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1 Background
Suppose there is a coin that shows heads with an unknown probability, 𝜆. The goal is to use that coin (and
possibly also a fair coin) to build a “new” coin that shows heads with a probability that depends on 𝜆, call it
𝑓(𝜆). This is the Bernoulli factory problem, and it can be solved only for certain functions 𝑓 . (For example,
flipping the coin twice and taking heads only if exactly one coin shows heads, the probability 2𝜆(1 − 𝜆) can
be simulated.)

Specifically, the only functions that can be simulated this way are continuous and polynomially
bounded on their domain, and map [0, 1] or a subset thereof to [0, 1], as well as 𝑓 = 0 and 𝑓 = 1.
These functions are called factory functions in this page. (A function 𝑓(𝑥) is polynomially bounded if both
𝑓 and 1 − 𝑓 are greater than or equal to min(𝑥𝑛, (1 − 𝑥)𝑛) for some integer 𝑛 (Keane and O’Brien 1994)1.
This implies that 𝑓 admits no roots on (0, 1) and can’t take on the value 0 or 1 except possibly at 0, 1, or
both.)

This page contains several questions about the Bernoulli factory2 problem. Answers to them will greatly
improve my pages on this site about Bernoulli factories. If you can answer any of them, post an issue in the
GitHub issues page3.

Note: The Bernoulli factory problem is a special case of a more general mathematical problem
that I call “The Sampling Problem4”.

2 Contents
• Background
• Contents
• Polynomials that approach a factory function “fast”

– Main Question
– Solving the Bernoulli factory problem with polynomials
– A Matter of Efficiency
– A Conjecture on Polynomial Approximation
– Strategies

• Other Questions
1Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.
2https://peteroupc.github.io/bernoulli.html
3https://github.com/peteroupc/peteroupc.github.io/issues
4https://peteroupc.github.io/sampling.html
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• End Notes
• Notes

3 Polynomials that approach a factory function “fast”
This question involves solving the Bernoulli factory problem with polynomials.5

In this question, a polynomial 𝑃(𝑥) is written in Bernstein form of degree 𝑛 if it is written as—

𝑃(𝑥) =
𝑛

∑
𝑘=0

𝑎𝑘(𝑛
𝑘)𝑥𝑘(1 − 𝑥)𝑛−𝑘,

where 𝑎0, ..., 𝑎𝑛 are the polynomial’s Bernstein coefficients.

The degree-𝑛 Bernstein polynomial of an arbitrary function 𝑓(𝑥) has Bernstein coefficients 𝑎𝑘 = 𝑓(𝑘/𝑛). In
general, this Bernstein polynomial differs from 𝑓 even if 𝑓 is a polynomial.

3.1 Main Question
Suppose 𝑓 ∶ [0, 1] → [0, 1] is continuous and belongs to a large class of functions (for example, the 𝑘-th
derivative, 𝑘 ≥ 0, is continuous, Lipschitz continuous, concave, strictly increasing, or bounded variation, or
𝑓 is real analytic).

1. (Exact Bernoulli factory): Compute the Bernstein coefficients of a sequence of polynomials (𝑔𝑛) of
degree 2, 4, 8, …, 2𝑖, … that converge to 𝑓 from below and satisfy: (𝑔2𝑛 − 𝑔𝑛) is a polynomial with
non-negative Bernstein coefficients once it’s rewritten to a polynomial in Bernstein form of degree
exactly 2𝑛. (See Note 3 in “End Notes”.) Assume 0 < 𝑓(𝜆) < 1 or 𝑓 is polynomially bounded.

2. (Approximate Bernoulli factory): Given 𝜖 > 0, compute the Bernstein coefficients of a polynomial or
rational function (of some degree 𝑛) that is within 𝜖 of 𝑓 .

3. (Series expansion of simple functions): Find a non-negative random variable 𝑋 and a series 𝑓(𝜆) =
∑𝑎≥0 𝛾𝑎(𝜆) such that 𝛾𝑎(𝜆)/ℙ(𝑋 = 𝑎) (letting 0/0 equal 0) is a polynomial or rational function with
rational Bernstein coefficients lying in [0, 1]. (See note 1 in “End Notes”.)

The convergence rate must be 𝑂(1/𝑛𝑟/2) if the class has only functions with Lipschitz-continuous (𝑟 − 1)-th
derivative. The method may not introduce transcendental or trigonometric functions (as with Chebyshev
interpolants).

3.2 Solving the Bernoulli factory problem with polynomials
An algorithm6 (Łatuszyński et al. 2009/2011)7 simulates a factory function 𝑓(𝜆) via two sequences of
polynomials that converge from above and below to that function. Roughly speaking, the algorithm works
as follows:

5See also the following questions on Mathematics Stack Exchange and MathOverflow: Converging polynomials, Error
bounds, A conjecture, Hypergeometric random variable, Lorentz operators, Derivatives of moments, Series
representations. https://math.stackexchange.com/questions/3904732/what-are-ways-to-compute-polynomials-that-
converge-from-above-and-below-to-a-con https://mathoverflow.net/questions/442057/explicit-and-fast-error-bounds-for-
approximating-continuous-functions https://mathoverflow.net/questions/427595/a-conjecture-on-consistent-monotone-
sequences-of-polynomials-in-bernstein-form https://mathoverflow.net/questions/429037/bounds-on-the-expectation-of-
a-function-of-a-hypergeometric-random-variable https://mathoverflow.net/questions/407179/using-the-holtz-method-to-
build-polynomials-that-converge-to-a-continuous-functi https://mathoverflow.net/questions/447064/explicit-bounds-on-
derivatives-of-moments-related-to-bernstein-polynomials https://mathoverflow.net/questions/409174/concave-functions-
series-representation-and-converging-polynomials

6https://peteroupc.github.io/bernoulli.html#General_Factory_Functions
7Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via

reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2
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1. Generate U, a uniform random variate in [0, 1].
2. Flip the input coin (with a probability of heads of 𝜆), then build an upper and lower bound for 𝑓(𝜆),

based on the outcomes of the flips so far. In this case, these bounds come from two degree-𝑛 polynomials
that approach 𝑓 as 𝑛 gets large, where 𝑛 is the number of coin flips so far in the algorithm.

3. If U is less than or equal to the lower bound, return 1. If U is greater than the upper bound, return 0.
Otherwise, go to step 2.

The result of the algorithm is 1 with probability exactly equal to 𝑓(𝜆), or 0 otherwise.

However, the algorithm requires the polynomial sequences to meet certain requirements; among them, the
sequences must be of Bernstein-form polynomials that converge from above and below to a factory function.
Specifically:

For 𝑓(𝜆) there must be a sequence of polynomials (𝑔𝑛) in Bernstein form of degree 1, 2, 3, … that converge
to 𝑓 from below and satisfy: (𝑔𝑛+1 − 𝑔𝑛) is a polynomial with non-negative Bernstein coefficients once it’s
rewritten to a polynomial in Bernstein form of degree exactly 𝑛 + 1 (see Note 3 in “End Notes”; Nacu
and Peres (2005)8; Holtz et al. (2011)9). For 𝑓(𝜆) = 1 − 𝑓(𝜆) there must likewise be a sequence of this kind.

3.3 A Matter of Efficiency
However, ordinary Bernstein polynomials converge to a function at the rate Ω(1/𝑛) in general, a result known
since Voronovskaya (1932)10 and a rate that will lead to an infinite expected number of coin flips in
general. (See also my supplemental notes11.)

But Lorentz (1966)12 showed that if the function is positive and has a continuous 𝑘-th derivative, there
are polynomials with nonnegative Bernstein coefficients that converge at the rate 𝑂(1/𝑛𝑘/2) (and thus can
enable a finite expected number of coin flips if the function is “smooth” enough).

Thus, people have developed alternatives, including linear combinations and iterated Boolean sums of Bern-
stein polynomials, to improve the convergence rate. These include Micchelli (1973)13, Guan (2009)14, Gün-
türk and Li (2021a)15, (2021b)16, the “Lorentz operator” in Holtz et al. (2011)17, Draganov (2014), and
Tachev (2022)18.

These alternative polynomials usually include results where the error bound is the desired 𝑂(1/𝑛𝑘/2), but
most of those results (e.g., Theorem 4.4 in Micchelli; Theorem 5 in Güntürk and Li) have hidden constants
with no upper bounds given, making them unimplementable (that is, it can’t be known beforehand whether
a given polynomial will come close to the target function within a user-specified error tolerance).

8Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no. 1A
(2005): 93-115.

9Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:
//link.springer.com/article/10.1007/s00365-010-9108-5

10E. Voronovskaya, “Détermination de la forme asymptotique d’approximation des fonctions par les polynômes de M. Bern-
stein”, 1932.

11https://peteroupc.github.io/bernsupp.html
12G.G. Lorentz, “The degree of approximation by polynomials with positive coefficients”, 1966.
13Micchelli, Charles. “The saturation class and iterates of the Bernstein polynomials”, Journal of Approximation

Theory 8, no. 1 (1973): 1-18. https://www.sciencedirect.com/science/article/pii/0021904573900282
14Guan, Zhong. “Iterated Bernstein polynomial approximations.” arXiv preprint arXiv:0909.0684 (2009). https:

//arxiv.org/pdf/0909.0684
15Güntürk, C. Sinan, and Weilin Li. “Approximation with one-bit polynomials in Bernstein form”, arXiv:2112.09183

(2021); Constructive Approximation, pp.1-30 (2022). https://arxiv.org/pdf/2112.09183
16Güntürk, C. Sinan, and Weilin Li. “Approximation of functions with one-bit neural networks”, arXiv:2112.09181

(2021). https://arxiv.org/abs/2112.09181
17Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:

//link.springer.com/article/10.1007/s00365-010-9108-5
18Tachev, Gancho. “Linear combinations of two Bernstein polynomials”, Mathematical Foundations of Computing,

2022. https://doi.org/10.3934/mfc.2022061
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3.4 A Conjecture on Polynomial Approximation
The following is a conjecture19 that could help reduce this problem to the problem of finding explicit error
bounds when approximating a function by polynomials.

Let 𝑓(𝜆) ∶ [0, 1] → (0, 1) have 𝑟 ≥ 1 continuous derivatives, let 𝑀 be the maximum of the absolute value of 𝑓
and its derivatives up to the 𝑟-th derivative, and denote the Bernstein polynomial of degree 𝑛 of a function
𝑔 as 𝐵𝑛(𝑔). Let 𝑊20(𝜆), 𝑊21(𝜆), ..., 𝑊2𝑖(𝜆), ... be a sequence of functions on [0, 1] that converge uniformly
to 𝑓 .

For each integer 𝑛 ≥ 1 that’s a power of 2, suppose that there is 𝐷 > 0 such that—

|𝑓(𝜆) − 𝐵𝑛(𝑊𝑛(𝜆))| ≤ 𝐷𝑀/𝑛𝑟/2,

whenever 0 ≤ 𝜆 ≤ 1. Then there is 𝐶0 ≥ 𝐷 such that for every 𝐶 ≥ 𝐶0, the polynomials (𝑔𝑛) in Bernstein
form of degree 2, 4, 8, …, 2𝑖, …, defined as 𝑔𝑛 = 𝐵𝑛(𝑊𝑛(𝜆)−𝐶𝑀/𝑛𝑟/2), converge from below to 𝑓 and satisfy:
(𝑔2𝑛 − 𝑔𝑛) is a polynomial with non-negative Bernstein coefficients once it’s rewritten to a polynomial in
Bernstein form of degree exactly 2𝑛. (See Note 3 in “End Notes”.)

Equivalently (see also Nacu and Peres (2005)20), there is 𝐶1 > 0 such that the inequality (𝑃𝐵) (see below)
holds true for each integer 𝑛 ≥ 1 that’s a power of 2 (see “Strategies”, below).

My goal is to see not just whether this conjecture is true, but also which value of 𝐶0 (or 𝐶1) suffices for the
conjecture, especially for any combination of the special cases mentioned at the end of “Main Question”,
above.

3.5 Strategies
The following are some strategies for answering these questions:

• For iterated Boolean sums (linear combinations of iterates) of Bernstein polynomials (𝑈𝑛,𝑘 in Micchelli
197321; see also Güntürk and Li22), verify my proofs of these bounds in Propositions B10C
and B10D23.

• For linear combinations of Bernstein polynomials (Butzer (1953)24, Tachev 202225), verify my proof
of those error bounds in my Proposition B1026.

• For the “Lorentz operator27” (Holtz et al. 2011)28, find explicit bounds, with no hidden constants,
on the approximation error for the operator 𝑄𝑛,𝑟(𝑓) and for the polynomials (𝑓𝑛) and (𝑔𝑛) formed with
it, and find the hidden constants 𝜃𝛼, 𝑠, and 𝐷 as well as those in Lemmas 15, 17 to 22, 24, and 25 in the
paper. Or verify my proof of the order-2 operator’s error bounds in my Proposition B10A29. The
bounds should have the form 𝐶 ⋅ max((𝜆(1 − 𝜆)/𝑛)1/2, 1/𝑛)𝑟, where 𝐶 is an explicitly given constant
depending only on 𝑓 and 𝑟.

• Let 𝑓 ∶ [−1, 1] → [0, 1] be continuous. Find explicit bounds, with no hidden constants, on the error
in approximating 𝑓 with the following polynomials: The polynomials are similar to Chebyshev inter-
polants, but evaluate 𝑓 at rational values of 𝜆 that converge to Chebyshev or Legendre points (e.g.,

19https://peteroupc.github.io/bernsupp.html#A_Conjecture_on_Polynomial_Approximation
20Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no. 1A

(2005): 93-115.
21https://www.sciencedirect.com/science/article/pii/0021904573900282
22https://arxiv.org/abs/2112.09181
23https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
24Butzer, P.L., “Linear combinations of Bernstein polynomials”, Canadian Journal of Mathematics 15 (1953).
25https://doi.org/10.3934/mfc.2022061
26https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
27https://link.springer.com/article/10.1007/s00365-010-9108-5
28Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:

//link.springer.com/article/10.1007/s00365-010-9108-5
29https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials

4

https://peteroupc.github.io/bernsupp.html#A_Conjecture_on_Polynomial_Approximation
https://www.sciencedirect.com/science/article/pii/0021904573900282
https://www.sciencedirect.com/science/article/pii/0021904573900282
https://arxiv.org/abs/2112.09181
https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
https://doi.org/10.3934/mfc.2022061
https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
https://link.springer.com/article/10.1007/s00365-010-9108-5
https://peteroupc.github.io/bernapprox.html#Results_Used_in_Approximations_by_Polynomials
https://link.springer.com/article/10.1007/s00365-010-9108-5
https://link.springer.com/article/10.1007/s00365-010-9108-5


converging to cos(𝑗𝜋/𝑛) with increasing 𝑛). The error bounds must be close to those of Chebyshev inter-
polants (see, e.g., chapters 7, 8, and 12 of Trefethen, Approximation Theory and Approximation
Practice30, 2013).

• Find other polynomial operators meeting the requirements of the main question (see “Main Question”,
above) and having explicit error bounds, with no hidden constants, especially operators that preserve
polynomials of a higher degree than linear functions.

• Find a sequence of functions (𝑊𝑛(𝑓)) and an explicit and tight upper bound on 𝐶1 > 0 such that, for
each integer 𝑛 ≥ 1 that’s a power of 2—

∣(
𝑘

∑
𝑖=0

𝑊𝑛 ( 𝑖
𝑛) 𝜎𝑛,𝑘,𝑖) − 𝑊2𝑛 ( 𝑘

2𝑛)∣ = |𝔼[𝑊𝑛(𝑋𝑘/𝑛)] − 𝑊2𝑛(𝔼[𝑋𝑘/𝑛])| ≤ 𝐶1𝑀
𝑛𝑟/2 , (PB)

whenever 0 ≤ 𝑘 ≤ 2𝑛, where 𝑀 = max(𝐿, max |𝑓 (0)|, ..., max |𝑓 (𝑟−1)|), 𝐿 is max |𝑓 (𝑟)| or the Lipschitz
constant of 𝑓 (𝑟−1), 𝑋𝑘 is a hypergeometric(2𝑛, 𝑘, 𝑛) random variable, and 𝜎𝑛,𝑘,𝑖 = (𝑛

𝑖)( 𝑛
𝑘−𝑖)/(2𝑛

𝑘 ) =
ℙ(𝑋𝑘 = 𝑖) is the probability that 𝑋𝑘 equals 𝑖. (See notes 3 and 4 in “End Notes” as well as
“Proofs for Polynomial-Building Schemes31”.)

4 Other Questions
• Let 𝑓(𝜆) ∶ [0, 1] → [0, 1] be writable as 𝑓(𝜆) = ∑𝑛≥0 𝑎𝑛𝜆𝑛, where 𝑎𝑛 ≥ 0 is rational, 𝑎𝑛 is nonzero

infinitely often, and 𝑓(1) is irrational. Then what are simple criteria to determine whether there is
0 < 𝑝 < 1 such that 0 ≤ 𝑎𝑛 ≤ 𝑝(1 − 𝑝)𝑛 and, if so, to find such 𝑝? Obviously, if (𝑎𝑛) is nowhere
increasing then 1 > 𝑝 ≥ 𝑎0.

• For each 𝑟 > 0, characterize the functions 𝑓(𝜆) that admit a Bernoulli factory where the expected
number of coin flips, raised to the power of 𝑟, is finite.

• Multiple-output Bernoulli factories32: Let 𝑓(𝜆) ∶ [𝑎, 𝑏] → (0, 1) be continuous, where 0 < 𝑎,
𝑎 < 𝑏, 𝑏 < 1. Define the entropy bound as ℎ(𝑓(𝜆))/ℎ(𝜆), where ℎ(𝑥) = −𝑥 ln(𝑥) − (1 − 𝑥) ln(1 − 𝑥) is
related to the Shannon entropy function. Then there is an algorithm that tosses heads with probability
𝑓(𝜆) given a coin that shows heads with probability 𝜆 and no other source of randomness (Keane and
O’Brien 1994)33.

But, is there an algorithm for 𝑓 that produces multiple outputs rather than one and has an
expected number of coin flips per output that is arbitrarily close to the entropy bound,
uniformly for every 𝜆 in 𝑓’s domain? Call such an algorithm an optimal factory. (See Nacu and
Peres (2005, Question 1)34.) And, does the answer change if the algorithm has access to a fair coin in
addition to the biased coin?

So far, constants as well as 𝜆 and 1 − 𝜆 do admit an optimal factory (see same work), and, as Yuval
Peres (Jun. 24, 2021) told me, there is an efficient multiple-output algorithm for 𝑓(𝜆) = 𝜆/2. But are
there others? See an appendix in one of my articles35 for more information on my progress on the
problem.

• Pushdown automata and algebraic functions36: A pushdown automaton is a finite state machine
with an unbounded stack, driven by a biased coin with an unknown probability of heads, 𝜆. Its stack

30https://www.chebfun.org/ATAP/
31https://peteroupc.github.io/bernsupp.html#Proofs_for_Polynomial_Building_Schemes
32https://mathoverflow.net/questions/412772/from-biased-coins-to-biased-coins-as-efficiently-as-possible
33Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.
34Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no. 1A

(2005): 93-115.
35https://peteroupc.github.io/bernsupp.html#Multiple_Output_Bernoulli_Factory
36https://cstheory.stackexchange.com/questions/50853/from-coin-flips-to-algebraic-functions-via-pushdown-automata
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starts with a single symbol. On each step, the machine flips the coin, then, based on the coin flip, the
current state, and the top stack symbol, it moves to a new state (or keeps it unchanged) and replaces
the top stack symbol with zero or more symbols. When the stack is empty, the machine stops and
returns either 0 or 1 depending on the state it ends up at.

Let 𝑓(𝜆) be continuous and map the open interval (0, 1) to itself. Mossel and Peres (2005)37 showed
that a pushdown automaton can output 1 with probability 𝑓(𝜆) only if 𝑓 is algebraic over the rational
numbers (there is a nonzero polynomial 𝑃(𝑥, 𝑦) in two variables and whose coefficients are rational
numbers, such that 𝑃(𝑥, 𝑓(𝑥)) = 0 for every 𝑥 in the domain of 𝑓). See an appendix in one of my
articles38 for more information on my progress on the problem.

Prove or disprove:

1. If 𝑓 is algebraic over rational numbers it can be simulated by a pushdown automaton.
2. min(𝜆, 1 − 𝜆) and 𝜆1/𝑝, for every prime 𝑝 ≥ 3, can be simulated by a pushdown automaton.
3. Given that 𝑓 is algebraic over rational numbers, it can be simulated by a pushdown automaton if

and only if its “critical exponent” is a dyadic number greater than −1 or has the form −1 − 1/2𝑘

for some integer 𝑘 ≥ 1. (See note 2 in “End Notes”.)

• Coin-flipping degree39: Let 𝑝(𝜆) be a polynomial that maps the closed unit interval to itself and
satisfies 0 < 𝑝(𝜆) < 1 whenever 0 < 𝜆 < 1. Then its coin-flipping degree (Wästlund 1999)40 is the
smallest value of 𝑛 such that 𝑝’s Bernstein coefficients of degree 𝑛 lie in the closed unit interval. Given
that a polynomial’s degree is 𝑚 and its “standard” coefficients are integers, what are upper bounds (or
even exact maximums) on its coin flipping degree?

• Simple simulation algorithms41: References are sought to papers and books that describe irrational
constants or Bernoulli factory functions (continuous functions mapping (0,1) to itself) in any of the
following ways. Ideally they should involve only rational numbers and should not compute p-adic digit
expansions.

– Simulation experiments that succeed with an irrational probability.
– Simple continued fraction42 expansions of irrational constants.
– Functions written as infinite power series with rational coefficients (see “Certain Power Se-

ries43”).
– Irrational numbers written as series expansions with rational coefficients (see “Certain Con-

verging Series44”).
– Functions whose integral is an irrational number.
– Closed shapes inside the unit square whose area is an irrational number. (Includes algorithms

that tell whether a box lies inside, outside, or partly inside or outside the shape.) Example.45

– Generate a uniform (x, y) point inside a closed shape, then return 1 with probability x. For what
shapes is the expected value of x an irrational number? Example.46.

• Given integer m ≥ 0, rational number 0<k ≤ exp(1), and unknown heads probability 0 ≤ 𝜆 ≤ 1, find
37Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,

2005.
38https://peteroupc.github.io/bernsupp.html#Pushdown_Automata_and_Algebraic_Functions
39https://mathoverflow.net/questions/448538/bounds-on-the-coin-flipping-degree
40Wästlund, J., “Functions arising by coin flipping”, 1999.
41https://stats.stackexchange.com/questions/541402/what-are-relatively-simple-simulations-that-succeed-with-an-irrational-

probabili
42https://peteroupc.github.io/bernoulli.html#Continued_Fractions
43https://peteroupc.github.io/bernoulli.html#Certain_Power_Series
44https://peteroupc.github.io/bernoulli.html#Certain_Converging_Series
45https://peteroupc.github.io/bernoulli.html#pi___4
46https://peteroupc.github.io/bernsupp.html#4_3___pi
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a Bernoulli factory47 for—

𝑓(𝜆) = exp(−(exp(𝑚 + 𝜆) − (𝑘(𝑚 + 𝜆)))) = exp(− exp(𝑚 + 𝜆))
exp(−(𝑘(𝑚 + 𝜆))) , (PD)

that, as much as possible, avoids calculating ℎ(𝜆) = exp(𝑚 + 𝜆) − 𝑘(𝑚 + 𝜆); in this sense, the more
implicitly the Bernoulli factory works with irrational or transcendental functions, the better. A solution
is sought especially when k is 1 or 2. Note that the right-hand side of (PD) can be implemented by
ExpMinus48 and division Bernoulli factories, but is inefficient and heavyweight due to the need to
calculate 𝜖 for the division factory. In addition there is a Bernoulli factory that first calculates ℎ(𝜆) and
𝑓𝑙𝑜𝑜𝑟(ℎ(𝜆)) using constructive reals and then runs ExpMinus, but this is likewise far from lightweight.
(Calculating exp(.) with floating-point operations is not acceptable for this question.)

Prove or disprove:

• Given that 𝑓 ∶ [0, 1] → (0, 1] is convex, the polynomials (𝑔𝑛) = (𝐵𝑛(𝑓) − max0≤𝜆≤1 |𝐵𝑛(𝑓)(𝜆) − 𝑓(𝜆)|)
(where 𝑛 ≥ 1 is an integer power of 2) are in Bernstein form of degree 𝑛, converge to 𝑓 from below,
and satisfy: (𝑔2𝑛 − 𝑔𝑛) is a polynomial with non-negative Bernstein coefficients once it’s rewritten to
a polynomial in Bernstein form of degree exactly 2𝑛. The same is true for the polynomials (𝑔𝑛) =
(𝐵𝑛(𝑓) − |𝐵𝑛(𝑓)(1/2) − 𝑓(1/2)|), if 𝑓 is also symmetric about 1/2.

• Let 𝑓 ∶ (𝐷 ⊆ [0, 1]) → [0, 1]. Given a coin that shows heads with probability 𝜆 (which can be 0 or 1),
it is possible to toss heads with probability 𝑓(𝜆) using the coin and no other sources of randomness
(and, thus, 𝑓 is strongly simulable49) if and only if—

– 𝑓 is constant on its domain, or is continuous and polynomially bounded on its domain (polynomi-
ally bounded means, both 𝑓 and 1 − 𝑓 are bounded below by min(𝑥𝑛, (1 − 𝑥)𝑛) for some integer
𝑛 (Keane and O’Brien 1994)50), and

– 𝑓(0) is 0 or 1 if 0 is in 𝑓 ’s domain and 𝑓(1) is 0 or 1 whenever 1 is in 𝑓 ’s domain, and
– if 𝑓(0) = 0 or 𝑓(1) = 0 or both, then there is a polynomial 𝑔(𝑥) ∶ [0, 1] → [0, 1] with computable

coefficients, such that 𝑔(0) = 𝑓(0) and 𝑔(1) = 𝑓(1) whenever 0 or 1, respectively, is in the domain
of f, and such that 𝑔(𝑥) > 𝑓(𝑥) for every 𝑥 in the domain of 𝑓 , except at 0 and 1, and

– if 𝑓(0) = 1 or 𝑓(1) = 1 or both, then there is a polynomial ℎ(𝑥) ∶ [0, 1] → [0, 1] with computable
coefficients, such that ℎ(0) = 𝑓(0) and ℎ(1) = 𝑓(1) whenever 0 or 1, respectively, is in the domain
of 𝑓 , and such that 𝑔(𝑥) < 𝑓(𝑥) for every 𝑥 in the domain of f, except at 0 and 1.

A condition such as “0 is not in the domain of 𝑓 , or 𝑓 can be extended to a Lipschitz continuous function
on [0, 𝜖) for some 𝜖 > 0” does not work. A counterexample is 𝑓(𝑥) = (sin(1/𝑥)/4 + 1/2) ⋅ (1 − (1 − 𝑥)𝑛)
for 𝑛 ≥ 1 (𝑓(0) = 0), which is strongly simulable at 0 despite not being Lipschitz at 0. ((1 − 𝑥)𝑛 is
the probability of the biased coin showing zero 𝑛 times in a row.) Keane and O’Brien already showed
strong simulability when 𝐷 contains neither 0 nor 1.

5 End Notes
Note 1: An example of 𝑋 is ℙ(𝑋 = 𝑎) = 𝑝(1 − 𝑝)𝑎 where 0 < 𝑝 < 1 is a known rational. This question’s
requirements imply that ∑𝑎≥0 max𝜆 |𝛾𝑎(𝜆)| ≤ 1. The proof of Keane and O’Brien (1994)51 produces a
convex combination of polynomials with 0 and 1 as Bernstein coefficients, but the combination is difficult to
construct (it requires finding maximums, for example) and so this proof does not appropriately answer this
question.

47https://peteroupc.github.io/bernoulli.html
48https://peteroupc.github.io/bernoulli.html#ExpMinus_exp_minus__z
49https://mathoverflow.net/questions/404961/from-biased-coins-and-nothing-else-to-biased-coins
50Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.
51Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.
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Note 2: On pushdown automata: Etessami and Yannakakis (2009)52 showed that pushdown automata with
rational probabilities are equivalent to recursive Markov chains (with rational transition probabilities), and
that for every recursive Markov chain, the system of polynomial equations has nonnegative coefficients. But
this paper doesn’t deal with the case of recursive Markov chains where the transition probabilities cannot
just be rational, but can also be 𝜆 and 1 − 𝜆 where 𝜆 is an unknown rational or irrational probability of
heads. Also, Banderier and Drmota (2014)53 showed the asymptotic behavior of power series solutions 𝑓(𝜆)
of a polynomial system, where both the series and the system have nonnegative real coefficients. Notably,
functions of the form 𝜆1/𝑝 where 𝑝 ≥ 3 is not a power of 2, are not possible solutions, because their so-
called “critical exponent” is not dyadic. But the result seems not to apply to piecewise power series such as
min(𝜆, 1 − 𝜆), which are likewise algebraic functions.

Note 3: This condition is also known as a “consistency requirement”; it ensures that not only the polynomials
“increase” to 𝑓(𝜆), but also their Bernstein coefficients do as well. This condition is equivalent in practice
to the following statement (Nacu & Peres 2005)54. For every integer 𝑛 ≥ 1 that’s a power of 2, 𝑎(2𝑛, 𝑘) ≥
𝔼[𝑎(𝑛, 𝑋𝑛,𝑘)] = (∑𝑘

𝑖=0 𝑎(𝑛, 𝑖)(𝑛
𝑖)( 𝑛

𝑘−𝑖)/(2𝑛
𝑘 )), where 𝑎(𝑛, 𝑘) is the degree-𝑛 polynomial’s 𝑘-th Bernstein

coefficient, where 0 ≤ 𝑘 ≤ 2𝑛 is an integer, and where 𝑋𝑛,𝑘 is a hypergeometric(2𝑛, 𝑘, 𝑛) random variable.
A hypergeometric(2𝑛, 𝑘, 𝑛) random variable is the number of “good” balls out of 𝑛 balls taken uniformly at
random, all at once, from a bag containing 2𝑛 balls, 𝑘 of which are “good”. See also my MathOverflow
question55 on finding bounds for hypergeometric variables.

Note 4: If 𝑊𝑛(0) = 𝑓(0) and 𝑊𝑛(1) = 𝑓(1) for every 𝑛, then the inequality (𝑃𝐵) is automatically true
when 𝑘 = 0 and 𝑘 = 2𝑛, so that the statement has to be checked only for 0 < 𝑘 < 2𝑛. If, in addition,
𝑊𝑛 is symmetric about 1/2, so that 𝑊𝑛(𝜆) = 𝑊𝑛(1 − 𝜆) whenever 0 ≤ 𝜆 ≤ 1, then the statement has
to be checked only for 0 < 𝑘 ≤ 𝑛 (since the values 𝜎𝑛,𝑘,𝑖 = (𝑛

𝑖)( 𝑛
𝑘−𝑖)/(2𝑛

𝑘 ) are symmetric in that they
satisfy 𝜎𝑛,𝑘,𝑖 = 𝜎𝑛,𝑘,𝑘−𝑖).This question is a problem of finding the Jensen gap of 𝑊𝑛 for certain kinds of
hypergeometric random variables (see Note 3). Lee et al. (2021)56 deal with a problem very similar to
this one and find results that take advantage of 𝑓 ’s (here, 𝑊𝑛’s) smoothness, but unfortunately assume the
variable is supported on an open interval, rather than a closed one (namely [0, 1]) as in this question.Special
cases for this question are if 𝑊𝑛 = 2𝑓 − 𝐵𝑛(𝑓) and 𝑟 is 3 or 4, or 𝑊𝑛 = 𝐵𝑛(𝐵𝑛(𝑓)) + 3(𝑓 − 𝐵𝑛(𝑓)) and 𝑟 is
5 or 6.

Particularly for the case 𝑊𝑛 = 2𝑓 − 𝐵𝑛(𝑓), the right-hand side of (𝑃𝐵) is believed to be 𝑂(1/𝑛3/2) when 𝑓
has a Lipschitz continuous second derivative on [0, 1], but I have been unable to find a bound better than
𝑂(1/𝑛), especially because in one form or another my attempts at the bound seem to require an estimate of
|𝐵2𝑛(𝑓) − 𝐵𝑛(𝑓)|, which in general is no better than 𝑂(1/𝑛). Thus, a proof or counterexample of a bound
of 𝑂(1/𝑛3/2) in this case would be appreciated.

6 Notes

52Etessami, K. And Yannakakis, M., “Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear
equations”, Journal of the ACM 56(1), pp.1-66, 2009.

53Banderier, C. And Drmota, M., 2015. Formulae and asymptotics for coefficients of algebraic functions. Combinatorics,
Probability and Computing, 24(1), pp.1-53.

54Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no. 1A
(2005): 93-115.

55https://mathoverflow.net/questions/429037/bounds-on-the-expectation-of-a-function-of-a-hypergeometric-random-variable
56Lee, Sang Kyu, Jae Ho Chang, and Hyoung-Moon Kim. “Further sharpening of Jensen’s inequality.” Statistics 55, no. 5

(2021): 1154-1168.
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