Theorem 1 with 𝑛0 ≥ 1, then 𝐵𝑛(𝑓(𝜆)) comes within 𝜂(𝑛)
of 𝑓 for every integer 𝑛 ≥ 𝑛0 that’s a power of 2; that is, |𝐵𝑛(𝑓(𝜆))| ≤ 𝜂(𝑛) for every such 𝑛.
Lemma 5. Let 𝑛 ≥ 1 be an integer. Suppose 𝑔2𝑛 and 𝑔𝑛 are polynomials in Bernstein form of degree 2𝑛
and 𝑛, respectively, and their domain is the closed unit interval. Suppose 𝑔2𝑛 and 𝑔𝑛 satisfy the property:

• (𝑔2𝑛 − 𝑔𝑛) is a polynomial with nonnegative Bernstein coefficients once it is rewritten to a polynomial
in Bernstein form of degree exactly 2𝑛.

Then for every 𝑥 ≥ 0, 𝑔2𝑛 + 𝑥 and 𝑔𝑛 satisfy that property, and for every 𝑥 ≥ 1, 𝑔2𝑛 ⋅ 𝑥 and 𝑔𝑛 do as well.

The proof follows from two well-known properties of polynomials in Bernstein form: adding 𝑥 to 𝑔2𝑛 amounts
to adding 𝑥 to its Bernstein coefficients, and multiplying 𝑔2𝑛 by 𝑥 amounts to multiplying its Bernstein
coefficients by 𝑥. In either case, 𝑔2𝑛’s Bernstein coefficients become no less than they otherwise would, so
that (𝑔2𝑛 − 𝑔𝑛) continues to have non-negative Bernstein coefficients as required by the property.

It is also true that, for every 𝑥 ≥ 0, 𝑔2𝑛 ⋅ 𝑥 and 𝑔𝑛 ⋅ 𝑥 satisfy the same property, but a detailed proof of this
is left as an exercise to anyone interested. (If 𝑥 = 0, 𝑔𝑛 ⋅ 𝑥 = 𝑔2𝑛 ⋅ 𝑥 = 0, so that the property is trivially
satisfied.)

Finally, it is true that, for every real number 𝑥, 𝑔2𝑛 + 𝑥 and 𝑔𝑛 + 𝑥 satisfy the same property, but, again, a
detailed proof of this is left as an exercise to anyone interested. (If 𝑥 = 0, 𝑔𝑛 + 𝑥 = 𝑔𝑛 and 𝑔2𝑛 + 𝑥 = 𝑔2𝑛, so
that the property is trivially satisfied.)

8.4.1 A Conjecture on Polynomial Approximation

The following conjecture suggests there may be a way to easily adapt other approximating polynomials,
besides the ordinary Bernstein polynomials, to the Bernoulli factory problem.

Conjecture.

Let 𝑟 ≥ 1, and let 𝑓 be a strictly bounded factory function whose 𝑟-th derivative is continuous. Let
𝑀 be the maximum of the absolute value of 𝑓 and its derivatives up to the 𝑟-th derivative. Let
𝑊20(𝜆), 𝑊21(𝜆), ..., 𝑊2𝑛(𝜆), ... be functions on the closed unit interval that converge uniformly to 𝑓 (that is,
for every tolerance level, all 𝑊2𝑖 after some value 𝑖 are within that tolerance level of 𝑓 at all points on the
closed unit interval).

For each integer 𝑛 ≥ 1 that’s a power of 2, suppose that there is 𝐷 > 0 such that—

|𝑓(𝜆) − 𝐵𝑛(𝑊𝑛(𝜆))| ≤ 𝐷𝑀/𝑛𝑟/2,

whenever 0 ≤ 𝜆 ≤ 1, where 𝐵𝑛(𝑊𝑛(𝜆)) is the degree-𝑛 Bernstein polynomial of 𝑊𝑛(𝜆).
Then there is 𝐶0 ≥ 𝐷 such that for every 𝐶 ≥ 𝐶0, there are polynomials 𝑔𝑛 (for each 𝑛 ≥ 1) as follows:

86Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

25

https://projecteuclid.org/euclid.aoap/1106922322

1. 𝑔𝑛 has Bernstein coefficients 𝑊𝑛(𝑘/𝑛) − 𝐶𝑀/𝑛𝑟/2 (0 ≤ 𝑘 ≤ 𝑛), if 𝑛 is a power of 2, and 𝑔𝑛 = 𝑔𝑛−1
otherwise.

2. 𝑔𝑛 converges to 𝑓 as 𝑛 gets large.
3. (𝑔𝑛+1 −𝑔𝑛) is a polynomial with nonnegative Bernstein coefficients once it is rewritten to a polynomial

in Bernstein form of degree exactly 𝑛 + 1.
Equivalently (see also Nacu and Peres 2005), there is 𝐶1 > 0 such that, for each integer 𝑛 ≥ 1 that’s a power
of 2—

∣(
𝑘

∑
𝑖=0

𝑊𝑛 (𝑖
𝑛) 𝜎𝑛,𝑘,𝑖) − 𝑊2𝑛 (𝑘

2𝑛)∣ ≤ 𝐶1𝑀
𝑛𝑟/2 , (PB)

whenever 0 ≤ 𝑘 ≤ 2𝑛, so that 𝐶 = 𝐶1
1−√2/2𝑟+1 . Here, 𝜎𝑛,𝑘,𝑖 = (𝑛

𝑖)(𝑛
𝑘−𝑖)/(2𝑛

𝑘) is the probability that a
hypergeometric(2*n, k, n) random variable equals i.

It is further conjectured that the same value of 𝐶0 (or 𝐶1) suffices when 𝑓 has a Lipschitz continuous (𝑟 − 1)-
th derivative and 𝑀 is the maximum of the absolute value of 𝑓 and the Lipschitz constants of 𝑓 and its
derivatives up to the (𝑟 − 1)-th derivative.

Notes:

1. If 𝑊𝑛(0) = 𝑓(0) and 𝑊𝑛(1) = 𝑓(1) for every 𝑛, then (PB) is automatically true when 𝑘 = 0
and 𝑘 = 2𝑛, so that the statement has to be checked only for 0 < 𝑘 < 2𝑛. If, in addition,
𝑊𝑛 is symmetric about 1/2, so that 𝑊𝑛(𝜆) = 𝑊𝑛(1 − 𝜆) whenever 0 ≤ 𝜆 ≤ 1, then the
statement has to be checked only for 0 < 𝑘 ≤ 𝑛 (since the values 𝜎𝑛,𝑘,𝑖 are symmetric in
that they satisfy 𝜎𝑛,𝑘,𝑖 = 𝜎𝑛,𝑘,𝑘−𝑖).

2. If 𝑊𝑛 is a “linear operator”, the left-hand side of (PB) is not greater than |(∑𝑘
𝑖=0(𝑊𝑛(𝑖

𝑛))𝜎𝑛,𝑘,𝑖)−
𝑊𝑛(𝑘/(2𝑛))| + |𝑊𝑛(𝑘/(2𝑛)) − 𝑓(𝑘/(2𝑛))| + |𝑊2𝑛(𝑘/(2𝑛)) − 𝑓(𝑘/(2𝑛))|.

3. If 𝑊𝑛 is a “linear operator” and satisfies |𝑓(𝜆) − 𝑊𝑛(𝜆)| ≤ 𝐷𝑀/𝑛𝑟/2, then the left-hand
side of (PB) is not greater than |(∑𝑘

𝑖=0(𝑊𝑛(𝑖
𝑛))𝜎𝑛,𝑘,𝑖) − 𝑊𝑛(𝑘/(2𝑛))| + 𝐷𝑀(2𝑟/2+1)

2𝑟/2
1

𝑛𝑟/2 .
4. By Lemma 3, 𝐵𝑛(𝑊𝑛(𝑓(𝜆))) would be close to 𝑓(𝜆) by at most 𝐶0𝑀/𝑛𝑟/2. Properties 2

and 3 above correspond to (iii) and (iv) in Nacu and Peres (2005, Proposition 3)87.

The following lower bounds on 𝐶0, given certain polynomials, can be shown. In the table:

• 𝑀𝑟 is the maximum of the absolute value of 𝑓(𝜆) and its derivatives up to the 𝑟-th derivative.
• The bounds are valid only if 𝑛 is a power-of-two integer and, unless otherwise specified, only if 𝑛 ≥ 1.

For a description of the polynomials in the third column, see “Approximations in Bernstein Form”88.

If 𝑟 is… And…

With the
following
polynomial’s
Bernstein
coefficients:

Then 𝐶0 must
be greater
than:

And 𝐶0 is
conjectured to
be:

Because of this
counterexam-
ple:

3 𝑀 = 𝑀3 𝑈𝑛,2 0.29004 3
16−4

√
2 <

0.29005.
2𝜆 (1 − 𝜆)

3 𝑀 = 𝑀3,
𝑛 ≥ 4

𝑈𝑛,2 0.08287 0.09 2𝜆 (1 − 𝜆)

4 𝑀 = 𝑀4 𝑈𝑛,2 0.24999 0.25 2𝜆 (1 − 𝜆)

87Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

88https://peteroupc.github.io/bernapprox.html

26

https://peteroupc.github.io/bernapprox.html
https://projecteuclid.org/euclid.aoap/1106922322

If 𝑟 is… And…

With the
following
polynomial’s
Bernstein
coefficients:

Then 𝐶0 must
be greater
than:

And 𝐶0 is
conjectured to
be:

Because of this
counterexam-
ple:

4 𝑀 = 𝑀4,
𝑛 ≥ 4

𝑈𝑛,2 0.14 0.15 2𝜆 (1 − 𝜆)

5 𝑀 = 𝑀5 𝑈𝑛,3 0.26 0.27 2𝜆 (1 − 𝜆)
5 𝑀 = 𝑀5,

𝑛 ≥ 4
𝑈𝑛,3 0.1226 0.13 𝜆3

6 𝑀 = 𝑀6 𝑈𝑛,3 0.25 0.26 𝜆3

6 𝑀 = 𝑀6,
𝑛 ≥ 4

𝑈𝑛,3 0.25 0.26 𝜆3

3 𝑀 = 𝑀3,
𝑛 ≥ 8

𝐿2,𝑛/2 0.0414 0.08 1
2 −
(1 − 2𝜆)3.00001 /2
if 𝜆 < 1/2; 1

2 −
(2𝜆 − 1)3.00001 /2
otherwise.

8.4.2 Example of Polynomial-Building Scheme

The following example uses the results above to build a polynomial-building scheme for a factory function.

Let f (𝜆) = 0 if 𝜆 is 0, and (ln(𝜆 /exp(3))) −2 otherwise. (This function is not Hölder continuous; its slope
is exponentially steep at the point 0.) Then the following scheme is valid in the sense of Theorem 1:

• 𝜂 (k) = Φ(1, 2, (ln(k)+ln(7)+6)/ln(2))*4/ln(2)2.
• fbelow(n, k) = f(k/n).
• fabove(n, k) = max(fabove(4,0), fabove(4,1), …, fabove(4,4)) if n < 4; otherwise, f(k/n) + 𝜂 (n).

Where Φ(.) is a function called the Lerch transcendent.

The first step is to find a concave modulus of continuity of f (called 𝜔 (h)). Because f is strictly increasing
and concave, and because f (0) = 0, 𝜔 (h) = f (h) can be taken for 𝜔 .

Now, plugging sqrt(1/(7*n)) into 𝜔 leads to the following for Theorem 2 (assuming n ≥ 0):

• 𝜙 (n) = 1/(ln(sqrt(7/n)/7) − 3)2.

Now, by applying Theorem 1, compute 𝜂 (k) by substituting n with 2𝑛, summing over [k, ∞), and substituting
k with ln(k)/ln(2). 𝜂 converges, resulting in:], e[i] < choose(k, i)*choose(2*r, r).

1. Set iter to 0.
2. Flip the input coin k times. Then build a bitstring B1 consisting of the coin flip results in the order

they occurred. Let i be the number of ones in B1.
3. Generate 2*r unbiased random bits (see below). (Rather than flipping the input coin 2*r times, as in

the algorithm of Proposition 2.5.) Then build a bitstring B2 consisting of the coin flip results in the
order they occurred.

4. If the number of ones in B2 is other than r: Translate B1 + B2 to an integer under mapping 1, then
pass that number to extractor 2 (†), then add 1 to iter, then go to step 2.

5. Translate B1 + B2 to an integer under mapping 2, call the integer 𝛽 . If 𝛽 < d[i], pass 𝛽 to extractor
3, then pass iter to extractor 6, then output a 1. Otherwise, if 𝛽 < e[i], pass 𝛽 − d[i] to extractor 4,
then pass iter to extractor 6, then output a 0. Otherwise, pass 𝛽 − e[i] to extractor 5, then add 1 to
iter, then go to step 2.

27

The mappings used in this algorithm are as follows:

1. A one-to-one mapping between—
• bitstrings of length k + 2*r with fewer or greater than r ones among the last 2*r bits, and
• the integers in [0, 2𝑘 * (2 2 − choose(2*r, r))).

2. A one-to-one mapping between—
• bitstrings of length k + 2*r with exactly i ones among the first k bits and exactly r ones among

the remaining bits, and
• the integers in [0, choose(k, i)*choose(2*r, r)).

In this algorithm, an unbiased random bit is generated as follows. Let m be an even integer that is 32 or
greater (in general, the greater m is, the more efficient the overall algorithm is in terms of coin flips).

1. Use extractor 1 to extract outputs from floor(n/m)*m inputs, where n is the number of input bits
available to that extractor. Do the same for the remaining extractors.

2. If extractor 2 has at least one unused output bit, take an output and stop. Otherwise, repeat this step
for the remaining extractors.

3. Flip the input coin at least m times, append the coin results to extractor 1’s inputs, and go to step 1.

Now consider the last paragraph of Proposition 2.5. If the input coin were flipped in step 2, the probability
of—

• outputting 1 in the algorithm’s last step would be P1 = 𝜆 𝑟*(1 − 𝜆)𝑟*D(𝜆), and
• outputting either 0 or 1 in that step would be P01 = 𝜆 𝑟*(1 − 𝜆)𝑟*E(𝜆),

so that the algorithm would simulate f (𝜆) = P1 / P01. Observe that the 𝜆 𝑟*(1 − 𝜆)𝑟 cancels out in the
division. Thus, we could replace the input coin with unbiased random bits and still simulate f (𝜆); the 𝜆 𝑟*(1
− 𝜆)𝑟 above would then be (1/2) 2 .

While this algorithm is coin-flip-efficient, it is not believed to be an optimal factory, at least not without
more work. In particular, a bigger savings of input coin flips could occur if f (𝜆) maps each value a or greater
and b or less to a small range of values, so that the algorithm could, for example, generate a uniform random
variate between 0 and 1 using unbiased random bits and see whether that variate lies outside that range of
values — and thus produce a sample from f (𝜆) without flipping the input coin again.

(†) For example, by translating the number to input bits via Pae’s entropy-preserving binarization (Pae
2018)89. But correctness might depend on how this is done; after all, the number of coin flips per sample
must equal or exceed the entropy bound for every 𝜆 .

8.5 Pushdown Automata and Algebraic Functions
This section has mathematical proofs showing which kinds of algebraic functions (functions that can be a
solution of a nonzero polynomial equation) can be simulated with a pushdown automaton (a state machine
with a stack).

The following summarizes what can be established about these algebraic functions:

• sqrt(𝜆) can be simulated.
• Every rational function with rational Bernstein coefficients that maps the open interval (0, 1) to itself

can be simulated.
• If f (𝜆) can be simulated, so can any Bernstein-form polynomial in the variable f (𝜆) with Bernstein

coefficients that can be simulated.
• If f (𝜆) and g(𝜆) can be simulated, so can f (𝜆)*g(𝜆), f (g(𝜆)), and g(f (𝜆)).
• If a full-domain pushdown automaton (defined later) can generate words of a given length with a given

probability (a probability distribution of word lengths), then the probability generating function for that
89S. Pae, “Binarization Trees and Random Number Generation”, arXiv:1602.06058v2 [cs.DS], 2018. https://arxiv.or

g/abs/1602.06058v2

28

https://arxiv.org/abs/1602.06058v2
https://arxiv.org/abs/1602.06058v2

distribution can be simulated, as well as for that distribution conditioned on a finite set or periodic
infinite set of word lengths (for example, all odd word lengths only).

• If a stochastic context-free grammar (defined later) can generate a probability distribution of word
lengths, and terminates with probability 1, then the probability generating function for that distribu-
tion can be simulated.

• Every quadratic irrational number between 0 and 1 can be simulated.

It is not yet known whether the following functions can be simulated:

• 𝜆 1/ for prime numbers p greater than 2. The answer may be no; Banderier and Drmota (2015)90

proved results that show, among other things, that 𝜆1/𝑝, where 𝑝 is not a power of 2, is not a possible
solution to 𝑃(𝜆) = 0, where 𝑃(𝜆) is a polynomial whose “power” coefficients are non-negative real
numbers.

• min(𝜆 , 1 − 𝜆).

The following definitions are used in this section:

1. A pushdown automaton has a finite set of states and a finite set of stack symbols, one of which is called
EMPTY, and takes a coin that shows heads with an unknown probability. It starts at a given state
and its stack starts with EMPTY. On each iteration:

• The automaton flips the coin.
• Based on the coin flip (HEADS or TAILS), the current state, and the top stack symbol, it moves

to a new state (or keeps it unchanged) and replaces the top stack symbol with zero, one or two
symbols. Thus, there are three kinds of transition rules:

– (state, flip, symbol) → (state2, {symbol2}): move to state2, replace top stack symbol with
same or different one.

– (state, flip, symbol) → (state2, {symbol2, new}): move to state2, replace top stack symbol
with symbol2, then push a new symbol (new) onto the stack.

– (state, flip, symbol) → (state2, {}): move to state2, pop the top symbol from the stack.

When the stack is empty, the machine stops, and returns either 0 or 1 depending on the state it
ends up at. (Because each left-hand side has no more than one possible transition, the automaton is
deterministic.)

2. A full-domain pushdown automaton means a pushdown automaton that terminates with probability 1
given a coin with probability of heads 𝜆 , for every 𝜆 greater than 0 and less than 1.

3. PDA is the class of functions f (𝜆) that satisfy 0<f (𝜆)<1 whenever 0< 𝜆 <1, and can be simulated by
a full-domain pushdown automaton. PDA also includes the constant functions 0 and 1.

4. ALGRAT is the class of functions that satisfy 0<f (𝜆)<1 whenever 0< 𝜆 <1, are continuous, and
are algebraic over the rational numbers (they satisfy a nonzero polynomial system whose “power”
coefficients are rational numbers; specifically, there is a nonzero polynomial P(x, y) in two variables
and whose “power” coefficients are rational numbers, such that P(x, f (x)) = 0 for every x in the domain
of f). ALGRAT also includes the constant functions 0 and 1.

5. A probability generating function has the form p0* 𝜆 0 + p1* 𝜆 1 + …, where p𝑖 is the probability of
getting i.

Notes:

1. Mossel and Peres (2005)91 defined pushdown automata to start with a non-empty stack of
90Banderier, C. And Drmota, M., 2015. Formulae and asymptotics for coefficients of algebraic functions. Combinatorics,

Probability and Computing, 24(1), pp.1-53.
91Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,

2005.

29

arbitrary size, and to allow each rule to replace the top symbol with an arbitrary number of
symbols. Both cases can be reduced to the definition in this section.

2. Pushdown automata, as defined here, are very similar to so-called probabilistic right-linear
indexed grammars (Icard 2020)92 and can be translated to those grammars as well as to prob-
abilistic pushdown systems (Etessami and Yannakakis 2009)93, as long as those grammars
and systems use only transition probabilities that are rational numbers.

Proposition 0 (Mossel and Peres 200594, Theorem 1.2): A full-domain pushdown automaton can simulate
a function that maps (0, 1) to itself only if the function is in class ALGRAT.

It is not known whether ALGRAT and PDA are equal, but the following can be established about PDA:

Lemma 1A: Let g(𝜆) be a function in the class PDA, and suppose a pushdown automaton F has two rules
of the form (state, HEADS, stacksymbol) → RHS1 and (state, TAILS, stacksymbol) → RHS2, where
state and stacksymbol are a specific state/symbol pair among the left-hand sides of F’s rules. Then there
is a pushdown automaton that transitions to RHS1 with probability g(𝜆) and to RHS2 with probability 1 −
g(𝜆) instead.

Proof: If RHS1 and RHS2 are the same, then the conclusion holds and nothing has to be done. Thus assume
RHS1 and RHS2 are different.

Let G be the full-domain pushdown automaton for g. Assume that machines F and G stop when they pop
EMPTY from the stack. If this is not the case, transform both machines by renaming the symbol EMPTY
to EMPTY ′ ′ , adding a new symbol EMPTY ′ ′ and new starting state X0, and adding rules (X0, flip,
EMPTY) → (start, {EMPTY ′ ′ }) and rule (state, flip, EMPTY) → (state, {}) for all states other than X0,
where start is the starting state of F or G, as the case may be.

Now, rename each state of G as necessary so that the sets of states of F and of G are disjoint (mutually
exclusive). Then, add to F a new stack symbol EMPTY ′ (or a name not found in the stack symbols of G,
as the case may be). Then, for the following two pairs of rules in F, namely—

(state, HEADS, stacksymbol) → (state2heads, stackheads), and (state, TAILS, stacksymbol) → (state2tails,
stacktails),

add two new states state0 and state1 that correspond to state and have names different from all other states,
and replace that rule with the following rules:

(state, HEADS, stacksymbol) → (gstart, {stacksymbol, EMPTY ′ }), (state, TAILS, stacksymbol) → (gstart,
{stacksymbol, EMPTY ′ }), (state0, HEADS, stacksymbol) → (state2heads, stackheads), (state0, TAILS,
stacksymbol) → (state2heads, stackheads), (state1, HEADS, stacksymbol) → (state2tails, stacktails), and
(state1, TAILS, stacksymbol) → (state2tails, stacktails),

where gstart is the starting state for G, and copy the rules of the automaton for G onto F, but with the
following modifications:

• Replace the symbol EMPTY in G with EMPTY ′ .
• Replace each state in G with a name distinct from all other states in F.
• Replace each rule in G of the form (state, flip, EMPTY ′) → (state2, {}), where state2 is a final state

of G associated with output 1, with the rule (state, flip, EMPTY ′) → (state1, {}).
• Replace each rule in G of the form (state, flip, EMPTY ′) → (state2, {}), where state2 is a final state

of G associated with output 0, with the rule (state, flip, EMPTY ′) → (state0, {}).
92Icard, Thomas F., “Calibrating generative models: The probabilistic Chomsky–Schützenberger hierarchy”, Journal of

Mathematical Psychology 95 (2020): 102308.
93Icard, Thomas F., “Calibrating generative models: The probabilistic Chomsky–Schützenberger hierarchy”, Journal of

Mathematical Psychology 95 (2020): 102308.
94Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,

2005.

30

Then, the final states of the new machine are the same as those for the original machine F. []

Lemma 1B: There are pushdown automata that simulate the probabilities 0 and 1.

Proof: The probability 0 automaton has the rules (START, HEADS, EMPTY) → (START, {}) and (START,
TAILS, EMPTY) → (START, {}), and its only state START is associated with output 0. The probability
1 automaton is the same, except START is associated with output 1. Both automata obviously terminate
with probability 1. []

Because of Lemma 1A, it’s possible to label each left-hand side of a pushdown automaton’s rules with not just
HEADS or TAILS, but also a rational number or another function in PDA, as long as for each state/symbol
pair, the probabilities for that pair sum to 1. For example, rules like the following are now allowed:

(START, 1/2, EMPTY) → …, (START, sqrt(𝜆)/2, EMPTY) → …, (START, (1 − sqrt(𝜆))/2, EMPTY) →
….

Proposition 1A: If f(𝜆) is in the class PDA, then so is every polynomial written as—

(𝑛
0)𝑓(𝜆)0(1 − 𝑓(𝜆))𝑛−0𝑎[0] + (𝑛

1)𝑓(𝜆)1(1 − 𝑓(𝜆))𝑛−1𝑎[1] + ... + (𝑛
𝑛)𝑓(𝜆)𝑛(1 − 𝑓(𝜆))𝑛−𝑛𝑎[𝑛],

where n is the polynomial’s degree and a[0], a[1], …, a[n] are functions in the class PDA.

Proof Sketch: This corresponds to a two-stage pushdown automaton that follows the algorithm of Goyal
and Sigman (2012)95: The first stage counts the number of “heads” shown when flipping the f(𝜆) coin, and
the second stage flips another coin that has success probability a[i], where i is the number of “heads”. The
automaton’s transitions take advantage of Lemma 1A. []

Proposition 1: If f(𝜆) and g(𝜆) are functions in the class PDA, then so is their product, namely f(𝜆)*g(𝜆).
Proof: Special case of Proposition 1A with n=1, f (𝜆)=f (𝜆), a[0]=0 (using Lemma 1B), and a[1]=g(𝜆). []
Corollary 1A: If f(𝜆), g(𝜆), and h(𝜆) are functions in the class PDA, then so is f(𝜆)*g(𝜆) + (1 −
f(𝜆))*h(𝜆).
Proof: Special case of Proposition 1A with n=1, f (𝜆)=f (𝜆), a[0]=h(𝜆), and a[1]=g(𝜆). []
Proposition 2: If f(𝜆) and g(𝜆) are functions in the class PDA, then so is their composition, namely
f(g(𝜆)) or (f�g)(𝜆).
Proof: Let F be the full-domain pushdown automaton for f. For each state/symbol pair among the left-hand
sides of F’s rules, apply Lemma 1A to the automaton F, using the function g. Then the new machine F
terminates with probability 1 because the original F and the original automaton for g do for every 𝜆 greater
than 0 and less than 1, and because the automaton for g never outputs the same value with probability 0 or
1 for any 𝜆 greater than 0 or less than 1. Moreover, f is in class PDA by Theorem 1.2 of (Mossel and Peres
2005)96 because the machine is a full-domain pushdown automaton. []

Proposition 3: Every rational function with rational Bernstein coefficients that maps the open interval (0,
1) to itself is in class PDA.

Proof: These functions can be simulated by a finite-state machine (Mossel and Peres 2005)97. This corre-
sponds to a full-domain pushdown automaton that has no stack symbols other than EMPTY, never pushes
symbols onto the stack, and pops the only symbol EMPTY from the stack whenever it transitions to a final
state of the finite-state machine. []

95Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.

96Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.

97Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.

31

Note: An unbounded stack size is necessary for a pushdown automaton to simulate functions
that a finite-state machine can’t. With a bounded stack size, there is a finite-state machine where
each state not only holds the pushdown automaton’s original state, but also encodes the contents
of the stack (which is possible because the stack’s size is bounded); each operation that would
push, pop, or change the top symbol transitions to a state with the appropriate encoding of the
stack instead.

Proposition 4: If a full-domain pushdown automaton can generate words with the same letter such that the
length of each word follows a probability distribution, then that distribution’s probability generating function
is in class PDA.

Proof: Let F be a full-domain pushdown automaton. Add one state FAILURE, then augment F with a
special “letter-generating” operation as follows. Add the following rule that pops all symbols from the stack:

(FAILURE, flip, stacksymbol) → (FAILURE, {}),

and for each rule of the following form that transitions to a letter-generating operation (where S and T are
arbitrary states):

(S, flip, stacksymbol) → (T, newstack),

add another state S ′ (with a name that differs from all other states) and replace that rule with the following
rules:

(S, flip, stacksymbol) → (S ′ , {stacksymbol}), (S ′ , HEADS, stacksymbol) → (T, newstack), and (S ′ , TAILS,
stacksymbol) → (FAILURE, {}).

Then if the stack is empty upon reaching the FAILURE state, the result is 0, and if the stack is empty
upon reaching any other state, the result is 1. By Dughmi et al. (2021)98, the machine now simulates the
distribution’s probability generating function. Moreover, the function is in class PDA by Theorem 1.2 of
Mossel and Peres (2005)99 because the machine is a full-domain pushdown automaton. []

Define a stochastic context-free grammar as follows. The grammar consists of a finite set of nonterminals and
a finite set of letters, and rewrites one nonterminal (the starting nonterminal) into a word. The grammar
has three kinds of rules (in generalized Chomsky Normal Form (Etessami and Yannakakis 2009)100):

• X → a (rewrite X to the letter a).
• X →𝑝 (a, Y) (with rational probability p, rewrite X to the letter a followed by the nonterminal Y).

For the same left-hand side, all the p must sum to 1.
• X → (Y, Z) (rewrite X to the nonterminals Y and Z in that order).

Instead of a letter (such as a), a rule can use 𝜀 (the empty string). (The grammar is context-free because
the left-hand side has only a single nonterminal, so that no context from the word is needed to parse it.)

Proposition 5: Every stochastic context-free grammar can be transformed into a pushdown automaton. If the
automaton is a full-domain pushdown automaton and the grammar has a one-letter alphabet, the automaton
can generate words such that the length of each word follows the same distribution as the grammar, and that
distribution’s probability generating function is in class PDA.

Proof Sketch: In the equivalent pushdown automaton:

• X → a becomes the two rules—(START, HEADS, X) → (letter, {}), and(START, TAILS, X) → (letter,
{}).Here, letter is either START or a unique state in F that “detours” to a letter-generating operation

98Dughmi, Shaddin, Jason Hartline, Robert D. Kleinberg, and Rad Niazadeh. “Bernoulli Factories and Black-box Reductions
in Mechanism Design.” Journal of the ACM (JACM) 68, no. 2 (2021): 1-30.

99Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.
100Etessami, K. and Yannakakis, M., “Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear
equations”, Journal of the ACM 56(1), pp.1-66, 2009.

32

for a and sets the state back to START when finished (see Proposition 4). If a is 𝜀 , letter is START
and no letter-generating operation is done.

• X →p𝑖 (a𝑖, Y 𝑖) (all rules with the same nonterminal X) are rewritten to enough rules to transition
to a letter-generating operation for a𝑖, and swap the top stack symbol with Y 𝑖, with probability p𝑖,
which is possible with just a finite-state machine (see Proposition 4) because all the probabilities are
rational numbers (Mossel and Peres 2005)101. If a𝑖 is 𝜀 , no letter-generating operation is done.

• X → (Y, Z) becomes the two rules—(START, HEADS, X) → (START, {Z, Y}), and(START, TAILS,
X) → (START, {Z, Y}).

Here, X is the stack symbol EMPTY if X is the grammar’s starting nonterminal. Now, assuming the
automaton is full-domain, the rest of the result follows easily. For a single-letter alphabet, the grammar
corresponds to a system of polynomial equations, one for each rule in the grammar, as follows:

• X → a becomes X = 1 if a is the empty string (𝜀), or X = 𝜆 otherwise.
• For each nonterminal X, all n rules of the form X →p𝑖 (a𝑖, Y 𝑖) become the equation X = p1* 𝜆 1*Y 1

+ p2* 𝜆 2*Y 2 + … + p𝑛* 𝜆 𝑛*Y𝑛, where 𝜆 𝑖 is either 1 if a𝑖 is 𝜀 , or 𝜆 otherwise.
• X → (Y, Z) becomes X = Y*Z.

Solving this system for the grammar’s starting nonterminal, and applying Proposition 4, leads to the probabil-
ity generating function for the grammar’s word distribution. (See also Flajolet et al. 2010102, Icard 2020103.)
[]

Example: The stochastic context-free grammar—X →1/2 (a, X1),X1 → (X, X2),X2 → (X,
X),X →1/2 (a, X3),X3 → 𝜀 ,which encodes ternary trees (Flajolet et al. 2010)104, corresponds
to the equation X = (1/2) * 𝜆 *X*X*X + (1/2)* 𝜆 *1, and solving this equation for X leads to
the probability generating function for such trees, which is a complicated expression.

Notes:

1. A stochastic context-free grammar in which all the probabilities are 1/2 is called a binary
stochastic grammar (Flajolet et al. 2010)105. If every probability is a multiple of 1/n, then the
grammar can be called an “n-ary stochastic grammar”. It is even possible for a nonterminal
to have two rules of probability 𝜆 and (1 − 𝜆), which are used when the input coin returns
1 (HEADS) or 0 (TAILS), respectively.

2. If a pushdown automaton simulates the function f (𝜆), then f corresponds to a special system
of equations, built as follows (Mossel and Peres 2005)106; see also Esparza et al. (2004)107.
For each state of the automaton (call the state en), include the following equations in the
system based on the automaton’s transition rules:

• (st, p, sy) → (s2, {}) becomes either 𝛼 st,sy,en = p if s2 is en, or 𝛼 st,sy,en = 0 otherwise.
• (st, p, sy) → (s2, {sy1}) becomes 𝛼 st,sy,en = p * 𝛼 s2,sy1,en.
• (st, p, sy) → (s2, {sy1, sy2}) becomes 𝛼 st,sy,en = p* 𝛼 s2,sy2,_ 𝜎 [1]* 𝛼 𝜎 [1],sy1,en

+ … + p* 𝛼 s2,sy2, 𝜎 [n]* 𝛼 𝜎 [n],sy1,en, where 𝜎 [i]_ is one of the machine’s n states.
101Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.
102Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010 https:
//arxiv.org/abs/0906.5560

103Levy, H., Stochastic dominance, 1998.
104Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010 https:
//arxiv.org/abs/0906.5560

105Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010 https:
//arxiv.org/abs/0906.5560

106Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.
107Esparza, J., Kučera, A. and Mayr, R., 2004, July. Model checking probabilistic pushdown automata. In Proceedings of the

19th Annual IEEE Symposium on Logic in Computer Science, 2004. (pp. 12-21). IEEE.

33

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

(Here, p is the probability of using the given transition rule; the special value HEADS
becomes 𝜆 , and the special value TAILS becomes 1 − 𝜆 .) Now, each time multiple
equations have the same left-hand side, combine them into one equation with the same
left-hand side, but with the sum of their right-hand sides. Then, for every variable of the
form 𝛼 a,b,c not yet present in the system, include the equation 𝛼 a,b,c = 0. Then, for each
final state fs that returns 1, solve the system for the variable 𝛼 START,EMPTY,fs (where
START is the automaton’s starting state) to get a solution (a function) that maps the open
interval (0, 1) to itself. (Each solve can produce multiple solutions, but only one of them
will map that open interval to itself assuming every p is either HEADS or TAILS.) Finally,
add all the solutions to get f (𝜆).

3. Assume there is a pushdown automaton (F) that follows Definition 1 except it uses a set of
N input letters (and not simply HEADS or TAILS), accepts an input word if the stack is
empty, and rejects the word if the machine reaches a configuration without a transition rule.
Then a pushdown automaton in the full sense of Definition 1 (G) can be built. In essence:

1. Add a new FAILURE state, which when reached, pops all symbols from the stack.
2. For each pair (state, stacksymbol) for F, add a set of rules that generate one of the input

letters (each letter i generated with probability f 𝑖(𝜆), which must be a function in PDA),
then use the generated letter to perform the transition stated in the corresponding rule
for F. If there is no such transition, transition to the FAILURE state instead.

3. When the stack is empty, output 0 if G is in the FAILURE state, or 1 otherwise.

ThenG returns 1 with the same probability as F accepts an input word with letters randomly
generated as in the second step. Also, one of the N letters can be a so-called “end-of-string”
symbol, so that a pushdown automaton can be built that accepts “empty strings”; an
example is Elder et al. (2015)108.

Proposition 6: If a full-domain pushdown automaton can generate a distribution of words with the same
letter, there is a full-domain pushdown automaton that can generate a distribution of such words conditioned
on—

1. a finite set of word lengths, or
2. a periodic infinite set of word lengths.

One example of a finite set of word lengths is {1, 3, 5, 6}, where only words of length 1, 3, 5, or 6 are allowed.
A periodic infinite set is defined by a finite set of integers such as {1}, as well as an integer modulus such as
2, so that in this example, all integers congruent to 1 modulo 2 (that is, all odd integers) are allowed word
lengths and belong to the set.

Proof Sketch:

1. As in Lemma 1A, assume that the automaton stops when it pops EMPTY from the stack. Let S be
the finite set (for example, {1, 3, 5, 6}), and let M be the maximum value in the finite set. For each
integer i in [0, M], make a copy of the automaton and append the integer i to the name of each of
its states. Combine the copies into a new automaton F, and let its start state be the start state for
copy 0. Now, whenever F generates a letter, instead of transitioning to the next state after the letter-
generating operation (see Proposition 4), transition to the corresponding state for the next copy (for
example, if the operation would transition to copy 2’s version of “XYZ”, namely “2_XYZ”, transition
to “3_XYZ” instead), or if the last copy is reached, transition to the last copy’s FAILURE state. If
F would transition to a failure state corresponding to a copy not in S (for example, “0_FAILURE”,
“2_FAILURE”, “3_FAILURE” in this example), first all symbols other than EMPTY are popped from
the stack and then F transitions to its start state (this is a so-called “rejection” operation). Now, all
the final states (except FAILURE states) for the copies corresponding to the values in S (for example,

108Elder, Murray, Geoffrey Lee, and Andrew Rechnitzer. “Permutations generated by a depth 2 stack and an infinite stack in
series are algebraic.” Electronic Journal of Combinatorics 22(1), 2015.

34

copies 1, 3, 5, 6 in the example) are treated as returning 1, and all other states are treated as returning
0.

2. Follow (1), except as follows: (A) M is equal to the integer modulus minus 1. (B) For the last copy
of the automaton, instead of transitioning to the next state after the letter-generating operation (see
Proposition 4), transition to the corresponding state for copy 0 of the automaton. []

Proposition 7: Every constant function equal to a quadratic irrational number between 0 and 1 is in class
PDA.

A continued fraction is one way to write a real number. For purposes of the following proof, every real
number greater than 0 and less than 1 has the following continued fraction expansion: 0 + 1 / (a[1] + 1 /
(a[2] + 1 / (a[3] + …))), where each a[i], a partial denominator, is an integer greater than 0. A quadratic
irrational number is an irrational number that can be written as (b+sqrt(c))/d, where b, c, and d are rational
numbers.

Proof: By Lagrange’s continued fraction theorem, every quadratic irrational number has a continued frac-
tion expansion that is eventually periodic; the expansion can be described using a finite number of partial
denominators, the last “few” of which repeat forever. The following example describes a periodic continued
fraction expansion: [0; 1, 2, (5, 4, 3)], which is the same as [0; 1, 2, 5, 4, 3, 5, 4, 3, 5, 4, 3, …]. In this
example, the partial denominators are the numbers after the semicolon; the size of the period ((5, 4, 3))
is 3; and the size of the non-period (1, 2) is 2.

Given a periodic expansion, and with the aid of an algorithm for simulating continued fractions109, a
recursive Markov chain for the expansion (Etessami and Yannakakis 2009)110 can be described as follows.
The chain’s components are all built on the following template. The template component has one entry E,
one inner node N, one box, and two exits X0 and X1. The box has one call port as well as two return ports
B0 and B1.

• From E: Go to N with probability x, or to the box’s call port with probability 1 − x.
• From N: Go to X1 with probability y, or to X0 with probability 1 − y.
• From B0: Go to E with probability 1.
• From B1: Go to X0 with probability 1.

Let p be the period size, and let n be the non-period size. Now the recursive Markov chain to be built has
n+p components:

• For each i in [1, n+1], there is a component labeled i. It is the same as the template component, except
x = a[i]/(1 + a[i]), and y = 1/a[i]. The component’s single box goes to the component labeled i+1,
except that for component n+p, the component’s single box goes to the component labeled n+1.

According to Etessami and Yannakakis (2009)111, the recursive Markov chain can be translated to a pushdown
automaton of the kind used in this section. Now all that’s left is to argue that the recursive Markov chain
terminates with probability 1. For every component in the chain, it goes from its entry to its box with
probability 1/2 or less (because each partial numerator must be 1 or greater). Thus, the component recurses
with no greater probability than not, and there are otherwise no probability-1 loops in each component, so
the overall chain terminates with probability 1. []

Lemma 1: The square root function sqrt(𝜆) is in class PDA.

Proof: See Mossel and Peres (2005)112. []
109https://peteroupc.github.io/bernoulli.html#Continued_Fractions
110Etessami, K. and Yannakakis, M., “Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear
equations”, Journal of the ACM 56(1), pp.1-66, 2009.
111Etessami, K. and Yannakakis, M., “Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear
equations”, Journal of the ACM 56(1), pp.1-66, 2009.
112Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.

35

https://peteroupc.github.io/bernoulli.html#Continued_Fractions

Corollary 1: The function f(𝜆) = 𝜆 m/(2 𝑛), where n ≥ 1 is an integer and where m ≥ 1 is an integer,
is in class PDA.

Proof: Start with the case m=1. If n is 1, write f as sqrt(𝜆); if n is 2, write f as (sqrt�sqrt)(𝜆); and for
general n, write f as (sqrt�sqrt�…�sqrt)(𝜆), with n instances of sqrt. Because this is a composition and sqrt
can be simulated by a full-domain pushdown automaton, so can f.

For general m and n, write f as ((sqrt�sqrt�…�sqrt)(𝜆))𝑚, with n instances of sqrt. This involves doing m
multiplications of sqrt�sqrt�…�sqrt, and because this is an integer power of a function that can be simulated
by a full-domain pushdown automaton, so can f.

Moreover, f is in class PDA by Theorem 1.2 of (Mossel and Peres 2005)113 because the machine is a
full-domain pushdown automaton. []

8.5.1 Finite-State and Pushdown Generators

Another interesting class of machines (called pushdown generators here) are similar to pushdown automata
(see above), with the following exceptions:

1. Each transition rule can also, optionally, output a base-N digit in its right-hand side. An example is:
(state, flip, sy) → (digit, state2, {sy2}).

2. The machine must output infinitely many digits if allowed to run forever.
3. Rules that would pop the last symbol from the stack are not allowed.

The “output” of the machine is now a real number X in the form of the base-N digit expansion 0.dddddd...,
where dddddd... are the digits produced by the machine from left to right. In the rest of this section:

• CDF(z) is the cumulative distribution function of X, or the probability that X is z or less.
• PDF(z) is the probability density function of X, or the derivative of CDF(z), or the relative probability

of choosing a number “close” to z at random.

A finite-state generator (Knuth and Yao 1976)114 is the special case where the probability of heads is 1/2,
each digit is either 0 or 1, rules can’t push stack symbols, and only one stack symbol is used. Then if PDF(z)
has infinitely many derivatives on the open interval (0, 1), it must be a polynomial with rational Bernstein
coefficients and satisfy PDF(z) > 0 whenever 0 ≤ z ≤ 1 is irrational (Vatan 2001)115, (Kindler and Romik
2004)116, and it can be shown that the expected value (mean or “long-run average”) of X must be a rational
number. 117

Proposition 8. Suppose a finite-state generator can generate a probability distribution that takes on finitely
many values. Then:

1. Each value occurs with a rational probability.
2. Each value is either rational or transcendental.

A real number is transcendental if it can’t be a root of a nonzero polynomial with integer “power” coefficients.
Thus, part 2 means, for example, that irrational, non-transcendental numbers such as 1/sqrt(2) and the
golden ratio minus 1 can’t be generated exactly.
113Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.
114Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
115Vatan, F., “Distribution functions of probabilistic automata”, in Proceedings of the thirty-third annual ACM symposium on

Theory of computing (STOC ’01), pp. 684-693, 2001.
116Kindler, Guy and D. Romik, “On distributions computable by random walks on graphs,” SIAM Journal on Discrete

Mathematics 17 (2004): 624-633.
117Vatan (2001) claims that a finite-state generator has a continuous CDF (unless it produces a single value with probability 1),
but this is not necessarily true if the generator has a state that outputs 0 forever.

36

Proving this proposition involves the following lemma, which shows that a finite-state generator is related
to a machine with a one-way read-only input and a one-way write-only output:

Lemma 2. A finite-state generator can fit the model of a one-way transducer-like k-machine (as defined in
Adamczewski et al. (2020)118 section 5.3), for some k equal to 2 or greater.

Proof Sketch: There are two cases.

Case 1: If every transition rule of the generator outputs a digit, then k is the number of unique inputs among
the generator’s transition rules (usually, there are two unique inputs, namely HEADS and TAILS), and the
model of a finite-state generator is modified as follows:

1. A configuration of the finite-state generator consists of its current state together with either the last
coin flip result or, if the coin wasn’t flipped yet, the empty string.

2. The output function takes a configuration described above and returns a digit. If the coin wasn’t flipped
yet, the function returns an arbitrary digit (which is not used in proposition 4.6 of the Adamczewski
paper).

Case 2: If at least one transition rule does not output a digit, then the finite-state generator can be trans-
formed to a machine where HEADS/TAILS is replaced with 50% probabilities, then transformed to an equiv-
alent machine whose rules always output one or more digits, as claimed in Lemma 5.2 of Vatan (2001)119.
In case the resulting generator has rules that output more than one digit, additional states and rules can
be added so that the generator’s rules output only one digit as desired. Now at this point the generator’s
probabilities will be rational numbers. Now transform the generator from probabilities to inputs of size k,
where k is the product of those probabilities, by adding additional rules as desired. []

Proof of Proposition 8: Let n be an integer greater than 0. Take a finite-state generator that starts at
state START and branches to one of n finite-state generators (sub-generators) with some probability, which
must be rational because the overall generator is a finite-state machine (Icard 2020, Proposition 13)120. The
branching process outputs no digit, and part 3 of the proposition follows from Corollary 9 of Icard (2020)121.
The n sub-generators are special; each of them generates the binary expansion of a single real number in the
closed unit interval with probability 1.

To prove part 2 of the proposition, translate an arbitrary finite-state generator to a machine described in
Lemma 2. Once that is done, all that must be shown is that there are two different non-empty sequences
of coin flips that end up at the same configuration. This is easy using the pigeonhole principle, since the
finite-state generator has a finite number of configurations. Thus, by propositions 5.11, 4.6, and AB of
Adamczewski et al. (2020)122, the generator can generate a real number’s binary expansion only if that
number is rational or transcendental (see also Cobham (1968)123; Adamczewski and Bugeaud (2007)124). []

Proposition 9. If the distribution function generated by a finite-state generator is continuous and algebraic
on the open interval (0, 1), then that function is a piecewise polynomial function on that interval.

118Adamczewski, B., Cassaigne, J. and Le Gonidec, M., 2020. On the computational complexity of algebraic numbers: the
Hartmanis–Stearns problem revisited. Transactions of the American Mathematical Society, 373(5), pp.3085-3115.
119Vatan, F., “Distribution functions of probabilistic automata”, in Proceedings of the thirty-third annual ACM symposium on

Theory of computing (STOC ’01), pp. 684-693, 2001.
120Icard, Thomas F., “Calibrating generative models: The probabilistic Chomsky–Schützenberger hierarchy”, Journal of

Mathematical Psychology 95 (2020): 102308.
121Icard, Thomas F., “Calibrating generative models: The probabilistic Chomsky–Schützenberger hierarchy”, Journal of

Mathematical Psychology 95 (2020): 102308.
122Adamczewski, B., Cassaigne, J. and Le Gonidec, M., 2020. On the computational complexity of algebraic numbers: the
Hartmanis–Stearns problem revisited. Transactions of the American Mathematical Society, 373(5), pp.3085-3115.
123Cobham, A., “On the Hartmanis-Stearns problem for a class of tag machines”, in IEEE Conference Record of 1968 Ninth

Annual Symposium on Switching and Automata Theory 1968.
124Adamczewski, B., Bugeaud, Y., “On the complexity of algebraic numbers I. Expansions in integer bases”, Annals of

Mathematics 165 (2007).

37

The proof follows from combining Kindler and Romik (2004, Theorem 2)125 and Knuth and Yao (1976)126

with Richman (2012)127, who proved that a continuous algebraic function on an open interval is piecewise
analytic; that is, each piece is analytic at every point except possibly at the endpoints.

9 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero128.

125Kindler, Guy and D. Romik, “On distributions computable by random walks on graphs,” SIAM Journal on Discrete
Mathematics 17 (2004): 624-633.

126Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms
and Complexity: New Directions and Recent Results, 1976.

127Richman, F. (2012). Algebraic functions, calculus style. Communications in Algebra, 40(7), 2671-2683.
128https://creativecommons.org/publicdomain/zero/1.0/

38

https://creativecommons.org/publicdomain/zero/1.0/

	Contents
	About This Document
	Definitions
	General Factory Functions
	Building the Lower and Upper Polynomials
	Another General Algorithm
	Request for Additional Methods

	Approximate Bernoulli Factories
	Achievable Simulation Rates
	Notes
	Appendix
	Examples of Well-Behaved Functions
	Results Used in Approximate Bernoulli Factories
	How Many Coin Flips Are Needed to Simulate a Polynomial?
	Proofs for Polynomial-Building Schemes
	A Conjecture on Polynomial Approximation
	Example of Polynomial-Building Scheme

	Pushdown Automata and Algebraic Functions
	Finite-State and Pushdown Generators

	License

