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This page describes how to compute a polynomial in Bernstein form that comes close to a known function
𝑓(𝜆) with a user-defined error tolerance, so that the polynomial’s Bernstein coefficients will lie in the closed
unit interval if 𝑓 ’s values lie in that interval. The polynomial is often simpler to calculate than the original
function 𝑓 and can often be accurate enough for an application’s purposes.

The goal of these approximations is to avoid introducing transcendental and trigonometric functions to
the approximation method. (For this reason, although this page also discusses approximation by so-called
Chebyshev interpolants, that method is relegated to the appendix.)

Notes:

1. This page was originally developed as part of a section on approximate Bernoulli factories,
or algorithms that toss heads with probability equal to a polynomial that comes close to a
continuous function. However, the information in this page is of much broader interest than
the approximate Bernoulli factory problem.

2. In practice, the level at which the function 𝑓(𝜆) is known may vary:

1. 𝑓(𝜆) may be known so completely that any property of 𝑓 that is needed can be computed
(for example, 𝑓(𝜆) is given in a symbolic form such as sin(𝜆)/3 or exp(−𝜆/4)). Or…

2. 𝑓 may be given as a “black box”, but it’s possible to find the exact value of 𝑓(𝜆) for
any 𝜆 (or at least any rational 𝜆) in 𝑓 ’s domain. Or…

3. Only the values of 𝑓 at equally spaced points may be known.

In the last two cases, additional assumptions on 𝑓 may have to be made in practice, such as
upper bounds on 𝑓 ’s first or second derivative, or whether 𝑓 has a continuous 𝑟-th derivative
for every 𝑟 (see “Definitions”). If 𝑓 does not meet those assumptions, the polynomial that
approximates 𝑓 will not necessarily achieve the desired accuracy.
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2 About This Document
This is an open-source document; for an updated version, see the source code1 or its rendering
on GitHub2. You can send comments on this document on the GitHub issues page3, especially
if you find any errors on this page.

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus.

3 Definitions
This section describes certain math terms used on this page for programmers to understand.

The closed unit interval (written as [0, 1]) means the set consisting of 0, 1, and every real number in between.

For definitions of continuous, derivative, convex, concave, Hölder continuous, and Lipschitz continuous, see
the definitions section in “Supplemental Notes for Bernoulli Factory Algorithms4”.

Any polynomial 𝑝(𝜆) can be written in Bernstein form as—

𝑝(𝜆) = (𝑛
0)𝜆0(1 − 𝜆)𝑛−0𝑎[0] + (𝑛

1)𝜆1(1 − 𝜆)𝑛−1𝑎[1] + ... + (𝑛
𝑛)𝜆𝑛(1 − 𝜆)𝑛−𝑛𝑎[𝑛],

where n is the polynomial’s degree and a[0], a[1], …, a[n] are its n plus one Bernstein coefficients (which this
document may simply call coefficients if the meaning is obvious from the context).5

A function 𝑓(𝜆) is piecewise continuous if it’s made up of multiple continuous functions defined on a finite
number of “pieces”, or non-empty subintervals, that together make up f’s domain.

4 Approximations by Polynomials
This section first shows how to approximate a function on the closed unit interval, then shows how to
approximate a function on any closed interval.

1https://github.com/peteroupc/peteroupc.github.io/raw/master/bernapprox.md
2https://github.com/peteroupc/peteroupc.github.io/blob/master/bernapprox.md
3https://github.com/peteroupc/peteroupc.github.io/issues
4https://peteroupc.github.io/bernsupp.html#Definitions
5choose(n, k) = (1*2*3*…*n)/((1*…*k)*(1*…*(n − k))) = n!/(k! * (n − k)!) = (𝑛

𝑘) is a binomial coefficient, or the number
of ways to choose k out of n labeled items. It can be calculated, for example, by calculating i/(n − i+1) for each integer
i satisfying n − k+1 ≤ i ≤ n, then multiplying the results (Yannis Manolopoulos. 2002. “Binomial coefficient computation:
recursion or iteration?”, SIGCSE Bull. 34, 4 (December 2002), 65–67. DOI: https://doi.org/10.1145/820127.820168). For
every m>0, choose(m, 0) = choose(m, m) = 1 and choose(m, 1) = choose(m, m − 1) = m; also, in this document, choose(n, k)
is 0 when k is less than 0 or greater than n.n! = 1*2*3*…*n is also known as 𝑛 factorial; in this document, (0!) = 1.
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4.1 Approximations on the Closed Unit Interval
Suppose 𝑓(𝜆) is continuous and maps the closed unit interval to the closed unit interval.

Then, a polynomial of a high enough degree (called 𝑛) can be used to approximate 𝑓(𝜆) with an error
no more than 𝜖, as long as the polynomial’s Bernstein coefficients can be calculated and an explicit upper
bound on the approximation error is available. See my question on MathOverflow6. Examples of these
polynomials (all of degree 𝑛) are given in the following table.

Name Polynomial
Its Bernstein coefficients
are found as follows: Notes

Bernstein polynomial. 𝐵𝑛(𝑓). 𝑓(𝑗/𝑛), where 0 ≤ 𝑗 ≤ 𝑛. Originated with S.N.
Bernstein (1912).
Evaluates 𝑓 at 𝑛 + 1
evenly-spaced points.

Order-2 iterated
Boolean sum.

𝑈𝑛,2 = 𝐵𝑛(𝑊𝑛,2). 𝑊𝑛,2(𝑗/𝑛), where
0 ≤ 𝑗 ≤ 𝑛 and
𝑊𝑛,2(𝜆) =
2𝑓(𝜆) − 𝐵𝑛(𝑓)(𝜆).

Micchelli (1973)7, Guan
(2009)8, Güntürk and Li
(2021, sec. 3.3)9.
Evaluates 𝑓 at 𝑛 + 1
evenly-spaced points.

Order-3 iterated
Boolean sum.

𝑈𝑛,3 = 𝐵𝑛(𝑊𝑛,3). 𝑊𝑛,3(𝑗/𝑛), where
0 ≤ 𝑗 ≤ 𝑛 and
𝑊𝑛,3(𝜆) =
𝐵𝑛(𝐵𝑛(𝑓)(𝜆)) + 3(𝑓(𝜆)
− 𝐵𝑛(𝑓)(𝜆)).

Same.

Butzer’s linear
combination (order 2).

𝐿2,𝑛/2 = 2𝐵𝑛(𝑓(𝜆)) −
𝐵𝑛/2(𝑓(𝜆)).

(First, define the
following operation:
Get coefficients for 𝑛
given 𝑚: Treat the
coefficients [𝑓(0/𝑚),
𝑓(1/𝑚), …, 𝑓(𝑚/𝑚)] as
representing a
polynomial in Bernstein
form of degree 𝑚, then
rewrite that polynomial
to one of degree 𝑛 with
𝑛 + 1 Bernstein
coefficients (see
“Computational
Issues”), then return
those coefficients.)Get
coefficients for 𝑛
given 𝑛/2, call them
a[0], …, a[n], then set the
final Bernstein
coefficients to
2𝑓(𝑗/𝑛) − 𝑎[𝑗] for each 𝑗.

Tachev (2022)10, Butzer
(1955)11. 𝑛 ≥ 6 must be
even. Evaluates 𝑓 at
𝑛/2 + 1 evenly-spaced
points.

6https://mathoverflow.net/questions/442057/explicit-and-fast-error-bounds-for-approximating-continuous-functions
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Name Polynomial
Its Bernstein coefficients
are found as follows: Notes

Butzer’s linear
combination (order 3).

𝐿3,𝑛/4 = 𝐵𝑛/4(𝑓)/3 +
𝐵𝑛(𝑓) ⋅ 8/3 − 2𝐵𝑛/2(𝑓)

Get coefficients for 𝑛
given 𝑛/4, call them
a[0], …, a[n], then get
coefficients for 𝑛
given 𝑛/2, call them
b[0], …, b[n], then set the
final Bernstein
coefficients to
𝑎[𝑗]/3−2𝑏[𝑗]+8𝑓(𝑗/𝑛)/3
for each 𝑗.

Butzer (1955)12. 𝑛 ≥ 4
must be divisible by 4.
Evaluates 𝑓 at 𝑛/2 + 1
evenly-spaced points.

Lorentz operator (order
2).

𝑄𝑛−2,2 =
𝐵𝑛−2(𝑓) − 𝑥(1 − 𝑥)⋅
𝐵𝑛−2(𝑓″)/(2(𝑛 − 2)).

Get coefficients for 𝑛
given 𝑛 − 2, call them
a[0], …, a[n]. Then for
each integer 𝑗 with
1 ≤ 𝑗 < 𝑛, subtract 𝑧
from a[j], where 𝑧 =
(((𝑓″((𝑗 − 1)/(𝑛 − 2))) /
(4(𝑛 − 2))) ⋅ 2𝑗(𝑛 −
𝑗)/((𝑛 − 1) ⋅ (𝑛)). The
final Bernstein
coefficients are now a[0],
…, a[n].

Holtz et al. (2011)13;
Bernstein (1932)14;
Lorentz (1966)15. 𝑛 ≥ 4;
𝑓″ is the second
derivative of 𝑓 .
Evaluates 𝑓 and 𝑓″ at
𝑛 − 1 evenly-spaced
points.

The goal is now to find a polynomial of degree 𝑛, written in Bernstein form, such that—

1. the polynomial is within 𝜖 of 𝑓(𝜆), and
2. each of the polynomial’s Bernstein coefficients is not less than 0 or greater than 1 (assuming none of

𝑓 ’s values is less than 0 or greater than 1).

For some of the polynomials given above, a degree 𝑛 can be found so that the degree-𝑛 polynomial is within
𝜖 of 𝑓 , if 𝑓 is continuous and meets other conditions. In general, to find the degree 𝑛, solve the error bound’s
equation for 𝑛 and round the solution up to the nearest integer. See the table below, where:

• 𝑀𝑟 is not less than the maximum of the absolute value of 𝑓 ’s 𝑟-th derivative.
• 𝐻𝑟 is not less than 𝑓 ’s 𝑟-th derivative’s Hölder constant (for the given Hölder exponent 𝛼).
• 𝐿𝑟 is not less than 𝑓 ’s 𝑟-th derivative’s Lipschitz constant.

7Micchelli, Charles. “The saturation class and iterates of the Bernstein polynomials”, Journal of Approximation
Theory 8, no. 1 (1973): 1-18. https://www.sciencedirect.com/science/article/pii/0021904573900282

8Guan, Zhong. “Iterated Bernstein polynomial approximations”, arXiv:0909.0684 (2009). https://arxiv.org/abs/09
09.0684

9Güntürk, C.S., Li, W., “Approximation of functions with one-bit neural networks”, arXiv:2112.09181 [cs.LG], 2021.
https://arxiv.org/abs/2112.09181

10Tachev, Gancho. “Linear combinations of two Bernstein polynomials”, Mathematical Foundations of Computing,
2022. https://doi.org/10.3934/mfc.2022061

11Butzer, P.L., “Linear combinations of Bernstein polynomials”, Canadian Journal of Mathematics 15 (1953).
12Butzer, P.L., “Linear combinations of Bernstein polynomials”, Canadian Journal of Mathematics 15 (1953).
13Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:

//link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
14Bernstein, S. N. (1932). “Complément a l’article de E. Voronovskaya.” CR Acad. URSS, 86-92.
15G.G. Lorentz, “The degree of approximation by polynomials with positive coefficients”, 1966.
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If f (𝜆):
Then the following
polynomial:

Is close to f with
the following error
bound:

And a value of n
that achieves the
bound is: Notes

Has Hölder
continuous second
derivative (see
“Definitions”).

𝑈𝑛,2(𝑓). 𝜀 = (5𝐻2 + 4𝑀2) /
(32𝑛1+𝛼/2).

n=max(3,
ceil(((5𝐻2 + 4𝑀2)
/ (32𝜖))2/(2+𝛼))).

𝑛 ≥ 3. 0 < 𝛼 ≤ 1
is second
derivative’s Hölder
exponent. See
Proposition B10C
in appendix.

Has Lipschitz
continuous second
derivative.

𝑈𝑛,2(𝑓). 𝜀 = (5𝐿2 + 4𝑀2) /
(32𝑛3/2).

n=max(3,
ceil(((5𝐿2 + 4𝑀2) /
(32𝜖))2/3)).

𝑛 ≥ 3. Special case
of previous entry.

Has Lipschitz
continuous second
derivative.

𝑄𝑛−2,2(𝑓). 𝜀 = 0.098585
L2/((n − 2) 3/2 ).

n=max(4,
ceil(((0.098585𝐿2)
/ (𝜖))2/3 + 2)).

𝑛 ≥ 4. See
Proposition B10A
in appendix.

Has continuous
third derivative.

𝐿2,𝑛/2(𝑓). 𝜀 = (3*sqrt(3 −
4/n)/4)*M3/n2 <
(3*sqrt(3)/4)*M3/n2

< 1.29904*M3/n2

≤ 1.29904*M3/n
3/2 .

n=max(6,ceil( 33/4√𝑀3/𝜖
2 ))

≤
max(6,ceil((113976/100000)
* sqrt(M3/ 𝜀))) ≤
max(6,
ceil(((1.29904𝑀3) /
𝜖)2/3)). (If n is
now odd, add 1.)

Tachev (2022)16.
𝑛 ≥ 6 must be
even.

Has Hölder
continuous third
derivative.

𝑈𝑛,2(𝑓). 𝜀 =
(9𝐻3 +8𝑀2 +8𝑀3)
/ (64𝑛(3+𝛼)/2).

n=max(6,
ceil(((9𝐻3 + 8𝑀2 +
8𝑀3) /
(64𝜖))2/(3+𝛼))).

𝑛 ≥ 6. 0 < 𝛼 ≤ 1
is third derivative’s
Hölder exponent.
See Proposition
B10D in appendix.

Has Lipschitz
continuous third
derivative.

𝑈𝑛,2(𝑓). 𝜀 =
(9𝐻3 +8𝑀2 +8𝑀3)
/ (64𝑛2).

n=max(6,
ceil(((9𝐻3 + 8𝑀2 +
8𝑀3) / (64𝜖))1/2)).

𝑛 ≥ 6. Special case
of previous entry.

Has Lipschitz
continuous third
derivative.

𝐿3,𝑛/4(𝑓). 𝜀 = L3/(8*n2). n=max(4,ceil((sqrt(2)/4)
* sqrt(L3/ 𝜀))) ≤
max(4,ceil((35356/100000)
* sqrt(L3/ 𝜀))).
(Round n up to
nearest multiple of
4.)

𝑛 ≥ 4 must be
divisible by 4. See
Proposition B10 in
appendix.

Has Lipschitz
continuous
derivative.

𝐵𝑛(𝑓). 𝜀 = L1/(8*n). n = ceil(L1/(8*
𝜀)).

Lorentz (1963)17.18

Has Hölder
continuous
derivative.

𝐵𝑛(𝑓). 𝜀 = H1/(4*n
(1+𝛼)/2 ).

n = ceil((H1/(4*
𝜀)) 2/(1+𝛼) ).

Schurer and
Steutel (1975)19. 0
< 𝛼 ≤ 1 is
derivative’s Hölder
exponent.

Is Hölder
continuous.

𝐵𝑛(𝑓). 𝜀 = H0*(1/(4*n))
𝛼/2 .

n = ceil((H0/ 𝜀))
2/𝛼 /4).

Kac (1938)20. 0 <
𝛼 ≤ 1 is f ’s Hölder
exponent.

Is Lipschitz
continuous.

𝐵𝑛(𝑓). 𝜀 =
L0*sqrt(1/(4*n)).

n = ceil((L0)2/(4*
𝜀 2)).

Special case of
previous entry.
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If f (𝜆):
Then the following
polynomial:

Is close to f with
the following error
bound:

And a value of n
that achieves the
bound is: Notes

Is Lipschitz
continuous.

𝐵𝑛(𝑓). 𝜀 =
4306+837

√
6

5832 𝐿0/𝑛1/2

< 1.08989𝐿0/𝑛1/2.

n=ceil((L0*1.08989/
𝜀)2).

Sikkema (1961)21.

Note: In addition, by analyzing the proof of Theorem 2.4 of Güntürk and Li (2021, sec. 3.3)22,
the following error bounds for 𝑈𝑛,3 appear to be true:

• If 𝑓(𝜆) has continuous fifth derivative: 𝜀 = 4.0421*max(M0,…,M5)/n 5/2 .
• If 𝑓(𝜆) has continuous sixth derivative: 𝜀 = 4.8457*max(M0,…,M6)/n3.

Bernstein polynomials (𝐵𝑛(𝑓)) have the advantages that only one Bernstein coefficient has to be found per
run and that the coefficient will be bounded by 0 and 1 if 𝑓(𝜆) is. But their disadvantage is that they
approach 𝑓 slowly in general, at a rate no faster than a rate proportional to 1/𝑛 (Voronovskaya 1932)23.

On the other hand, polynomials other than Bernstein polynomials (𝐵𝑛(𝑓)) can approach 𝑓 faster in many
cases than 𝐵𝑛(𝑓), but are not necessarily bounded by 0 and 1. For these polynomials, the following process
can be used to calculate the required degree 𝑛, given an error tolerance of 𝜖, assuming none of 𝑓 ’s values is
less than 0 or greater than 1.

1. Determine whether 𝑓 is described in the table above. Let A be the minimum of 𝑓 on the closed unit
interval and let B be the maximum of 𝑓 there.

2. If 0 < A ≤ B < 1, calculate 𝑛 as given in the table above, but with 𝜖 = min(𝜖, 𝐴, 1 − 𝐵), and stop.
3. Propositions B1, B2, and B3 in the appendix give conditions on 𝑓 so that 𝑊𝑛,2 or 𝑊𝑛,3 (as the case

may be) will be nonnegative. If B is less than 1 and any of those conditions is met, calculate 𝑛 as given
in the table above, but with 𝜖 = min(𝜖, 1 − 𝐵). (For B3, set 𝑛 to max(𝑛, 𝑚), where 𝑚 is given in that
proposition.) Then stop; 𝑊𝑛,2 or 𝑊𝑛,3 will now be bounded by 0 and 1.

4. Calculate 𝑛 as given in the table above. Then, if any Bernstein coefficient of the resulting polynomial
is less than 0 or greater than 1, double the value of 𝑛 until this condition is no longer true.

The resulting polynomial of degree 𝑛 will be within 𝜖 of 𝑓(𝜆).
Notes:

1. A polynomial’s Bernstein coefficients can be rounded to multiples of 𝛿 (where 0 < 𝛿 ≤ 1) by
setting either—

• 𝑐=floor(𝑐/𝛿) * 𝛿 (rounding down), or
• 𝑐=floor(𝑐/𝛿 + 1/2) * 𝛿 (rounding to the nearest multiple),

16Tachev, Gancho. “Linear combinations of two Bernstein polynomials”, Mathematical Foundations of Computing,
2022. https://doi.org/10.3934/mfc.2022061

17G.G. Lorentz, “Inequalities and saturation classes for Bernstein polynomials”, 1963.
18Qian et al. suggested an n which has the upper bound n=ceil(1+max(2𝑛,𝑛2(2𝑛𝐶)/𝜖)), where 𝐶 is the maximum of 𝑓 on

its domain, but this is often much worse and works only if 𝑓 is a polynomial (Qian, W., Riedel, M. D., & Rosenberg, I. (2011).
Uniform approximation and Bernstein polynomials with coefficients in the unit interval. European Journal of Combinatorics,
32(3), 448-463).

19Schurer and Steutel, “On an inequality of Lorentz in the theory of Bernstein polynomials”, 1975.
20Kac, M., “Une remarque sur les polynômes de M. S. Bernstein”, Studia Math. 7, 1938.
21Sikkema, P.C., “Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen”, 1961.
22Güntürk, C.S., Li, W., “Approximation of functions with one-bit neural networks”, arXiv:2112.09181 [cs.LG], 2021.

https://arxiv.org/abs/2112.09181
23E. Voronovskaya, “Détermination de la forme asymptotique d’approximation des fonctions par les polynômes de M. Bern-

stein”, 1932.
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for each Bernstein coefficient 𝑐. The new polynomial will differ from the old one by at most
𝛿. (Thus, to find a polynomial with multiple-of-𝛿 Bernstein coefficients that approximates
𝑓 with error 𝜖 [which must be greater than 𝛿], first find a polynomial with error 𝜖 − 𝛿, then
round that polynomial’s Bernstein coefficients as given here.)

2. Gevrey’s hierarchy is a class of “smooth” functions with known bounds on their derivatives.
A function 𝑓(𝜆) belongs in Gevrey’s hierarchy if there are 𝐵 ≥ 1, 𝑙 ≥ 1, 𝛾 ≥ 1 such that 𝑓 ’s
𝑛-th derivative’s absolute value is not greater than 𝐵𝑙𝑛𝑛𝛾𝑛 for every 𝑛 ≥ 1 (Kawamura et
al. 2015)24; see also (Gevrey 1918)25). In this case, for each 𝑛 ≥ 1—
• the 𝑛-th derivative of 𝑓 is continuous and has a maximum absolute value of at most

𝐵𝑙𝑛𝑛𝛾𝑛, and
• the (𝑛 − 1)-th derivative of 𝑓 is Lipschitz continuous with Lipschitz constant at most

𝐵𝑙𝑛𝑛𝛾𝑛.

Gevrey’s hierarchy with 𝛾 = 1 is the class of functions equaling power series (see note in
next section).

4.2 Taylor Polynomials for “Smooth” Functions
If 𝑓(𝜆) is “smooth” enough on the closed unit interval and if 𝜖 is big enough, then Taylor’s theorem shows
how to build a polynomial that comes within 𝜖 of 𝑓 . In this section 𝑓 may but need not be writable as a
power series (see note).

In this section, 𝑀𝑟 is not less than the maximum of the absolute value of 𝑓 ’s 𝑟-th derivative.

Let 𝑛 ≥ 0 be an integer, and let 𝑓 (𝑖) be the 𝑖-th derivative of 𝑓(𝜆). Suppose that—

1. 𝑓 is continuous on the closed unit interval, and
2. 𝑓 satisfies 𝜖 ≤ 𝑓(0) ≤ 1 − 𝜖 and 𝜖 ≤ 𝑓(1) ≤ 1 − 𝜖, and
3. 𝑓 satisfies 𝜖 < 𝑓(𝜆) < 1 − 𝜖 whenever 0 < 𝜆 < 1, and
4. 𝑓 ’s (𝑛 + 1)-th derivative is continuous and satisfies 𝜖 ≥ 𝑀𝑛+1/((𝑛 + 1)!), and
5. 𝑓(0) is known as well as 𝑓 (1)(0), ..., 𝑓 (𝑛)(0).

Then the 𝑛-th Taylor polynomial centered at 0, given below, is within 𝜖 of 𝑓 :
𝑃(𝜆) = 𝑎0𝜆0 + 𝑎1𝜆1 + ... + 𝑎𝑛𝜆𝑛,

where 𝑎0 = 𝑓(0) and 𝑎𝑖 = 𝑓 (𝑖)(0)/(𝑖!) for 𝑖 ≥ 1.
Items 2 and 3 above are not needed to find a polynomial within 𝜖 of 𝑓 , but they are needed to ensure the
Taylor polynomial’s Bernstein coefficients will lie in the closed unit interval, as described after the note.

Note: If 𝑓(𝜆) can be rewritten as a power series, namely 𝑓(𝜆) = 𝑐0𝜆0 + 𝑐1𝜆1 + ... + 𝑐𝑖𝜆𝑖 + ...
whenever 0 ≤ 𝜆 ≤ 1 (so that 𝑓 has a continuous 𝑘-th derivative for every 𝑘), and if the power
series coefficients 𝑐𝑖—

• are each greater than 0,
• form a nowhere increasing sequence (example: (1/4, 1/8, 1/8, 1/16, …)), and
• meet the so-called “ratio test”,

then the algorithms in Carvalho and Moreira (2022)26 can be used to find the first 𝑛+1 power
series coefficients such that 𝑃(𝜆) is within 𝜖 of 𝑓 (see also the appendix).

24Kawamura, Akitoshi, Norbert Müller, Carsten Rösnick, and Martin Ziegler. “Computational benefit of smoothness:
Parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy.” Journal of
Complexity 31, no. 5 (2015): 689-714. https://doi.org/10.1016/j.jco.2015.05.001

25M. Gevrey, “Sur la nature analytique des solutions des équations aux dérivées partielles”, 1918.
26Carvalho, Luiz Max, and Guido A. Moreira. “Adaptive truncation of infinite sums: applications to Statistics”,

arXiv:2202.06121 (2022). https://arxiv.org/abs/2202.06121
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Now, the Taylor polynomial 𝑃 , when written in its “power” form or “monomial” form, has “power” coefficients
𝑎0, ..., 𝑎𝑛.

Now, rewrite 𝑃 (𝜆) as a polynomial in Bernstein form. (See “Computational Issues” for details.) Let
𝑏0, ..., 𝑏𝑛 be the resulting Bernstein coefficients. If any of those Bernstein coefficients is less than 0 or greater
than 1, then—

• double the value of 𝑛, then
• rewrite the Bernstein coefficients of degree 𝑛/2 to the corresponding Bernstein coefficients of degree 𝑛,

until none of the Bernstein coefficients is less than 0 or greater than 1.

The result will be a polynomial of degree 𝑛 with (𝑛 + 1) Bernstein coefficients.

4.3 Approximations on Any Closed Interval
Now, let 𝑔(𝜆) be continuous on the closed interval [𝑎, 𝑏]. This section shows how to adapt the previous two
sections to approximate 𝑔 on the interval, to the user-defined error tolerance 𝜖, by a polynomial in Bernstein
form on the interval [𝑎, 𝑏].
Any polynomial 𝑝(𝜆) can be written in Bernstein form on the interval [𝑎, 𝑏] as—

𝑝(𝜆) = 1
(𝑏 − 𝑎)𝑛 ((𝑛

0)(𝜆 − 𝑎)0(𝑏 − 𝜆)𝑛−0𝑎[0] + (𝑛
1)(𝜆 − 𝑎)1(𝑏 − 𝜆)𝑛−1𝑎[1] + ... + (𝑛

𝑛)(𝜆 − 𝑎)𝑛(𝑏 − 𝜆)𝑛−𝑛𝑎[𝑛]) ,

where n is the polynomial’s degree and a[0], a[1], …, a[n] are its n plus one Bernstein coefficients for the
interval [𝑎, 𝑏] (Bărbosu 2020)27.

The necessary changes are as follows:

• In the previous two sections, define 𝑓 , 𝑀𝑟, 𝑎𝑖, and 𝐿𝑟 as follows:
– 𝑓(𝜆) = 𝑔(𝑎 + (𝑏 − 𝑎)𝜆). This will make 𝑓 continuous on the closed unit interval.
– 𝑀𝑟 is not less than (𝑏 − 𝑎)𝑟 times the maximum of the absolute value of 𝑔’s 𝑟-th derivative on

[𝑎, 𝑏].
– 𝐿𝑟 is not less than (𝑏 − 𝑎)𝑟+1 times the Lipschitz constant of 𝑔’s 𝑟-th derivative on [𝑎, 𝑏].
– 𝑎𝑖 = (𝑏 − 𝑎)𝑖𝑓 (𝑖)(0)/(𝑖!).

(The error bounds that rely on 𝐻𝑟 won’t work for the time being unless [𝑎, 𝑏] is the closed unit interval.)

The result will be in the form of Bernstein coefficients for the interval [𝑎, 𝑏] rather than the interval [0, 1].
Note: The following statements can be shown. Let 𝑔(𝑥) be continuous on the interval [𝑎, 𝑏], and
let 𝑓(𝑥) = 𝑔(𝑎 + (𝑏 − 𝑎)𝑥).
• If the 𝑟-th derivative of 𝑔 is continuous and has a maximum absolute value of 𝑀 on the

interval, where 𝑟 ≥ 1, then the 𝑟-th derivative of 𝑓(𝑥) has a maximum absolute value of
𝑀(𝑏 − 𝑎)𝑟 on the interval [0, 1].

• If the 𝑟-th derivative of 𝑔 is Lipschitz continuous with Lipschitz constant 𝐿 on the interval,
where 𝑟 ≥ 0, then the 𝑟-th derivative of 𝑓(𝑥) is Lipschitz continuous with Lipschitz constant
𝐿(𝑏 − 𝑎)𝑟+1 on the interval [0, 1].

Example: Suppose 𝑔(𝑥) is defined on the interval [1, 3] and has a Lipschitz continuous derivative
with Lipschitz constant 𝐿. Let 𝑓(𝑥) = 𝑔(1 + (3 − 1)𝑥). Then 𝑓(𝑥) has a Lipschitz continuous
derivative with Lipschitz constant 𝐿(3 − 1)𝑟+1 = 𝐿(3 − 1)2 = 4𝐿 (where 𝑟 is 1 in this case).
Further, the Bernstein polynomial 𝐵𝑛(𝑓) admits the following error bound 𝜖 and a degree 𝑛 that

27Bărbosu, D., “The Bernstein operators on any finite interval revisited”, Creat. Math. Inform. 20 (2020).
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achieves the error tolerance 𝜖: 𝜖 = (4𝐿) ⋅ 1/(8𝑛) and 𝑛 = ceil((4𝐿) ⋅ 1/(8𝜖)). (Compare with
the row starting with “Has Lipschitz continuous derivative” in the previous section.) The error
bound carries over to 𝑔(𝑥) on the interval [1, 3].

4.4 Approximating an Integral
Roughly speaking, the integral of f (x) on an interval [a, b] is the “area under the graph” of that function
when the function is restricted to that interval. If f is continuous there, this is the value that 1

𝑛 (𝑓(𝑎 + (𝑏 −
𝑎)(1 − 1

2 )/𝑛) + 𝑓(𝑎 + (𝑏 − 𝑎)(2 − 1
2 )/𝑛) + ... + 𝑓(𝑎 + (𝑏 − 𝑎)(𝑛 − 1

2 )/𝑛)) approaches as 𝑛 gets larger and larger.

If a polynomial is in Bernstein form of degree 𝑛, and is defined on the closed unit interval:

• The polynomial’s integral on the closed unit interval is equal to the average of its (𝑛 + 1) Bernstein
coefficients; that is, the integral is found by adding those coefficients together, then dividing by (𝑛 + 1)
(Tsai and Farouki 2001, section 3.4)28.29

If a polynomial is in Bernstein form on the interval [𝑎, 𝑏], of degree 𝑛:
• The polynomial’s integral on [𝑎, 𝑏] is found by adding the polynomial’s Bernstein coefficients for [𝑎, 𝑏]

together, then multiplying by (𝑏 − 𝑎)/(𝑛 + 1).
Let 𝑃(𝜆) be a continuous function (such as a polynomial) on the interval [a, b], and let 𝑓(𝜆) be a piecewise
continuous function on that interval.

• If 𝑃 is within 𝜖 of 𝑓 at every point on the interval, then its integral is within 𝜖 × (𝑏 − 𝑎) of 𝑓 ’s integral
on that interval.

• If 𝑃 is within 𝜖/(𝑏 − 𝑎) of 𝑓 at every point on the interval, then its integral is within 𝜖 of 𝑓 ’s integral
on that interval.

Note: A pair of articles by Konečný and Neumann discuss approximating the integral (and maxi-
mum) of a class of functions efficiently using polynomials or piecewise functions with polynomials
as the pieces: Konečný and Neumann (2021)30; Konečný and Neumann (2019)31.

Muñoz and Narkawicz (2013)32 also discuss finding the minimum and maximum of a polynomial
in Bernstein form — indeed, a polynomial is bounded above by its highest Bernstein coefficient
and below by its lowest.

4.5 Approximating a Derivative
For the time being, this section works only if 𝑓(𝜆) is defined on the closed unit interval, rather than an
arbitrary closed interval.

If 𝑓(𝜆) has a continuous 𝑟-th derivative on the closed unit interval (where 𝑟 is 1 or greater), it’s possible to
approximate 𝑓 ’s 𝑟-th derivative as follows:

1. Build a polynomial in Bernstein form of a degree 𝑛 that is high enough such that the 𝑟-th derivative
is close to 𝑓 with an error no more than 𝜖 (where 𝜖 is the user-defined error tolerance. See the table
below.

28Tsai, Y., Farouki, R.T., “Algorithm 812: BPOLY: An Object- Oriented Library of Numerical Algorithms for Polynomials
in Bernstein Form”, ACM Transactions on Mathematical Software, June 2001.

29As an example, Mastroianni and Occorsio (1977) approximate an integral this way using iterated Boolean sums of Bernstein
polynomials (which include 𝑈𝑛,2). G. Mastroianni, M.R. Occorsio, “Una generalizzazione dell’operatore di Bernstein”, 1977.

30Konečný, Michal, and Eike Neumann. “Representations and evaluation strategies for feasibly approximable functions.”
Computability 10, no. 1 (2021): 63-89. Also in arXiv: 1710.03702. https://arxiv.org/abs/1710.03702

31Konečný, Michal, and Eike Neumann. “Implementing evaluation strategies for continuous real functions”,
arXiv:1910.04891 (2019). https://arxiv.org/abs/1910.04891

32Muñoz, César, and Anthony Narkawicz. “Formalization of Bernstein polynomials and applications to global optimization.”
Journal of Automated Reasoning 51, no. 2 (2013): 151-196.
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2. Let 𝑎[0], ..., 𝑎[𝑛] be the polynomial’s Bernstein coefficients. Now, to compute the polynomial’s 𝑟-th
derivative, do the following 𝑟 times or until the process stops, whichever happens first (Tsai and
Farouki 2001, section 3.4)33.

• If 𝑛 is 0, set 𝑎[0] = 0 and stop.
• For each integer 𝑘 with 0 ≤ 𝑘 ≤ 𝑛 − 1, set 𝑎[𝑘] = 𝑛 ⋅ (𝑎[𝑘 + 1] − 𝑎[𝑘]).
• Set 𝑛 to 𝑛 − 1.

3. The result is a degree-𝑛 polynomial, with Bernstein coefficients 𝑎[0], ..., 𝑎[𝑛], that approximates the
𝑟-th derivative of 𝑓(𝜆).

In the table below:

• 𝑀𝑟 is not less than the maximum of the absolute value of 𝑓 ’s 𝑟-th derivative.
• 𝐻𝑟 is not less than 𝑓 ’s 𝑟-th derivative’s Hölder constant (for the given Hölder exponent 𝛼).
• 𝐿𝑟 is not less than 𝑓 ’s 𝑟-th derivative’s Lipschitz constant.

If f (𝜆):
Then the following
polynomial:

Is close to f with
the following error
bound:

And a value of n
that achieves the
bound is: Notes

Has Hölder
continuous 𝑟-th
derivative.

𝐵𝑛(𝑓). 𝜖 =
𝑟𝑀𝑟(𝑟 − 1)/(2𝑛) +
5𝐻𝑟/(4𝑛𝛼/2) ≤
(𝑟𝑀𝑟(𝑟 − 1)/2 +
5𝐻𝑟/4)/𝑛𝛼/2.

𝑛 = ceil(max(𝑟 +
1, ( (5𝐻𝑟+2𝑀𝑟(𝑟2−𝑟))2

16𝜖2 )
1/𝛼

)).
Knoop and
Pottinger (1976)34.
0 < 𝛼 ≤ 1 is 𝑟-th
derivative’s Hölder
exponent.

Note: In general, it is not possible to approximate a continuous function’s derivative unless
upper and lower bounds on the derivative are known (Konečný and Neumann (2019)35).

4.6 Computational Issues
Some methods in this document require rewriting a polynomial in Bernstein form of degree 𝑚 to one of a
higher degree 𝑛. This is also known as degree elevation. This method works for polynomials in Bernstein
form on any closed interval.

• This can be done directly in the Bernstein form, as described in Tsai and Farouki (2001, section 3.2)36.
• This can also be done through an intermediate form called the scaled Bernstein form (Farouki and

Rajan 1988)37, as described in Sánchez-Reyes (2003)38. (A polynomial in scaled Bernstein form is also
known as a homogeneous polynomial.)

– The i-th Bernstein coefficient of degree m is turned to a scaled Bernstein coefficient by multiplying
it by choose(m,i).

– The i-th scaled Bernstein coefficient of degree m is turned to a Bernstein coefficient by dividing
it by choose(m,i).

33Tsai, Y., Farouki, R.T., “Algorithm 812: BPOLY: An Object- Oriented Library of Numerical Algorithms for Polynomials
in Bernstein Form”, ACM Transactions on Mathematical Software, June 2001.

34Knoop, H-B., Pottinger, P., “Ein Satz vom Korovkin-Typ für 𝐶𝑘-Räume”, Math. Zeitschrift 148 (1976).
35Konečný, Michal, and Eike Neumann. “Implementing evaluation strategies for continuous real functions”,

arXiv:1910.04891 (2019). https://arxiv.org/abs/1910.04891
36Tsai, Y., Farouki, R.T., “Algorithm 812: BPOLY: An Object- Oriented Library of Numerical Algorithms for Polynomials

in Bernstein Form”, ACM Transactions on Mathematical Software, June 2001.
37Farouki, Rida T., and V. T. Rajan. “Algorithms for polynomials in Bernstein form”. Computer Aided Geometric

Design 5, no. 1 (1988): 1-26. https://www.sciencedirect.com/science/article/pii/0167839688900167
38Sánchez-Reyes, J. (2003). Algebraic manipulation in the Bernstein form made simple via convolutions.

Computer-Aided Design, 35(10), 959-967. https://www.sciencedirect.com/science/article/pii/S0010448503000216
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Some methods in this document require rewriting a polynomial in “power” form of degree 𝑚 (also known
as “monomial” form) to Bernstein form of degree 𝑚. This method works only for polynomials in Bernstein
form on the closed unit interval.

• This can be done directly using the so-called “matrix method” from Ray and Nataraj (2012)39.
• This can also be done by rewriting the polynomial from “power” form to scaled Bernstein form (see

Sánchez-Reyes (2003, section 2.6)40), then converting the scaled Bernstein form to Bernstein form.

5 Approximations by Rational Functions
Consider the class of rational functions 𝑝(𝜆)/𝑞(𝜆) that map the closed unit interval to itself, where 𝑞(𝜆) is
in Bernstein form with non-negative coefficients. Then rational functions of this kind are not much better
than polynomials in approximating 𝑓(𝜆) when—

• the 𝑘-th derivative of 𝑓 is continuous on the open interval (0, 1), but not the (𝑘 + 1)-th derivative
(Borwein 1979, section 3)41, or

• 𝑓(𝜆) is writable as 𝑎0𝜆0 + 𝑎1𝜆1 + ..., where 𝑎𝑘 ≥ (𝑘 + 1)𝑎𝑘+1 ≥ 0 whenever 𝑘 ≥ 0 (Borwein 1980)42.

In addition, rational functions are not much better than polynomials in approximating 𝑓(𝜆) when—

• the 𝑘-th derivative of 𝑓 is continuous on the half-open interval (0, 1], but not the (𝑘 + 1)-th derivative,
and

• the rational function has no root that is a complex number whose real part is between 0 and 1 (Borwein
1979, theorem 29)43.

6 Request for Additional Methods
Readers are requested to let me know of additional solutions to the following problems:

1. Let 𝑓(𝜆) be continuous and map the closed unit interval to itself. Given 𝜖 > 0, and given that 𝑓(𝜆)
belongs to a large class of functions (for example, it has a continuous, Lipschitz continuous, concave,
or nowhere decreasing 𝑘-th derivative for some integer 𝑘, or any combination of these), compute the
Bernstein coefficients of a polynomial or rational function (of some degree 𝑛) that is within 𝜖 of 𝑓(𝜆).
The approximation error must be no more than a constant times 1/𝑛𝑟/2 if the given class has only
functions with continuous 𝑟-th derivative.

Methods that use only integer arithmetic and addition and multiplication of rational numbers are
preferred (thus, Chebyshev interpolants and other methods that involve cosines, sines, 𝜋, exp, and ln
are not preferred).

2. Find a polynomial 𝑃 in Bernstein form that approximates a strictly increasing polynomial 𝑄 on the
closed unit interval such that the inverse of 𝑃 is within 𝜖 of the inverse of 𝑄.

3. Find a polynomial 𝑃 in Bernstein form that approximates a strictly increasing real analytic function
𝑓 on the closed unit interval such that the inverse of 𝑃 is within 𝜖 of the inverse of 𝑓 .

39S. Ray, P.S.V. Nataraj, “A Matrix Method for Efficient Computation of Bernstein Coefficients”, Reliable Com-
puting 17(1), 2012. https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf

40Sánchez-Reyes, J. (2003). Algebraic manipulation in the Bernstein form made simple via convolutions.
Computer-Aided Design, 35(10), 959-967. https://www.sciencedirect.com/science/article/pii/S0010448503000216

41Borwein, P. B. (1979). Restricted uniform rational approximations (Doctoral dissertation, University of British Columbia).
42Borwein, Peter B. “Approximations by rational functions with positive coefficients.” Journal of Mathematical Analysis and

Applications 74, no. 1 (1980): 144-151.
43Borwein, P. B. (1979). Restricted uniform rational approximations (Doctoral dissertation, University of British Columbia).
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(Note: There is no bounded convergence rate for 𝑃 if 𝑓 is assumed only to have a continuous 𝑘-th
derivative for every 𝑘; a counterexample is ℎ(𝑥) = exp(−1/𝑥) (ℎ(0) = 0), ℎ(ℎ(𝑥)), ℎ(ℎ(ℎ(𝑥))), and so
on.)

See also the open questions44.

7 Notes

8 Appendix
8.1 Results Used in Approximations by Polynomials
Lemma A1: Let—

𝑓(𝑥) = 𝑎0𝑥0 + 𝑎1𝑥1 + ...,
where the 𝑎𝑖 are constants each 0 or greater and sum to a finite value and where 0 ≤ 𝑥 ≤ 1 (the domain is
the closed unit interval). Then 𝑓 is convex and has a maximum at 1.

Proof: By inspection, 𝑓(𝑥) is a power series and is nonnegative wherever 𝑥 ≥ 0 (and thus wherever 0 ≤ 𝑥 ≤ 1).
Each of its terms has a maximum at 1 since—

• for 𝑛 = 0, 𝑎0𝑥0 = 𝑎0 is a non-negative constant (which trivially reaches its maximum at 1), and
• for each 𝑛 where 𝑎0 = 0, 𝑎0𝑥𝑛 is the constant 0 (which trivially reaches its maximum at 1), and
• for each other 𝑛, 𝑥𝑛 is a strictly increasing function and multiplying that by 𝑎𝑛 (a positive constant)

doesn’t change whether it’s strictly increasing.

Since all of these terms have a maximum at 1 on the domain, so does their sum.

The derivative of 𝑓 is—
𝑓 ′(𝑥) = 1 ⋅ 𝑎1𝑥0 + ... + 𝑖 ⋅ 𝑎𝑖𝑥𝑖−1 + ...,

which is still a power series with nonnegative values of 𝑎𝑛, so the proof so far applies to 𝑓 ′ instead of 𝑓 . By
induction, the proof so far applies to all derivatives of 𝑓 , including its second derivative.

Now, since the second derivative is nonnegative wherever 𝑥 ≥ 0, and thus on its domain, 𝑓 is convex, which
completes the proof. [ ]

Proposition A2: For a function 𝑓(𝑥) as in Lemma A1, let—

𝑔𝑛(𝑥) = 𝑎0𝑥0 + ... + 𝑎𝑛𝑥𝑛,

and have the same domain as 𝑓 . Then for every 𝑛 ≥ 1, 𝑔𝑛(𝑥) is within 𝜖 of 𝑓(𝑥), where 𝜖 = 𝑓(1) − 𝑔𝑛(1).
Proof: 𝑔𝑛, consisting of the first 𝑛 + 1 terms of 𝑓 , is a power series with nonnegative values for 𝑎0, ..., 𝑎𝑛, so
by Lemma A1, it has a maximum at 1. The same is true for 𝑓 − 𝑔𝑛, consisting of the remaining terms of 𝑓 .
Since the latter has a maximum at 1, the maximum error is 𝜖 = 𝑓(1) − 𝑔𝑛(1). [ ]
For a function 𝑓 described in Lemma A1, 𝑓(1) = 𝑎010 + 𝑎111 + ... = 𝑎0 + 𝑎1 + ..., and 𝑓 ’s error behavior is
described at the point 1, so the algorithms given in Carvalho and Moreira (2022)45 — which apply to infinite
sums — can be used to “cut off” 𝑓 at a certain number of terms and do so with a controlled error.

Proposition B1: Let 𝑓(𝜆) map the closed unit interval to itself and be continuous and concave. Then 𝑊𝑛,2
and 𝑊𝑛,3 (as defined in “For Certain Functions”) are nonnegative on the closed unit interval.

Proof: For 𝑊𝑛,2 it’s enough to prove that 𝐵𝑛(𝑓) ≤ 𝑓 for every 𝑛 ≥ 1. This is the case because of Jensen’s
inequality and because 𝑓 is concave.

44https://peteroupc.github.io/bernreq.html#Polynomials_that_approach_a_factory_function_fast
45Carvalho, Luiz Max, and Guido A. Moreira. “Adaptive truncation of infinite sums: applications to Statistics”,

arXiv:2202.06121 (2022). https://arxiv.org/abs/2202.06121
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For 𝑊𝑛,3 it must also be shown that 𝐵𝑛(𝐵𝑛(𝑓)(𝜆)) is nonnegative. For this, using only the fact that 𝑓
maps the closed unit interval to itself, 𝐵𝑛(𝑓) will have Bernstein coefficients in that interval (each of those
coefficients is a value of 𝑓) and so will likewise map the closed unit interval to itself (Qian et al. 2011)46.
Thus, by induction, 𝐵𝑛(𝐵𝑛(𝑓)(𝜆)) is nonnegative. The discussion for 𝑊𝑛,2 also shows that (𝑓 − 𝐵𝑛(𝑓)) is
nonnegative as well. Thus, 𝑊𝑛,3 is nonnegative on the closed unit interval. [ ]

Proposition B2: Let 𝑓(𝜆) map the closed unit interval to itself, be continuous, nowhere decreasing, and
subadditive, and equal 0 at 0. Then 𝑊𝑛,2 is nonnegative on the closed unit interval.

Proof: The assumptions on 𝑓 imply that 𝐵𝑛(𝑓) ≤ 2𝑓 (Li 2000)47, showing that 𝑊𝑛,2 is nonnegative on the
closed unit interval. [ ]

Note: A subadditive function 𝑓 has the property that 𝑓(𝑎 + 𝑏) ≤ 𝑓(𝑎) + 𝑓(𝑏) whenever 𝑎, 𝑏, and
𝑎 + 𝑏 are in 𝑓 ’s domain.

Proposition B3: Let 𝑓(𝜆) map the closed unit interval to itself and have a Lipschitz continuous derivative
with Lipschitz constant 𝐿. If 𝑓(𝜆) ≥ 𝐿𝜆(1−𝜆)

2𝑚 on 𝑓 ’s domain, for some 𝑚 ≥ 1, then 𝑊𝑛,2 is nonnegative there,
for every 𝑛 ≥ 𝑚.

Proof : Let 𝐸(𝜆, 𝑛) = 𝐿𝜆(1−𝜆)
2𝑛 . Lorentz (1963)48 showed that with this Lipschitz derivative assumption on

𝑓 , 𝐵𝑛 differs from 𝑓(𝜆) by no more than 𝐸(𝜆, 𝑛) for every 𝑛 ≥ 1 and wherever 0 < 𝜆 < 1. As is well
known, 𝐵𝑛(0) = 𝑓(0) and 𝐵𝑛(1) = 𝑓(1). By inspection, 𝐸(𝜆, 𝑛) is biggest when 𝑛 = 1 and decreases as 𝑛
increases. Assuming the worst case that 𝐵𝑛(𝜆) = 𝑓(𝜆) + 𝐸(𝜆, 𝑚), it follows that 𝑊𝑛,2 = 2𝑓(𝜆) − 𝐵𝑛(𝜆) ≥
2𝑓(𝜆) − 𝑓(𝜆) − 𝐸(𝜆, 𝑚) = 𝑓(𝜆) − 𝐸(𝜆, 𝑚) ≥ 0 whenever 𝑓(𝜆) ≥ 𝐸(𝜆, 𝑚). Because 𝐸(𝜆, 𝑘 + 1) ≤ 𝐸(𝜆, 𝑘) for
every 𝑘 ≥ 1, the preceding sentence holds true for every 𝑛 ≥ 𝑚. [ ]

The following results deal with useful quantities when discussing the error in approximating a function by
Bernstein polynomials. Suppose a coin shows heads with probability 𝑝, and 𝑛 independent tosses of the coin
are made. Then the total number of heads 𝑋 follows a binomial distribution, and the 𝑟-th central moment
of that distribution is as follows:

𝑇𝑛,𝑟(𝑝) = 𝔼[(𝑋 − 𝔼[𝑋])𝑟] =
𝑛

∑
𝑘=0

(𝑘 − 𝑛𝑝)𝑟(𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘,

where 𝔼[.] is the expected value (“long-run average”).

• Traditionally, the central moment of 𝑋/𝑛 or the ratio of heads to tosses is denoted 𝑆𝑛,𝑟(𝑝) =
𝑇𝑛,𝑟(𝑝)/𝑛𝑟 = 𝔼[(𝑋/𝑛 − 𝔼[𝑋/𝑛])𝑟]. (𝑇 and 𝑆 are notations of S.N. Bernstein, known for Bernstein
polynomials.)

• The 𝑟-th absolute moment of 𝑋/𝑛 or the ratio of heads to tosses is denoted 𝑀𝑛,𝑟(𝑝) = 𝔼[|𝑋/𝑛 −
𝔼[𝑋/𝑛]|𝑟] = 𝐵𝑛(|𝜆 − 𝑥|𝑟)(𝑝).

The following results bound the absolute value of 𝑇𝑛,𝑟, 𝑆𝑛,𝑟, and 𝑀𝑛,𝑟.49

Result B4 (Molteni (2022)50): If 𝑟 is an even integer such that 0 ≤ 𝑟 ≤ 44, then for every integer 𝑛 ≥ 1,
|𝑇𝑛,𝑟(𝑝)| ≤ (𝑟!)/(((𝑟/2)!)8𝑟/2)𝑛𝑟/2 and |𝑆𝑛,𝑟(𝑝)| ≤ (𝑟!)/(((𝑟/2)!)8𝑟/2) ⋅ (1/𝑛𝑟/2).

46Qian, Weikang, Marc D. Riedel, and Ivo Rosenberg. “Uniform approximation and Bernstein polynomials with coefficients
in the unit interval.” European Journal of Combinatorics 32, no. 3 (2011): 448-463.

47Li, Zhongkai. “Bernstein polynomials and modulus of continuity.” Journal of Approximation Theory 102, no. 1 (2000):
171-174.

48G.G. Lorentz, “Inequalities and saturation classes for Bernstein polynomials”, 1963.
49Summation notation, involving the Greek capital sigma (Σ), is a way to write the sum of one or more terms of similar form.

For example, ∑𝑛
𝑘=0 𝑔(𝑘) means 𝑔(0) + 𝑔(1) + ... + 𝑔(𝑛), and ∑𝑘≥0 𝑔(𝑘) means 𝑔(0) + 𝑔(1) + ....

50Molteni, Giuseppe. “Explicit bounds for even moments of Bernstein’s polynomials.” Journal of Approximation Theory 273
(2022): 105658.
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Result B4A (Adell et al. (2015)51): For every odd integer 𝑟 ≥ 1, 𝑇𝑛,𝑟(𝑝) is positive whenever 0 ≤ 𝑝 < 1/2,
and negative whenever 1/2 < 𝑝 ≤ 1.
Lemma B5: For every integer 𝑛 ≥ 1:

• |𝑆𝑛,0(𝑝)| = 1 = 1 ⋅ (𝑝(1 − 𝑝)/𝑛)0/2.
• |𝑆𝑛,1(𝑝)| = 0 = 0 ⋅ (𝑝(1 − 𝑝)/𝑛)1/2.
• |𝑆𝑛,2(𝑝)| = 𝑝(1 − 𝑝)/𝑛 = 1 ⋅ (𝑝(1 − 𝑝)/𝑛)2/2.

The proof is straightforward.

Result B5A: Let Δ𝑛(𝑥) = max(1/𝑛, (𝑥(1 − 𝑥)/𝑛)1/2). For every real number 𝑟 > 0, 𝑀𝑛,𝑟(𝑝) ≤ (𝑐 +
𝑑)(Δ𝑛(𝑥))𝑟, where 𝑐 = 2 ⋅ 4𝑟/2Γ(𝑟/2 + 1), 𝑑 = 2 ⋅ 8𝑟Γ(𝑟 + 1), and Γ(𝑥) is the gamma function.

Proof : By Theorem 1 of Adell et al. (2015)52 with 𝛿 = 1/2, 𝑀𝑛,𝑟(𝑝) ≤ 𝑐(𝑝(1 − 𝑝)/𝑛)𝑟/2 + 𝑑/𝑛𝑟, and in turn,
𝑐(𝑝(1 − 𝑝)/𝑛)𝑟/2 + 𝑑/𝑛𝑟 ≤ 𝑐(Δ𝑛(𝑝))𝑟 + 𝑑(Δ𝑛(𝑝))𝑟 = (𝑐 + 𝑑)(Δ𝑛(𝑝))𝑟. [ ]

By Result B5A, 𝑐 + 𝑑 = 264 when 𝑟 = 2, 𝑐 + 𝑑 < 6165.27 when 𝑟 = 3, and 𝑐 + 𝑑 = 196672 when 𝑟 = 4.
Result B6 (Adell and Cárdenas-Morales (2018)53): Let 𝜎(𝑟, 𝑡) = (𝑟!)/(((𝑟/2)!)𝑡𝑟/2). If 𝑟 ≥ 0 is an even
integer, then—

• for every integer 𝑛 ≥ 1, |𝑇𝑛,𝑟(𝑝)| ≤ 𝜎(𝑟, 6)𝑛𝑟/2 and |𝑆𝑛,𝑟(𝑝)| ≤ 𝜎(𝑟, 6)/𝑛𝑟/2, and
• for every integer 𝑛 ≥ 1, |𝑇𝑛,𝑟(1/2)| ≤ 𝜎(𝑟, 8)𝑛𝑟/2 and |𝑆𝑛,𝑟(1/2)| ≤ 𝜎(𝑟, 8)/𝑛𝑟/2.

Lemma B9: Let 𝑓(𝜆) have a Lipschitz continuous 𝑟-th derivative on the closed unit interval (see “Defi-
nitions”), where 𝑟 ≥ 0 is an integer, and let 𝑀 be equal to or greater than the 𝑟-th derivative’s Lipschitz
constant. Denote 𝐵𝑛(𝑓) as the Bernstein polynomial of 𝑓 of degree 𝑛. Then, for every 0 ≤ 𝑥0 ≤ 1:

1. 𝑓 can be written as 𝑓(𝜆) = 𝑅𝑓,𝑟(𝜆, 𝑥0) + 𝑓(𝑥0) + ∑𝑟
𝑖=1(𝜆 − 𝑥0)𝑖𝑓 (𝑖)(𝑥0)/(𝑖!) where 𝑓 (𝑖) is the 𝑖-th

derivative of 𝑓 .
2. If 𝑟 is odd, |𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀/((((𝑟 + 1)/2)!)(𝛽𝑛)(𝑟+1)/2) for every integer 𝑛 ≥ 1, where 𝛽 is 8

if 𝑟 ≤ 43 and 6 otherwise.
3. If 𝑟 = 0, |𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀/(2𝑛1/2) for every integer 𝑛 ≥ 1.
4. If 𝑟 is even and greater than 0, |𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀

(𝑟+1)!𝑛(𝑟+1)/2 ( 2⋅(𝑟+1)!(𝑟)!
𝛾𝑟+1((𝑟/2)!)2 )

1/2
for every integer

𝑛 ≥ 2, where 𝛾 is 8 if 𝑟 ≤ 42 and 6 otherwise.

Proof : The well-known result of part 1 says 𝑓 equals the Taylor polynomial of degree 𝑟 at 𝑥0 plus the Lagrange
remainder, 𝑅𝑓,𝑟(𝜆, 𝑥0). A result found in Gonska et al. (2006)54, which applies for any integer 𝑟 ≥ 0, bounds
that Lagrange remainder 55. By that result, because 𝑓 ’s 𝑟-th derivative is Lipschitz continuous—

|𝑅𝑓,𝑟(𝜆, 𝑥0)| ≤ |𝜆 − 𝑥0|𝑟
𝑟! 𝑀 |𝜆 − 𝑥0|

𝑟 + 1 = 𝑀 |𝜆 − 𝑥0|𝑟+1

(𝑟 + 1)! .

The goal is now to bound the Bernstein polynomial of |𝜆 − 𝑥0|𝑟+1. This is easiest to do if 𝑟 is odd.
51Adell, J. A., Bustamante, J., & Quesada, J. M. (2015). Estimates for the moments of Bernstein polynomials. Journal of

Mathematical Analysis and Applications, 432(1), 114-128.
52Adell, J. A., Bustamante, J., & Quesada, J. M. (2015). Estimates for the moments of Bernstein polynomials. Journal of

Mathematical Analysis and Applications, 432(1), 114-128.
53Adell, J.A., Cárdenas-Morales, D., “Quantitative generalized Voronovskaja’s formulae for Bernstein polynomi-

als”, Journal of Approximation Theory 231, July 2018. https://www.sciencedirect.com/science/article/pii/S0021904518300376
54Gonska, H.H., Piţul, P., Raşa, I., “On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator

of positive linear operators”, In Numerical Analysis and Approximation Theory, 2006.
55The result from Gonska et al. actually applies if the 𝑟-th derivative belongs to a broader class of continuous functions than

Lipschitz continuous functions, but this feature is not used in this proof.
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If 𝑟 is odd, then (𝜆 − 𝑥0)𝑟+1 = |𝜆 − 𝑥0|𝑟+1, so by Results B4 and B6, the Bernstein polynomial of |𝜆 − 𝑥0|𝑟+1

can be bounded as follows:

|𝐵𝑛((𝜆 − 𝑥0)𝑟+1)(𝑥0)| ≤ (𝑟 + 1)!
(((𝑟 + 1)/2)!)𝛽(𝑟+1)/2

1
𝑛(𝑟+1)/2 = 𝜎(𝑟, 𝑛),

where 𝛽 is 8 if 𝑟 ≤ 43 and 6 otherwise. Therefore—

|𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀
(𝑟 + 1)! |𝐵𝑛((𝜆 − 𝑥0)𝑟+1)(𝑥0)|

≤ 𝑀
(𝑟 + 1)!

(𝑟 + 1)!
(((𝑟 + 1)/2)!)𝛽(𝑟+1)/2

1
𝑛(𝑟+1)/2 = 𝑀

(((𝑟 + 1)/2)!)(𝛽𝑛)(𝑟+1)/2 .

If 𝑟 is 0, then the Bernstein polynomial of |𝜆 − 𝑥0|1 is bounded by √𝑥0(1 − 𝑥0)/𝑛 for every integer 𝑛 ≥ 1
(Cheng 1983)56, so—

|𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀
(𝑟 + 1)!√𝑥0(1 − 𝑥0)/𝑛 ≤ 𝑀

(𝑟 + 1)!
1

2𝑛1/2 = 𝑀
2𝑛1/2 .

If 𝑟 is even and greater than 0, the Bernstein polynomial for |𝜆 − 𝑥0|𝑟+1 can be bounded as follows for every
𝑛 ≥ 2, using Schwarz’s inequality57 (see also Bojanic and Shisha [1975]58 for the case 𝑟 = 4):

𝐵𝑛(|𝜆 − 𝑥0|𝑟+1)(𝑥0) = 𝐵𝑛((|𝜆 − 𝑥0|𝑟/2|𝜆 − 𝑥0|(𝑟+2)/2)2)(𝑥0)

≤ √|𝑆𝑛,𝑟(𝑥0)|√|𝑆𝑛,𝑟+2(𝑥0)| ≤ √𝜎(𝑟, 𝑛)√𝜎(𝑟 + 2, 𝑛)

≤ 1
𝑛(𝑟+1)/2 (2 ⋅ (𝑟 + 1)!(𝑟)!

𝛾𝑟+1((𝑟/2)!)2 )
1/2

,

where 𝛾 is 8 if 𝑟 ≤ 42 and 6 otherwise. Therefore—

|𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)| ≤ 𝑀
(𝑟 + 1)! ⋅ 𝑛(𝑟+1)/2 (2 ⋅ (𝑟 + 1)!(𝑟)!

𝛾𝑟+1((𝑟/2)!)2 )
1/2

.

[ ]

Notes:

1. If a function 𝑓(𝜆) has a continuous 𝑟-th derivative on its domain (where 𝑟 ≥ 0 is an integer),
then by Taylor’s theorem for real variables, 𝑅𝑓,𝑟(𝜆, 𝑥0), is writable as 𝑓 (𝑟)(𝑐) ⋅ (𝜆−𝑥0)𝑟/(𝑟!),
for some 𝑐 between 𝜆 and 𝑥0 (and thus on 𝑓 ’s domain) (DLMF 59 equation 1.4.3660).
Thus, by this estimate, |𝑅𝑓,𝑟(𝜆, 𝑥0)| ≤ 𝑀

𝑟! (𝜆 − 𝑥0)𝑟.
2. It would be interesting to strengthen this lemma, at least for 𝑟 ≤ 10, with a bound of the

form 𝑀𝐶⋅max(1/𝑛, (𝑥0(1−𝑥0)/𝑛)1/2)𝑟+1, where 𝐶 is an explicitly given constant depending
on 𝑟, which is possible because the Bernstein polynomial of |𝜆 − 𝑥0|𝑟+1 can be bounded in
this way (Lorentz 1966)61.

56Cheng, F., “On the rate of convergence of Bernstein polynomials of functions of bounded variation”, Journal of Approxi-
mation Theory 39 (1983).

57https://mathworld.wolfram.com/SchwarzsInequality.html
58G.G. Lorentz, Bernstein polynomials, 1953.
59NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/ , Release 1.1.9 of 2023-03-15.
60https://dlmf.nist.gov/1.4.E36
61G.G. Lorentz, “The degree of approximation by polynomials with positive coefficients”, 1966.
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Corollary B9A: Let 𝑓(𝜆) have a Lipschitz continuous 𝑟-th derivative on the closed unit interval, and let
𝑀 be that 𝑟-th derivative’s Lipschitz constant or greater. Then, for every 0 ≤ 𝑥0 ≤ 1:

If 𝑟 is: Then abs(𝐵𝑛(𝑅𝑓,𝑟(𝜆, 𝑥0))(𝑥0)) ≤ …

0. 𝑀/(2𝑛1/2) for every integer 𝑛 ≥ 1.
0. 𝑀 ⋅ √𝑥0(1 − 𝑥0)/𝑛 for every integer 𝑛 ≥ 1.
1. 𝑀/(8𝑛) for every integer 𝑛 ≥ 1.
2.

√
3𝑀/(48𝑛3/2) < 0.03609𝑀/𝑛3/2 for every integer

𝑛 ≥ 2.
3. 𝑀/(128𝑛2) for every integer 𝑛 ≥ 1.
4.

√
5𝑀/(1280𝑛5/2) < 0.001747𝑀/𝑛5/2 for every

integer 𝑛 ≥ 2.
5. 𝑀/(3072𝑛3) for every integer 𝑛 ≥ 1.

Proposition B10: Let 𝑓(𝜆) have a Lipschitz continuous third derivative on the closed unit interval. For
each 𝑛 ≥ 4 that is divisible by 4, let 𝐿3,𝑛/4(𝑓) = (1/3) ⋅ 𝐵𝑛/4(𝑓) − 2 ⋅ 𝐵𝑛/2(𝑓) + (8/3) ⋅ 𝐵𝑛(𝑓). Then 𝐿3,𝑛/4(𝑓)
is within 𝑀4/(8𝑛2) of 𝑓 , where 𝑀4 is the maximum of the absolute value of that fourth derivative.

Proof : This proof is inspired by the proof technique in Tachev (2022)62.

Because 𝑓 has a Lipschitz continuous third derivative, 𝑓 has the Lagrange remainder 𝑅𝑓,3(𝜆, 𝑥0) given in
Lemma B9 and Corollary B9A.

It is known that 𝐿3,𝑛/4 is a linear operator that preserves polynomials of degree 3 or less, so that 𝐿3,𝑛/4(𝑓) = 𝑓
whenever 𝑓 is a polynomial of degree 3 or less (Ditzian and Totik 1987)63, Butzer (1955)64, May (1976)65.
Because of this, it can be assumed without loss of generality that 𝑓(𝑥0) = 0.
Therefore—

|𝐿3,𝑛/4(𝑓(𝜆))(𝑥0) − 𝑓(𝑥0)| = |𝐿3,𝑛/4(𝑅𝑓,3(𝜆, 𝑥0))|.
Now denote 𝜎𝑛 as the maximum of |𝐵𝑛(𝑅𝑓,3(𝜆, 𝑥0))(𝑥0)| over 0 ≤ 𝑥0 ≤ 1. In turn (using Corollary B9A)—

|𝐿3,𝑛/4(𝑅𝑓,3(𝜆, 𝑥0))| ≤ (1/3) ⋅ 𝜎𝑛/4 + 2 ⋅ 𝜎𝑛/2 + (8/3) ⋅ 𝜎𝑛

≤ (1/3) 𝑀4
128(𝑛/4)2 + 2 𝑀4

128(𝑛/2)2 + (8/3) 𝑀4
128𝑛2 = 𝑀4/(8𝑛2).

[ ]

The proof of Proposition B10 shows how to prove an upper bound on the approximation error for polynomials
written as—

𝑃(𝑓)(𝑥) = 𝛼0𝐵𝑛(0)(𝑓)(𝑥) + 𝛼1𝐵𝑛(1)(𝑓)(𝑥) + ... + 𝛼𝑘𝐵𝑛(𝑘)(𝑓)(𝑥)
(where 𝛼𝑖 are real numbers and 𝑛(𝑖) ≥ 1 is an integer), as long as 𝑃 preserves all polynomials of degree 𝑟
or less and 𝑓 has a Lipschitz continuous 𝑟-th derivative. An example is the polynomials 𝑇 (0)

𝑞 described in
Costabile et al. (1996)66.

62Tachev, Gancho. “Linear combinations of two Bernstein polynomials”, Mathematical Foundations of Computing,
2022. https://doi.org/10.3934/mfc.2022061

63Ditzian, Z., Totik, V., Moduli of Smoothness, 1987.
64Butzer, P.L., “Linear combinations of Bernstein polynomials”, Canadian Journal of Mathematics 15 (1953).
65May, C.P., “Saturation and inverse theorems for a class of exponential-type operators”, Canadian Journal of Mathematics

28 (1976).
66Costabile, F., Gualtieri, M.I., Serra, S., “Asymptotic expansion and extrapolation for Bernstein polynomials with applica-

tions”, BIT 36 (1996).
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Proposition B10A: Let 𝑓(𝜆) have a Lipschitz continuous second derivative on the closed unit interval. Let
𝑄𝑛,2(𝑓) = 𝐵𝑛(𝑓)(𝑥) − 𝑥(1−𝑥)

2𝑛 𝐵𝑛(𝑓″)(𝑥) be the Lorentz operator of order 2 (Holtz et al. 2011)67, (Lorentz
1966)68, which is a polynomial in Bernstein form of degree 𝑛 + 2. Then if 𝑛 ≥ 2 is an integer, 𝑄𝑛,2(𝑓) is
within 𝐿2(

√
3+3)

48𝑛3/2 < 0.098585𝐿2/(𝑛3/2) of 𝑓 , where 𝐿2 is the maximum of that second derivative’s Lipschitz
constant or greater.

Proof : Since 𝑄𝑛,2(𝑓) preserves polynomials of degree 2 or less (Holtz et al. 2011, Lemma 14)69 and since 𝑓
has a Lipschitz continuous second derivative, 𝑓 has the Lagrange remainder 𝑅𝑓,2(𝜆, 𝑥0) given in Lemma B9,
and 𝑓″, the second derivative of 𝑓 , has the Lagrange remainder 𝑅𝑓″,0(𝜆, 𝑥0). Thus, using Corollary B9A,
the error bound can be written as—

|𝑄𝑛,2(𝑓(𝜆))(𝑥0) − 𝑓(𝑥0)| ≤ |𝐵𝑛(𝑅𝑓,2(𝜆, 𝑥0))| + 𝑥0(1 − 𝑥0)
2𝑛 |𝐵𝑛(𝑅𝑓″,0(𝜆, 𝑥0))|

≤
√

3𝐿2
48𝑛3/2 + 1

8𝑛
𝐿2

2𝑛1/2 = 𝐿2(
√

3 + 3)
48𝑛3/2 < 0.098585𝐿2/(𝑛3/2).

[ ]

Corollary B10B: Let 𝑓(𝜆) have a continuous second derivative on the closed unit interval. Then 𝐵𝑛(𝑓) is
within 𝑀2

8𝑛 of 𝑓 , where 𝑀2 is the maximum of that second derivative’s absolute value or greater.

Proof : Follows from Lorentz (1963)70 and the well-known fact that 𝑀2 is an upper bound of 𝑓 ’s first
derivative’s (minimal) Lipschitz constant. [ ]

In the following propositions, 𝑓 (𝑟) means the 𝑟-th derivative of the function 𝑓 and max(|𝑓|) means the
maximum of the absolute value of the function 𝑓 .
Proposition B10C: Let 𝑓(𝜆) have a Hölder continuous second derivative on the closed unit interval, with
Hölder exponent 𝛼 (0 < 𝛼 ≤ 1) and Hölder constant 𝐻2 or less. Let 𝑈𝑛,2(𝑓) = 𝐵𝑛(2𝑓 −𝐵𝑛(𝑓)) be 𝑓 ’s iterated
Boolean sum of order 2 of Bernstein polynomials. Then if 𝑛 ≥ 3 is an integer, the error in approximating 𝑓
with 𝑈𝑛,2(𝑓) is as follows:

|𝑓 − 𝑈𝑛,2(𝑓)| ≤ 𝑀2
8𝑛2 + 5𝐻2/(32𝑛1+𝛼/2) ≤ ((5𝐻2 + 4𝑀2)/32)/𝑛1+𝛼/2,

where 𝑀2 is the maximum of that second derivative’s absolute value or greater.

Proof : This proof is inspired by a result in Draganov (2004, Theorem 4.1)71.

The error to be bounded can be expressed as |(𝐵𝑛(𝑓) − 𝑓)(𝐵𝑛(𝑓) − 𝑓)|. Following Corollary B10B:

|(𝐵𝑛(𝑓) − 𝑓)(𝐵𝑛(𝑓) − 𝑓)| ≤ 1
8𝑛 max(|(𝐵𝑛(𝑓))(2) − 𝑓 (2)|). (B10C-1)

It thus remains to estimate the right-hand side of the bound. A result by Knoop and Pottinger (1976)72,
which works for every 𝑛 ≥ 3, is what is known as a simultaneous approximation error bound, showing that
the second derivative of the Bernstein polynomial approaches that of 𝑓 as 𝑛 increases. Using this result:

|(𝐵𝑛(𝑓))(2) − 𝑓 (2)| ≤ 1
𝑛𝑀2 + (5/4)𝐻2/𝑛𝛼/2,

67Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:
//link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf

68G.G. Lorentz, “The degree of approximation by polynomials with positive coefficients”, 1966.
69Holtz, O., Nazarov, F., Peres, Y., “New Coins from Old, Smoothly”, Constructive Approximation 33 (2011). https:

//link.springer.com/content/pdf/10.1007/s00365-010-9108-5.pdf
70G.G. Lorentz, “Inequalities and saturation classes for Bernstein polynomials”, 1963.
71Draganov, Borislav R. “On simultaneous approximation by iterated Boolean sums of Bernstein operators.” Results in

Mathematics 66, no. 1 (2014): 21-41.
72Knoop, H-B., Pottinger, P., “Ein Satz vom Korovkin-Typ für 𝐶𝑘-Räume”, Math. Zeitschrift 148 (1976).
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so—
|(𝐵𝑛(𝑓) − 𝑓)(𝐵𝑛(𝑓) − 𝑓)| ≤ 1

8𝑛 ( 1
𝑛𝑀2 + (5/4)𝐻2/𝑛𝛼/2)

≤ 𝑀2
8𝑛2 + 5𝐻2

32𝑛1+𝛼/2 ≤ 5𝐻2 + 4𝑀2
32

1
𝑛1+𝛼/2 .

[ ]

Note: The error bound 0.75𝑀2/𝑛2 for 𝑈𝑛,2 is false in general if 𝑓(𝜆) is assumed only to be
non-negative, concave, and have a continuous second derivative on the closed unit interval. A
counterexample is 𝑓(𝜆) = (1 − (1 − 2𝜆)2.5)/2 if 𝜆 < 1/2 and (1 − (2𝜆 − 1)2.5)/2 otherwise.

Proposition B10D: Let 𝑓(𝜆) have a Hölder continuous third derivative on the closed unit interval, with
Hölder exponent 𝛼 (0 < 𝛼 ≤ 1) and Hölder constant 𝐻3 or less. If 𝑛 ≥ 6 is an integer, the error in
approximating 𝑓 with 𝑈𝑛,2(𝑓) is as follows:

|𝑓 − 𝑈𝑛,2(𝑓)| ≤ max(|𝑓 (2)|) + max(|𝑓 (3)|)
8𝑛2 + 9𝐻3/(64𝑛(3+𝛼)/2)

≤ 9𝐻3 + 8max(|𝑓 (2)|) + 8max(|𝑓 (3)|)
64𝑛(3+𝛼)/2 .

Proof : Again, the goal is to estimate the right-hand side of (B10C-1). But this time, a different simultaneous
approximation bound is employed, namely a result from Kacsó (2002)73, which in this case works if 𝑛 ≥
max(𝑟 + 2, (𝑟 + 1)𝑟) = 6, where 𝑟 = 2. By that result:

|(𝐵𝑛(𝑓))(2) − 𝑓 (2)| ≤ 𝑟(𝑟 − 1)
2𝑛 𝑀2 + 𝑟𝑀3

2𝑛 + 9
8𝜔2(𝑓 (2), 1/𝑛1/2)

≤ 1
𝑛𝑀2 + 𝑀3/𝑛 + 9

8𝐻3/𝑛(1+𝛼)/2,

where 𝑟 = 2, 𝑀2 = max(|𝑓 (2)|), and 𝑀3 = max(|𝑓 (3)|), using properties of 𝜔2, the second-order modulus of
continuity of 𝑓 (2), given in Stancu et al. (2001)74. Therefore—

|(𝐵𝑛(𝑓) − 𝑓)(𝐵𝑛(𝑓) − 𝑓)| ≤ 1
8𝑛 ( 1

𝑛𝑀2 + 𝑀3/𝑛 + 9
8𝐻3/𝑛(1+𝛼)/2)

≤ 𝑀2 + 𝑀3
8𝑛2 + 9𝐻3

64𝑛(3+𝛼)/2 ≤ 9𝐻3 + 8𝑀2 + 8𝑀3
64𝑛(3+𝛼)/2 .

[ ]

In a similar way, it’s possible to prove an error bound for 𝑈𝑛,3 that applies to functions with a Hölder
continuous fourth or fifth derivative, by expressing the error bound as |(𝐵𝑛(𝑓)−𝑓)((𝐵𝑛(𝑓)−𝑓)(𝐵𝑛(𝑓)−𝑓))|
and replacing the values for 𝑀2, 𝑀3, and 𝐻3 in the bound proved at the end of Proposition B10D with
upper bounds for |(𝐵𝑛(𝑓))(2) − 𝑓 (2)|, |(𝐵𝑛(𝑓))(3) − 𝑓 (3)|, and |(𝐵𝑛(𝑓))(4) − 𝑓 (4)|, respectively.

8.2 Chebyshev Interpolants
The following is a method that employs Chebyshev interpolants to compute the Bernstein coefficients of a
polynomial that comes within 𝜖 of 𝑓(𝜆), as long as 𝑓 meets certain conditions. Because the method introduces
a trigonometric function (the cosine function), it appears here in the appendix and it runs too slowly for
real-time or “online” use; rather, this method is more suitable for pregenerating (“offline”) the approximate
version of a function known in advance.

73Kacsó, D.P., “Simultaneous approximation by almost convex operators”, 2002.
74Stancu, D.D., Agratini, O., et al. Analiză Numerică şi Teoria Aproximării, 2001.
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• 𝑓 must be continuous on the interval [𝑎, 𝑏] and must have an 𝑟-th derivative of bounded variation, as
described later.

• Suppose 𝑓 ’s domain is the interval [𝑎, 𝑏]. Then the Chebyshev interpolant of degree 𝑛 of 𝑓 (Wang
2023)75, (Trefethen 2013)76 is—

𝑝(𝜆) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(2𝜆 − 𝑎
𝑏 − 𝑎 − 1),

where—

– 𝑐𝑘 = 𝜎(𝑘, 𝑛) 2
𝑛 ∑𝑛

𝑗=0 𝜎(𝑗, 𝑛)𝑓(𝛾(𝑗, 𝑛))𝑇𝑘(cos(𝑗𝜋/𝑛)),
– 𝛾(𝑗, 𝑛) = 𝑎 + (𝑏 − 𝑎)(cos(𝑗𝜋/𝑛) + 1)/2,
– 𝜎(𝑘, 𝑛) is 1/2 if 𝑘 is 0 or 𝑛, and 1 otherwise, and
– 𝑇𝑘(𝑥) is the 𝑘-th Chebyshev polynomial of the first kind77 (chebyshevt(k,x) in the SymPy

computer algebra library).

• Let 𝑟 ≥ 1 and 𝑛 > 𝑟 be integers. If 𝑓 is defined on the interval [𝑎, 𝑏], has a Lipschitz continuous
(𝑟 − 1)-th derivative, and has an 𝑟-th derivative of bounded variation, then the degree-𝑛 Chebyshev
interpolant of 𝑓 is within ( (𝑏−𝑎)

2 )
𝑟 4𝑉

𝜋𝑟(𝑛−𝑟)𝑟 of 𝑓 , where 𝑉 is the 𝑟-th derivative’s total variation or
greater. This relies on a theorem in chapter 7 of Trefethen (2013)78 as well as a statement in note 1 at
the end of this section.

– If the 𝑟-th derivative is nowhere decreasing or nowhere increasing on the interval [𝑎, 𝑏], then 𝑉
can equal abs(𝑓(𝑏) − 𝑓(𝑎)).

– If the 𝑟-th derivative is Lipschitz continuous with Lipschitz constant 𝑀 or less, then 𝑉 can equal
𝑀 ⋅ (𝑏 − 𝑎) (Kannan and Kreuger 1996)79.

– The required degree is thus 𝑛 = ceil(𝑟 + (𝑏−𝑎)
2 (4𝑉 /(𝜋𝑟𝜖))1/𝑟) ≤ ceil(𝑟 + (𝑏−𝑎)

2 (1.2733𝑉 /(𝑟𝜖))1/𝑟),
where 𝜖 > 0 is the desired error tolerance.

• If 𝑓 is so “smooth” to be analytic (see note 4 below) at every point in the interval [𝑎, 𝑏], a better error
bound is possible, but describing it requires ideas from complex analysis that are too advanced for this
article. See chapter 8 of Trefethen (2013)80.

1. Compute the required degree 𝑛 as given above, with error tolerance 𝜖/2.
2. Compute the values 𝑐𝑘 as given above, which relate to 𝑓 ’s Chebyshev interpolant of degree 𝑛. There

will be 𝑛 plus one of these values, labeled 𝑐0, ..., 𝑐𝑛.
3. Compute the (n+1)×(n+1) matrix 𝑀 described in Theorem 1 of Rababah (2003)81.
4. Multiply the matrix by the transposed vector of values (𝑐0, ..., 𝑐𝑛) to get the polynomial’s Bernstein

coefficients 𝑏0, ..., 𝑏𝑛. (Transposing means turning columns to rows and vice versa.)
5. (Rounding.) For each 𝑖, replace the Bernstein coefficient 𝑏𝑖 with floor(𝑏𝑖/(𝜖/2) + 1/2) ⋅ (𝜖/2).
6. Return the Bernstein coefficients 𝑏0, ..., 𝑏𝑛.

Notes:
75H. Wang, “Analysis of error localization of Chebyshev spectral approximations”, arXiv:2106.03456v3 [math.NA],

2023. https://arxiv.org/abs/2106.03456v3
76Trefethen, L.N., Approximation Theory and Approximation Practice, 2013. https://www.chebfun.org/ATAP/
77https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
78Trefethen, L.N., Approximation Theory and Approximation Practice, 2013. https://www.chebfun.org/ATAP/
79R. Kannan and C.K. Kreuger, Advanced Analysis on the Real Line, 1996.
80Trefethen, L.N., Approximation Theory and Approximation Practice, 2013. https://www.chebfun.org/ATAP/
81Rababah, Abedallah. “Transformation of Chebyshev–Bernstein polynomial basis.” Computational Methods in

Applied Mathematics 3.4 (2003): 608-622. https://www.degruyter.com/document/doi/10.2478/cmam-2003-0038/html
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1. The following statement can be shown. Let 𝑓(𝑥) have a Lipschitz continuous (𝑟 − 1)-th
derivative on the interval [𝑎, 𝑏], where 𝑟 ≥ 1. If the 𝑟-th derivative of 𝑓 has total variation
𝑉 , then the 𝑟-th derivative of 𝑔(𝑥), where 𝑔(𝑥) = 𝑓(𝑎 + (𝑏 − 𝑎)(𝑥 + 1)/2), has total variation
𝑉 ( 𝑏−𝑎

2 )𝑟 on the interval [−1, 1].
2. The method in this section doesn’t require 𝑓(𝜆) to have a particular minimum or maximum.

If 𝑓 must map the closed unit interval to itself and the Bernstein coefficients must lie on
that interval, the following changes to the method are needed:
• 𝑓(𝜆) must be continuous on the closed unit interval (𝑎 = 0, 𝑏 = 1) and take on only

values in that interval.
• If any Bernstein coefficient returned by the method is less than 0 or greater than 1,

double the value of 𝑛 and repeat the method starting at step 2 until that condition is
no longer true.

3. It would be of interest to build Chebyshev-like interpolants that sample 𝑓(𝜆) at rational
values of 𝜆 that get closer to the Chebyshev points (e.g., cos(𝑗𝜋/𝑛)) with increasing 𝑛, and
to find results that provide explicit bounds (with no hidden constants) on the approximation
error that are close to those for Chebyshev interpolants.

4. A function 𝑓(𝑥) is analytic at a point 𝑧 if there is a positive number 𝑟 such that 𝑓 is writable
as—

𝑓(𝑥) = 𝑓(𝑧) + 𝑓 (1)(𝑧)(𝜆 − 𝑧)1/1! + 𝑓 (2)(𝑧)(𝜆 − 𝑧)2/2! + ...,
whenever |𝜆−𝑧| < 𝑟, where 𝑓 (𝑖) is the 𝑖-th derivative of 𝑓 . The largest value of 𝑟 that makes
𝑓 analytic at 𝑧 is the radius of convergence of 𝑓 at 𝑧.

9 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero82.

82https://creativecommons.org/publicdomain/zero/1.0/
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