
More Random Sampling Methods

Peter Occil

This version of the document is dated 2024-12-24.

Peter Occil

1 Contents
• Contents

– About This Document
– Specific Distributions

∗ Normal (Gaussian) Distribution
∗ Gamma Distribution
∗ Beta Distribution
∗ Uniform Partition with a Positive Sum
∗ Noncentral Hypergeometric Distributions
∗ von Mises Distribution
∗ Stable Distribution
∗ Phase-Type Distributions
∗ Multivariate Normal (Multinormal) Distribution
∗ Gaussian and Other Copulas
∗ Multivariate Phase-Type Distributions

• Notes
• Appendix

– Exact, Error-Bounded, and Approximate Algorithms
• License

1.1 About This Document
This is an open-source document; for an updated version, see the source code1 or its rendering
on GitHub2. You can send comments on this document on the GitHub issues page3.

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus.

I encourage readers to implement any of the algorithms given in this page, and report their implementation
experiences. In particular, I seek comments on the following aspects4:

• Are the algorithms in this article (in conjunction with “Randomization and Sampling Methods5”)
easy to implement? Is each algorithm written so that someone could write code for that algorithm
after reading the article?

1https://github.com/peteroupc/peteroupc.github.io/raw/master/randomnotes.md
2https://github.com/peteroupc/peteroupc.github.io/blob/master/randomnotes.md
3https://github.com/peteroupc/peteroupc.github.io/issues
4https://github.com/peteroupc/peteroupc.github.io/issues/18
5https://peteroupc.github.io/randomfunc.html

1

mailto:poccil14@gmail.com
https://github.com/peteroupc/peteroupc.github.io/raw/master/randomnotes.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomnotes.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomnotes.md
https://github.com/peteroupc/peteroupc.github.io/issues
https://github.com/peteroupc/peteroupc.github.io/issues/18
https://peteroupc.github.io/randomfunc.html

• Does this article have errors that should be corrected?
• Are there ways to make this article more useful to the target audience?

Comments on other aspects of this document are welcome.

1.2 Specific Distributions
Requires random real numbers. This section shows algorithms to sample several popular nonuniform
distributions. The algorithms are exact unless otherwise noted, and applications should choose algorithms
with either no error (including rounding error) or a user-settable error bound. See the appendix for more
information.

1.2.1 Normal (Gaussian) Distribution

The normal distribution6 (also called the Gaussian distribution) takes the following two parameters:

• mu (�) is the mean (average), or where the peak of the distribution’s “bell curve” is.
• sigma (𝜎), the standard deviation, affects how wide the “bell curve” appears. The probability that a

number sampled from the normal distribution will be within one standard deviation from the mean is
about 68.3%; within two standard deviations (2 times sigma), about 95.4%; and within three standard
deviations, about 99.7%. (Some publications give 𝜎 2, or variance, rather than standard deviation, as
the second parameter. In this case, the standard deviation is the variance’s square root.)

There are a number of methods for sampling the normal distribution. An application can combine some or
all of these.

1. The ratio-of-uniforms method (given as NormalRatioOfUniforms below).
2. In the Box–Muller transformation, mu + radius * cos(angle) and mu + radius * sin(angle),

where angle = RNDRANGEMinMaxExc(0, 2 * pi) and radius = sqrt(Expo(0.5)) * sigma, are two
independent values sampled from the normal distribution. The polar method (given as NormalPolar
below) likewise produces two independent values sampled from that distribution at a time.

3. Karney’s algorithm to sample from the normal distribution, in a manner that minimizes approximation
error and without using floating-point numbers (Karney 2016)7.

For surveys of Gaussian samplers, see (Thomas et al. 2007)8, and (Malik and Hemani 2016)9.

METHOD NormalRatioOfUniforms(mu, sigma)
while true

a=RNDRANGEMinMaxExc(0,1)
bv = sqrt(2.0/exp(1.0))
// Or bv = 858/1000.0, which is also correct
b=RNDRANGEMinMaxExc(0,bv)
if b*b <= -a * a * 4 * ln(a)
return (RNDINT(1) * 2 - 1) *
(b * sigma / a) + mu

end
end

END METHOD

6https://en.wikipedia.org/wiki/Normal_distribution
7Karney, C.F.F., 2016. Sampling exactly from the normal distribution. ACM Transactions on Mathematical Software

(TOMS), 42(1), pp.1-14. Also: “Sampling exactly from the normal distribution”, arXiv:1303.6257v2 [physics.comp-ph],
2014. https://arxiv.org/abs/1303.6257v2

8Thomas, D., et al., “Gaussian Random Number Generators”, ACM Computing Surveys 39(4), 2007.
9Malik, J.S., Hemani, A., “Gaussian random number generation: A survey on hardware architectures”, ACM Computing

Surveys 49(3), 2016.

2

https://en.wikipedia.org/wiki/Normal_distribution
https://arxiv.org/abs/1303.6257v2

METHOD NormalPolar(mu, sigma)
while true
a = RNDRANGEMinMaxExc(0,1)
b = RNDRANGEMinMaxExc(0,1)
if RNDINT(1) == 0: a = 0 - a
if RNDINT(1) == 0: b = 0 - b
c = a * a + b * b
if c != 0 and c <= 1

c = sqrt(-ln(c) * 2 / c)
return [a * sigma * c + mu, b * sigma * c + mu]

end
end

END METHOD

Notes:

1. The standard normal distribution is implemented as Normal(0, 1).
2. Methods implementing a variant of the normal distribution, the discrete Gaussian distri-

bution, generate integers that closely follow the normal distribution. Examples include the
one in (Karney 2016)10, an improved version in (Du et al. 2021)11, as well as so-called
“constant-time” methods such as (Micciancio and Walter 2017)12 that are used above all in
lattice-based cryptography.

3. The following are some approximations to the normal distribution that papers have sug-
gested:
• The sum of twelve RNDRANGEMinMaxExc(0, sigma) numbers, subtracted by 6 * sigma,

to generate an approximate normal variate with mean 0 and standard deviation
sigma. (Kabal 2000/2019)13 “warps” this sum in the following way (before adding
the mean mu) to approximate the normal distribution better: ssq = sum * sum;
sum = ((((0.0000001141*ssq - 0.0000005102) * ssq + 0.00007474) * ssq +
0.0039439) * ssq + 0.98746) * sum. See also “Irwin–Hall distribution”14,
namely the sum of n many RNDRANGEMinMaxExc(0, 1) numbers, on Wikipedia.
D. Thomas (2014)15, describes a more general approximation called CLTk, which
combines k numbers in [0, 1] sampled from the uniform distribution as follows:
RNDRANGEMinMaxExc(0, 1) - RNDRANGEMinMaxExc(0, 1) + RNDRANGEMinMaxExc(0,
1) -

• Numerical inversions of the normal distribution’s cumulative distribution function
(CDF, or the probability of getting X or less at random), including those by Wichura,
by Acklam, and by Luu (Luu 2016)16. See also “A literate program to compute
the inverse of the normal CDF”17.

4. A pair of q-Gaussian random variates with parameter q less than 3 can be generated using the
Box–Muller transformation, except radius is radius=sqrt(-2*(pow(u,1-qp)-1)/(1-qp))

10Karney, C.F.F., 2016. Sampling exactly from the normal distribution. ACM Transactions on Mathematical Software
(TOMS), 42(1), pp.1-14. Also: “Sampling exactly from the normal distribution”, arXiv:1303.6257v2 [physics.comp-ph],
2014. https://arxiv.org/abs/1303.6257v2

11Du, Yusong, Baoying Fan, and Baodian Wei. “An improved exact sampling algorithm for the standard normal distribution.”
Computational Statistics (2021): 1-17, also arXiv:2008.03855 [cs.DS].

12Micciancio, D. and Walter, M., “Gaussian sampling over the integers: Efficient, generic, constant-time”, in Annual Interna-
tional Cryptology Conference, August 2017 (pp. 455-485).

13Kabal, P., “Generating Gaussian Pseudo-Random Variates”, McGill University, 2000/2019.
14https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution
15Thomas, D.B., 2014, May. FPGA Gaussian random number generators with guaranteed statistical accuracy. In 2014 IEEE

22nd Annual International Symposium on Field-Programmable Custom Computing Machines (pp. 149-156).
16Luu, T., “Fast and Accurate Parallel Computation of Quantile Functions for Random Number Generation”, Dissertation,

University College London, 2016.
17https://www.johndcook.com/blog/normal_cdf_inverse/

3

https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution
https://www.johndcook.com/blog/normal_cdf_inverse/
https://www.johndcook.com/blog/normal_cdf_inverse/
https://arxiv.org/abs/1303.6257v2

(where qp=(1+q)/(3-q) and u=RNDRANGEMinMaxExc(0, 1)), and the two variates are not
statistically independent (Thistleton et al. 2007)18.

5. A well-known result says that adding n many Normal(0, 1) variates, and dividing by
sqrt(n), results in a new Normal(0, 1) variate.

1.2.2 Gamma Distribution

The following method samples a number from a gamma distribution and is based on Marsaglia and Tsang’s
method from 200019 and (Liu et al. 2015)20. Usually, the number expresses either—

• the lifetime (in days, hours, or other fixed units) of a random component with an average lifetime of
meanLifetime, or

• a random amount of time (in days, hours, or other fixed units) that passes until as many events as
meanLifetime happen.

Here, meanLifetime must be an integer or noninteger greater than 0.

METHOD GammaDist(meanLifetime)
// Needs to be greater than 0
if meanLifetime <= 0: return error
// Exponential distribution special case if
// `meanLifetime` is 1 (see also (Devroye 1986), p. 405)
if meanLifetime == 1: return Expo(1)
if meanLifetime < 0.3 // Liu, Martin, Syring 2015

lamda = (1.0/meanLifetime) - 1
w = meanLifetime / (1-meanLifetime) * exp(1)
r = 1.0/(1+w)
while true

z = 0
x = RNDRANGEMinMaxExc(0, 1)
if x <= r: z = -ln(x/r)
else: z = -Expo(lamda)
ret = exp(-z/meanLifetime)
eta = 0
if z>=0: eta=exp(-z)
else: eta=w*lamda*exp(lamda*z)
if RNDRANGEMinMaxExc(0, eta) < exp(-ret-z): return ret

end
end
d = meanLifetime
v = 0
if meanLifetime < 1: d = d + 1
d = d - (1.0 / 3) // NOTE: 1.0 / 3 must be a fractional number
c = 1.0 / sqrt(9 * d)
while true

x = 0
while true

x = Normal(0, 1)
18Thistleton, W., Marsh, J., et al., “Generalized Box-Müller Method for Generating q-Gaussian Random Deviates”, IEEE

Transactions on Information Theory 53(12), 2007.
19Marsaglia, G., Tsang, W.W., “A simple method for generating gamma variables”, ACM Transactions on Mathematical

Software 26(3), 2000.
20Liu, C., Martin, R., Syring, N., “Simulating from a gamma distribution with small shape parameter”,

arXiv:1302.1884v3 [stat.CO], 2015. https://arxiv.org/abs/1302.1884v3

4

https://arxiv.org/abs/1302.1884v3

v = c * x + 1;
v = v * v * v
if v > 0: break

end
u = RNDRANGEMinMaxExc(0,1)
x2 = x * x
if u < 1 - (0.0331 * x2 * x2): break
if ln(u) < (0.5 * x2) + (d * (1 - v + ln(v))): break

end
ret = d * v
if meanLifetime < 1

ret = ret * pow(RNDRANGEMinMaxExc(0, 1), 1.0 / meanLifetime)
end
return ret

END METHOD

Notes:

1. The following is a useful identity for the gamma distribution: GammaDist(a) =
BetaDist(a, b - a) * GammaDist(b) (Stuart 1962)21.

2. The gamma distribution is usually defined to have a second parameter (called theta here),
which is unfortunately defined differently in different works. For example, the gamma variate
can be either multiplied or divided by theta depending on the work.

3. For other algorithms to sample from the gamma distribution, see Luengo (2022)22.

Example: Moment exponential distribution (Dara and Ahmad 2012): GammaDist(2)*beta
(or (Expo(1)+Expo(1))*beta), where beta > 0.

1.2.3 Beta Distribution

The beta distribution takes on values on the interval (0, 1). Its two parameters, a and b, are both greater
than 0 and describe the distribution’s shape. Depending on a and b, the shape can be a smooth peak or a
smooth valley.

The following method samples a number from a beta distribution, in the interval [0, 1).

METHOD BetaDist(a, b)
if b==1 and a==1: return RNDRANGEMinMaxExc(0, 1)
// Min-of-uniform
if a==1: return 1.0-pow(RNDRANGEMinMaxExc(0, 1),1.0/b)
// Max-of-uniform. Use only if a is small to
// avoid accuracy problems, as pointed out
// by Devroye 1986, p. 675.
if b==1 and a < 10: return pow(RNDRANGEMinMaxExc(0, 1),1.0/a)
x=GammaDist(a)
return x/(x+GammaDist(b))

END METHOD

I give an error-bounded sampler23 for the beta distribution (when a and b are both 1 or greater) in a
separate page.

21A. Stuart, “Gamma-distributed products of independent random variables”, Biometrika 49, 1962.
22Luengo, E.A., “Gamma Pseudo Random Number Generators”, ACM Computing Surveys, 2022. https://dl.acm.org

/doi/abs/10.1145/3527157
23https://peteroupc.github.io/exporand.html

5

https://peteroupc.github.io/exporand.html
https://dl.acm.org/doi/abs/10.1145/3527157
https://dl.acm.org/doi/abs/10.1145/3527157

1.2.4 Uniform Partition with a Positive Sum

The following algorithm chooses at random a uniform partition of the number sum into n parts, and returns
an n-item list of the chosen numbers, which sum to sum assuming no rounding error. In this algorithm, n
must be an integer greater than 0, and sum must be greater than 0. The method was described in Bini and
Buttazzo (2005)24 and Mai et al. (2022)25.

METHOD UniformSum(n, sum):
if n<=0 or sum<=0: return error
w=1; nn=n-1;ret=NewList()
while nn>0
v=w*(1-pow(RNDU01MinMaxExc(),1.0/nn))
ret.append(v*sum)
w=w-v; nn=nn-1
end
AddItem(ret, w*sum); return ret

END METHOD

1.2.5 Noncentral Hypergeometric Distributions

The following variants of the hypergeometric distribution are described in detail by Agner Fog in “Biased
Urn Theory26”.

Let there be m balls that each have one of two or more colors. For each color, assign each ball of that color
the same weight (a real number 0 or greater). Then:

1. Wallenius’s hypergeometric distribution: Choose one ball not yet chosen, with probability equal
to its weight divided by the sum of weights of balls not yet chosen. Repeat until exactly n items are
chosen this way. Then for each color, count the number of items of that color chosen this way.

2. Fisher’s hypergeometric distribution: For each ball, choose it with probability equal to its weight
divided by the sum of weights of all balls. (Thus, each ball is independently chosen or not chosen
depending on its weight.) If exactly n items were chosen this way, stop. Otherwise, start over. Then
among the last n items chosen this way, count the number of items of each color.

For both distributions, if there are two colors, there are four parameters: m, ones, n, weight, such that—

• for the first color, there are ones many balls each with weight weight;
• for the second color, there are (m − ones) many balls each with weight 1; and
• the random variate is the number of chosen balls of the first color.

1.2.6 von Mises Distribution

The von Mises distribution describes a distribution of circular angles and uses two parameters: mean is the
mean angle and kappa is a shape parameter. The distribution is uniform at kappa = 0 and approaches a
normal distribution with increasing kappa.

The algorithm below samples a number from the von Mises distribution, and is based on the Best–Fisher
algorithm from 1979 (as described in (Devroye 1986)27 with errata incorporated).

METHOD VonMises(mean, kappa)
if kappa < 0: return error

24Bini, B., Buttazzo, G.C., “Measuring the Performance of Schedulability Tests”, Real-Time Systems 30, 129-154 (2005)
25Mai, J., Craig, J.R., Tolson, B.A., “The pie-sharing problem: Unbiased sampling of N+1 summative weights”,

Environmental Modelling & Software 148, February 2022. https://www.sciencedirect.com/science/article/pii/S1364815221003
248

26https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
27Devroye, L., Non-Uniform Random Variate Generation, 1986.

6

https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
https://www.sciencedirect.com/science/article/pii/S1364815221003248
https://www.sciencedirect.com/science/article/pii/S1364815221003248
http://luc.devroye.org/rnbookindex.html

if kappa == 0
return RNDRANGEMinMaxExc(mean-pi, mean+pi)

end
r = 1.0 + sqrt(4 * kappa * kappa + 1)
rho = (r - sqrt(2 * r)) / (kappa * 2)
s = (1 + rho * rho) / (2 * rho)
while true

u = RNDRANGEMinMaxExc(-pi, pi)
v = RNDRANGEMinMaxExc(0, 1)
z = cos(u)
w = (1 + s*z) / (s + z)
y = kappa * (s - w)
if y*(2 - y) - v >=0 or ln(y / v) + 1 - y >= 0

if angle<-1: angle=-1
if angle>1: angle=1
// NOTE: Inverse cosine replaced here
// with `atan2` equivalent
angle = atan2(sqrt(1-w*w),w)
if u < 0: angle = -angle
return mean + angle

end
end

END METHOD

1.2.7 Stable Distribution

As more and more numbers, sampled independently at random in the same way, are added together, their
distribution tends to a stable distribution28, which resembles a curve with a single peak, but with gen-
erally “fatter” tails than the normal distribution. (Here, the stable distribution means the “alpha-stable
distribution”.) The pseudocode below uses the Chambers–Mallows–Stuck algorithm. The Stable method,
implemented below, takes two parameters:

• alpha is a stability index in the interval (0, 2].
• beta is an asymmetry parameter in the interval [-1, 1]; if beta is 0, the curve is symmetric.

METHOD Stable(alpha, beta)
if alpha <=0 or alpha > 2: return error
if beta < -1 or beta > 1: return error
halfpi = pi * 0.5
unif=RNDRANGEMinMaxExc(-halfpi, halfpi)
c=cos(unif)
expo=Expo(1)
if alpha == 1

s=sin(unif)
if beta == 0: return s/c
return 2.0*((unif*beta+halfpi)*s/c -
beta * ln(halfpi*expo*c/(unif*beta+halfpi)))/pi

else
z=-tan(alpha*halfpi)*beta
ug=unif+atan2(-z, 1)/alpha

28https://en.wikipedia.org/wiki/Stable_distribution

7

https://en.wikipedia.org/wiki/Stable_distribution

cpow=pow(c, -1.0 / alpha)
return pow(1.0+z*z, 1.0 / (2*alpha))*

(sin(alpha*ug)*cpow)*
pow(cos(unif-alpha*ug)/expo, (1.0 - alpha) / alpha)

end
END METHOD

Methods implementing the strictly geometric stable and general geometric stable distributions are shown
next (Kozubowski 2000)29. Here, alpha is in (0, 2], lamda is greater than 0, and tau’s absolute value is not
more than min(1, 2/alpha − 1). The result of GeometricStable is a symmetric Linnik distribution if tau
= 0, or a Mittag-Leffler distribution if tau = 1 and alpha < 1.

METHOD GeometricStable(alpha, lamda, tau)
rho = alpha*(1-tau)/2
sign = -1
if tau==1 or RNDINT(1)==0 or RNDRANGEMinMaxExc(0, 1) < tau

rho = alpha*(1+tau)/2
sign = 1

end
w = 1
if rho != 1

rho = rho * pi
cotparam = RNDRANGEMinMaxExc(0, rho)
w = sin(rho)*cos(cotparam)/sin(cotparam)-cos(rho)

end
return Expo(1) * sign * pow(lamda*w, 1.0/alpha)

END METHOD

METHOD GeneralGeoStable(alpha, beta, mu, sigma)
z = Expo(1)
if alpha == 1: return mu*z+Stable(alpha, beta)*sigma*z+

sigma*z*beta*2*pi*ln(sigma*z)
else: return mu*z+

Stable(alpha, beta)*sigma*pow(z, 1.0/alpha)
END METHOD

1.2.8 Phase-Type Distributions

A phase-type distribution models a sum of exponential random variates driven by a Markov chain30. The
Markov chain has n normal states and one “absorbing” or terminating state. This distribution has two
parameters:

• alpha, an n-item array showing the probability of starting the chain at each normal state.
• s, an n×n subgenerator matrix, a list of n lists of n values each. The values in each list (each normal

state of the Markov chain) must sum to 0 or less, and for each state i, s[i][i] is 0 minus the rate of
that state’s exponential random variate, and each entry s[i][j] with i!=j is the relative probability
for moving to state j.

The method PhaseType, given later, samples from a phase-type distribution given the two parameters
above. (The pseudocode assumes each number in alpha and s is a rational number, because it uses
NormalizeRatios.)

29Tomasz J. Kozubowski, “Computer simulation of geometric stable distributions”, Journal of Computational and
Applied Mathematics 116(2), pp. 221-229, 2000. https://doi.org/10.1016/S0377-0427(99)00318-0 https://www.scienced
irect.com/science/article/pii/S0377042799003180

30https://peteroupc.github.io/randomnotes.html

8

https://peteroupc.github.io/randomnotes.html
https://doi.org/10.1016/S0377-0427%2899%2900318-0
https://www.sciencedirect.com/science/article/pii/S0377042799003180
https://www.sciencedirect.com/science/article/pii/S0377042799003180

METHOD GenToTrans(s)
// Converts a subgenerator matrix to a
// more intuitive transition matrix.
m=[];
for j in 0...size(s)

m[j]=[]; for i in 0...size(s)+1: AddItem(m[j],0)
end
for i in 0...size(s)

isum=Sum(s[i])
if isum<0: m[i][size(s)]=isum/s[i][i]
for j in 0...size(s)

if j!=i: m[i][j]=-s[i][j]/s[i][i]
end

end
return m

END METHOD

METHOD PhaseType(alpha, s)
// Setup
trans=GenToTrans(s)
// Sampling
state=WeightedChoice(NormalizeRatios(alpha))
ret=0
while state<size(s)

ret=ret+Expo(-s[state][state])
state=WeightedChoice(NormalizeRatios(trans[state]))

end
return ret

END METHOD

Note: An inhomogeneous phase-type random variate has the form G(PhaseType(alpha,
s)), where G(x) is a function designed to control the heaviness of the distribution’s tail (Bladt
2021)31. For example, G(x) = pow(x, 1.0/beta), where beta>0, leads to a tail as heavy as a
Weibull distribution.

1.2.9 Multivariate Normal (Multinormal) Distribution

The following pseudocode generates a random vector (list of numbers) that follows a multivariate normal
(multinormal) distribution32. The method MultivariateNormal takes the following parameters:

• A list, mu (�), which indicates the means to add to the random vector’s components. mu can be nothing,
in which case each component will have a mean of zero.

• A list of lists cov, that specifies a covariance matrix (Σ), a symmetric positive definite N×N matrix,
where N is the number of components of the random vector. (An N×N matrix is positive definite if
its determinant [overall scale] is greater than 0 and if either the matrix is 1 × 1 or a smaller matrix
formed by removing the last row and column is positive definite.)

METHOD Decompose(matrix)
numrows = size(matrix)

31Bladt, Martin. “Phase-type distributions for claim severity regression modeling.” ASTIN Bulletin: The Journal of the IAA
(2021): 1-32.

32https://en.wikipedia.org/wiki/Multivariate_normal_distribution

9

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

if size(matrix[0])!=numrows: return error
// Does a Cholesky decomposition of a matrix
// assuming it's positive definite and invertible
ret=NewList()
for i in 0...numrows
submat = NewList()
for j in 0...numrows: AddItem(submat, 0)
AddItem(ret, submat)

end
s1 = sqrt(matrix[0][0])
if s1==0: return ret // For robustness
for i in 0...numrows
ret[0][i]=matrix[0][i]*1.0/s1

end
for i in 0...numrows
msum=0.0
for j in 0...i: msum = msum + ret[j][i]*ret[j][i]
sq=matrix[i][i]-msum
if sq<0: sq=0 // For robustness
ret[i][i]=math.sqrt(sq)

end
for j in 0...numrows
for i in (j + 1)...numrows
// For robustness
if ret[j][j]==0: ret[j][i]=0
if ret[j][j]!=0
msum=0
for k in 0...j: msum = msum + ret[k][i]*ret[k][j]
ret[j][i]=(matrix[j][i]-msum)*1.0/ret[j][j]

end
end

end
return ret

END METHOD

METHOD VecAdd(a, b)
c=[]; for j in 0...size(a): c[j]=a[j]+b[j]
return c

END METHOD

METHOD VecScale(a, scalar)
c=[]; for j in 0...size(a): c[j]=a[j]*scalar
return c

END METHOD

METHOD MultivariateNormal(mu, cov)
vars=NewList()
for j in 0...mulen: AddItem(vars, Normal(0, 1))
return MultivariateCov(mu,cov,vars)

END METHOD

METHOD MultivariateCov(mu, cov, vars)

10

// Returns mu + cov^(1/2)*vars
mulen=size(cov)
if mu != nothing
mulen = size(mu)
if mulen!=size(cov): return error
if mulen!=size(cov[0]): return error

end
// NOTE: If multiple random points will
// be generated using the same covariance
// matrix, an implementation can consider
// precalculating the decomposed matrix
// in advance rather than calculating it here.
cho=Decompose(cov)
i=0
ret=NewList()
while i<mulen
msum = 0
for j in 0...mulen: msum=cho[j][i]*vars[j]
AddItem(ret, msum)
i=i+1

end
if mu!=nothing: ret=VecAdd(ret, mu)
return ret

end

Note: The Python sample code33 contains a variant of this method for generating multiple
random vectors in one call.

Examples:

1. A vector that follows a binormal distribution (two-variable multinormal distribution) is
a vector of two numbers from the normal distribution, and can be sampled using the fol-
lowing idiom: MultivariateNormal([mu1, mu2], [[s1*s1, s1*s2*rho], [rho*s1*s2,
s2*s2]]), where mu1 and mu2 are the means of the vector’s two components, s1 and s2 are
their standard deviations, and rho is a correlation coefficient greater than -1 and less than
1 (0 means no correlation).

2. Log-multinormal distribution: Generate a multinormal random vector, then apply
exp(n) to each component n.

3. A Beckmann distribution: Generate a random binormal vector vec, then apply
PNorm(vec, 2) to that vector. (PNorm is given in the main page’s section “Random
Points on a Sphere34.”)

4. A Rice (Rician) distribution is a Beckmann distribution in which the binormal random
pair is generated with m1 = m2 = a / sqrt(2), rho = 0, and s1 = s2 = b, where a and
b are the parameters to the Rice distribution.

5. Rice–Norton distribution: Generate vec = MultivariateNormal([v,v,v],
[[w,0,0], [0,w,0],[0,0,w]]) (where v = a/sqrt(m*2), w = b*b/m, and a, b, and
m are the parameters to the Rice–Norton distribution), then apply PNorm(vec, 2) to that
vector.

6. A standard complex normal distribution35 is a binormal distribution in which the
binormal random pair is generated with s1 = s2 = sqrt(0.5) and mu1 = mu2 = 0 and

33https://peteroupc.github.io/randomgen.zip
34https://peteroupc.github.io/randomnotes.md#Random_Points_on_a_Sphere
35https://en.wikipedia.org/wiki/Complex_normal_distribution

11

https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomnotes.md#Random_Points_on_a_Sphere
https://peteroupc.github.io/randomnotes.md#Random_Points_on_a_Sphere
https://en.wikipedia.org/wiki/Complex_normal_distribution

treated as the real and imaginary parts of a complex number.
7. Multivariate Linnik distribution: Generate a multinormal random vector, then multiply

each component by x, where x = GeometricStable(alpha/2.0, 1, 1), where alpha is a
parameter in (0, 2] (Kozubowski 2000)36.

8. Multivariate exponential power distribution (Solaro 2004)37: MultivariateCov(mu,
cov, vec), where vec = RandomPointOnSphere(m, pow(Gamma(m/s,1)*2,1.0/s), 2), m
is the dimension, s > 0 is a shape parameter, mu is the mean as an m-dimensional vector
(m-item list), and cov is a covariance matrix.

9. Elliptical distribution: MultivariateCov(mu, cov, RandomPointOnSphere(dims, z,
2)), where z is an arbitrary random variate,dims is the number of dimensions, mu is a dims-
dimensional location vector, and cov is a dims×dims covariance matrix. See, for example,
Fang et al. (1990)38

10. Mean-variance mixture of normal distributions (Barndorff-Nielsen et al. 1982)39:
VecAdd(mu, VecAdd(VecScale(delta, v), VecScale(MultivariateNormal(nothing,
cov), sqrt(z)))), where mu and delta aren-dimensional vectors, cov is a covariance
matrix, and v is an arbitrary random variate 0 or greater.

11. Mean mixture of normal distributions (Bhagwat and Marchand 2022)40: MultivariateNormal(VecAdd(theta,VecScale(a,v)),
cov) where theta is an n-dimensional location vector, a is an n-dimensional “perturbation
vector”, cov is a covariance matrix, and v is an arbitrary random variate.

1.2.10 Gaussian and Other Copulas

A copula is a way to describe the dependence between randomly sampled numbers.

One example is a Gaussian copula; this copula is sampled by sampling from a multinormal distribution,
then converting the resulting numbers to dependent uniform random values. In the following pseudocode,
which implements a Gaussian copula:

• The parameter covar is the covariance matrix for the multinormal distribution.
• erf(v) is the error function41 of the number v.

METHOD GaussianCopula(covar)
mvn=MultivariateNormal(nothing, covar)
for i in 0...size(covar)

// Apply the normal distribution's CDF
// to get uniform numbers
mvn[i] = (erf(mvn[i]/(sqrt(2)*sqrt(covar[i][i])))+1)*0.5

end
return mvn

END METHOD

Each of the resulting uniform random values will be in the interval [0, 1], and each one can be further
transformed to any other probability distribution (which is called a marginal distribution or marginal here)

36Tomasz J. Kozubowski, “Computer simulation of geometric stable distributions”, Journal of Computational and
Applied Mathematics 116(2), pp. 221-229, 2000. https://doi.org/10.1016/S0377-0427(99)00318-0 https://www.scienced
irect.com/science/article/pii/S0377042799003180

37Giammatteo, P., and Di Mascio, T., “Wilson-Hilferty-type approximation for Poisson Random Variable”, Advances in
Science, Technology and Engineering Systems Journal 5(2), 2020.

38Fang et al., Symmetric multivariate and related distributions, 1990.
39Malik, J.S., Hemani, A., “Gaussian random number generation: A survey on hardware architectures”, ACM Computing

Surveys 49(3), 2016.
40Du, Yusong, Baoying Fan, and Baodian Wei. “An improved exact sampling algorithm for the standard normal distribution.”

Computational Statistics (2021): 1-17, also arXiv:2008.03855 [cs.DS].
41https://en.wikipedia.org/wiki/Error_function

12

https://en.wikipedia.org/wiki/Error_function
https://doi.org/10.1016/S0377-0427%2899%2900318-0
https://www.sciencedirect.com/science/article/pii/S0377042799003180
https://www.sciencedirect.com/science/article/pii/S0377042799003180

by taking the quantile of that uniform number for that distribution (see “Inverse Transform Sampling42”,
and see also (Cario and Nelson 1997)43.)

Note: The Gaussian copula is also known as the normal-to-anything method.

Examples:

1. To generate two correlated uniform random values with a Gaussian copula, generate
GaussianCopula([[1, rho], [rho, 1]]), where rho is the Pearson correlation coeffi-
cient, in the interval [-1, 1]. (Other correlation coefficients besides rho exist. For example,
for a two-variable Gaussian copula, the Spearman correlation coefficient44 srho can
be converted to rho by rho = sin(srho * pi / 6) * 2. Other correlation coefficients,
and other measures of dependence between randomly sampled numbers, are not further
discussed in this document.)

2. The following example generates a two-dimensional random vector that follows a Gaussian
copula with exponential marginals (rho is the Pearson correlation coefficient, and rate1
and rate2 are the rates of the two exponential marginals).

METHOD CorrelatedExpo(rho, rate1, rate2)
copula = GaussianCopula([[1, rho], [rho, 1]])
// Transform to exponentials using that
// distribution's quantile function
return [-log1p(-copula[0]) / rate1,
-log1p(-copula[1]) / rate2]

END METHOD

3. The T–Poisson hierarchy (Knudson et al. 2021)45 is a way to generate N-dimensional
Poisson-distributed random vectors via copulas. Each of the N dimensions is associated
with—

• a parameter lamda, and
• a marginal distribution that may not be discrete and takes on only nonnegative values.

To sample from the T–Poisson hierarchy—

1. sample an N-dimensional random vector via a copula (such as GaussianCopula), pro-
ducing an N-dimensional vector of correlated uniform numbers; then

2. for each component in the vector, replace it with that component’s quantile for the
corresponding marginal; then

3. for each component in the vector, replace it with Poisson(lamda * c), where c is that
component and lamda is the lamda parameter for the corresponding dimension.

The following example implements the T-Poisson hierarchy using a Gaussian copula and
exponential marginals.

METHOD PoissonH(rho, rate1, rate2, lambda1, lambda2)
vec = CorrelatedExpo(rho, rate1, rate2)
return [Poisson(lambda1*vec[0]),Poisson(lambda2*vec[1])]

END METHOD

Other kinds of copulas describe different kinds of dependence between randomly sampled numbers. Examples
of other copulas are—

42https://peteroupc.github.io/randomfunc.html#Inverse_Transform_Sampling
43Cario, M. C., B. L. Nelson, “Modeling and generating random vectors with arbitrary marginal distributions and correlation

matrix”, 1997.
44https://en.wikipedia.org/wiki/Rank_correlation
45Knudson, A.D., Kozubowski, T.J., et al., “A flexible multivariate model for high-dimensional correlated count data”, Journal

of Statistical Distributions and Applications 8:6, 2021.

13

https://peteroupc.github.io/randomfunc.html#Inverse_Transform_Sampling
https://en.wikipedia.org/wiki/Rank_correlation

• the Fréchet–Hoeffding upper bound copula [x, x, …, x] (for example, [x, x]), where x =
RNDRANGEMinMaxExc(0, 1),

• the Fréchet–Hoeffding lower bound copula [x, 1.0 - x] where x = RNDRANGEMinMaxExc(0,
1),

• the product copula, where each number is a separately generated RNDRANGEMinMaxExc(0, 1) (indi-
cating no dependence between the numbers), and

• the Archimedean copulas, described by M. Hofert and M. Mächler (2011)46.

1.2.11 Multivariate Phase-Type Distributions

The following pseudocode generates a random vector (of d coordinates) following a multivariate phase-type
distribution called MPH*. In addition to parameters alpha and s, there is also a reward matrix r, such that
r[i][j] is the probability of adding to coordinate j when state i is visited. (The pseudocode assumes each
number in alpha, s, and r is a rational number, because it uses NormalizeRatios.)

METHOD MPH(alpha, s, r)
if len(r[0])<1 or len(r)!=len(s): return error
// Setup
trans=GenToTrans(s)
ret=[]; for i in 0...size(r[0]): AddItem(ret,0)
// Sampling
state=WeightedChoice(NormalizeRatios(alpha))
ret=0
while state<size(s)
rs=WeightedChoice(NormalizeRatios(r[state]))
ret[rs]=ret[rs]+Expo(-s[state][state])
state=WeightedChoice(NormalizeRatios(trans[state]))

end
return ret

END METHOD

Note: An inhomogeneous version of MPH* can be as follows: [G1(mph[1]), G2(mph[2]), ...,
GD(mph[d])], where mph is a d-dimensional MPH* vector and G1, G2, …, GD are strictly increasing
functions whose domain and range are the positive real line and whose “slope” is defined on the
whole domain (Albrecher et al. 2022)47.

2 Notes

3 Appendix
3.1 Exact, Error-Bounded, and Approximate Algorithms
There are three kinds of randomization algorithms:

1. An exact algorithm is an algorithm that samples from the exact distribution requested, assuming that
computers—

• can store and operate on real numbers (which have unlimited precision), and
• can generate independent uniform random real numbers

46Hofert, M., and Maechler, M. “Nested Archimedean Copulas Meet R: The nacopula Package”. Journal of Statistical Software
39(9), 2011, pp. 1-20.

47Albrecher, Hansjörg, Mogens Bladt, and Jorge Yslas. “Fitting inhomogeneous phase‐type distributions to data: the univari-
ate and the multivariate case.” Scandinavian Journal of Statistics 49, no. 1 (2022): 44-77.

14

(Devroye 1986, p. 1-2)48. However, an exact algorithm implemented on real-life computers can incur
error due to the use of fixed precision (especially floating-point numbers), such as rounding and cancel-
lations. An exact algorithm can achieve a guaranteed bound on accuracy (and thus be an error-bounded
algorithm) using either arbitrary-precision or interval arithmetic (see also Devroye 1986, p. 2)49. All
methods given on this page are exact unless otherwise noted. Note that the RNDRANGEMinMaxExc
method is exact in theory, but has no required implementation.

2. An error-bounded algorithm is a sampling algorithm with the following requirements:

• If the ideal distribution is discrete (takes on values that can map to integers and back without
loss), the algorithm samples exactly from that distribution. (But see the note below.)

• If the ideal distribution is not discrete, the algorithm samples from a distribution that is close to
the ideal within a user-specified error tolerance (see later for details). The algorithm can instead
sample a number from the distribution only partially, as long as the fully sampled number can be
made close to the ideal within any error tolerance desired.

• In sampling from a distribution, the algorithm incurs no approximation error not already present
in the inputs (except errors needed to round the final result to the user-specified error tolerance).

Many error-bounded algorithms use random bits as their only source of randomness. An application
should use error-bounded algorithms whenever possible.

Most algorithms on this page, though, are not error-bounded when naïvely implemented in most number
formats (including floating-point numbers). (There are number formats such as “constructive reals” or
“recursive reals” that allow real numbers to be approximated to a user-specified error (Boehm 2020)50.)

3. An inexact, approximate, or biased algorithm is any sampling algorithm that is neither exact nor error-
bounded. This includes algorithms that sample from a distribution that is close to the desired distri-
bution, but not within a user-specified error tolerance (see also Devroye 1986, p. 2)51. An application
should use this kind of algorithm only if it’s willing to trade accuracy for speed.

There are many ways to describe closeness between two distributions. One suggestion by Devroye and Gravel
(2020)52 is Wasserstein distance (or “earth-mover distance”), which they proved has a simple definition in
terms of the quantile function (Theorem 8). Here, an algorithm has accuracy 𝜖 (the user-specified error
tolerance) if it samples from a distribution that is close to the ideal distribution by a Wasserstein distance
of not more than 𝜖 .

Examples:

1. Sampling from the exponential distribution via -ln(RNDRANGEMinMaxExc(0, 1)) is an exact
algorithm (in theory), but not an error-bounded one for common floating-point number
formats. The same is true of the Box–Muller transformation.

2. Karney’s algorithm for the normal distribution (Karney 2016)53, as well as Karney’s im-
plementation of von Neumann’s exponential distribution sampler (Karney 2016)54 are both
error-bounded, because they return a result that can be made to come close to the nor-

48Devroye, L., Non-Uniform Random Variate Generation, 1986.
49Devroye, L., Non-Uniform Random Variate Generation, 1986.
50Boehm, Hans-J. “Towards an API for the real numbers.” In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 562-576. 2020.
51Devroye, L., Non-Uniform Random Variate Generation, 1986.
52Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
53Karney, C.F.F., 2016. Sampling exactly from the normal distribution. ACM Transactions on Mathematical Software

(TOMS), 42(1), pp.1-14. Also: “Sampling exactly from the normal distribution”, arXiv:1303.6257v2 [physics.comp-ph],
2014. https://arxiv.org/abs/1303.6257v2

54Karney, C.F.F., 2016. Sampling exactly from the normal distribution. ACM Transactions on Mathematical Software
(TOMS), 42(1), pp.1-14. Also: “Sampling exactly from the normal distribution”, arXiv:1303.6257v2 [physics.comp-ph],
2014. https://arxiv.org/abs/1303.6257v2

15

http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
https://arxiv.org/abs/1502.02539v6
https://arxiv.org/abs/1303.6257v2
https://arxiv.org/abs/1303.6257v2

mal or exponential distribution, respectively, within any error tolerance desired simply by
appending more random digits to the end. See also (Oberhoff 2018)55.

3. Examples of approximate algorithms include sampling from a Gaussian-like distribution
via a sum of RNDRANGEMinMaxExc(0, 1), or most cases of modulo reduction to produce
uniform-like integers at random (see notes in the section “RNDINT56”). The following
approximate algorithm for the Poisson distribution is another example (Giammatteo and
Di Mascio (2020)57): floor(1.0/3 + pow(max(0, Normal(0, 1)*pow(mean,1/6.0)*2/3
+ pow(mean, 2.0/3)), 3.0/2)), where mean is greater than 50.

Note: A discrete distribution can be sampled in finite time on average if and only if its so-called
Shannon entropy is finite (Knuth and Yao 1976)58. Unfortunately, some discrete distributions
have infinite Shannon entropy, such as some members of the zeta Dirichlet family of distributions
(Devroye and Gravel 2020)59. Thus, in practice, an approximate or error-bounded sampler is
needed for these distributions. Saad et al. (2020)60 discuss how to sample an approximation
of a discrete distribution with a user-specified error tolerance, but only if the ideal distribution
takes on a finite number of values (and thus has finite Shannon entropy). On the other hand, a
distribution has finite Shannon entropy whenever—

• it takes on only integers 1 or greater and has a finite t 𝑡ℎ moment for some t > 0 (“long-run
average” of values raised to t 𝑡ℎ power) (Baccetti and Visser 2013)61, or as a special case,

• it takes on only integers 1 or greater and has a finite mean (“long-run average”), or
• it has the form X + n, where n is a constant and X is a random variate whose distribution

has finite Shannon entropy.

4 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero62.

55Oberhoff, Sebastian, “Exact Sampling and Prefix Distributions”, Theses and Dissertations, University of Wisconsin
Milwaukee, 2018. https://dc.uwm.edu/etd/1888

56https://peteroupc.github.io/randomfunc.html#RNDINT_Random_Integers_in_0_N
57Giammatteo, P., and Di Mascio, T., “Wilson-Hilferty-type approximation for Poisson Random Variable”, Advances in

Science, Technology and Engineering Systems Journal 5(2), 2020.
58Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
59Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
60Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka, “Optimal Approximate Sampling

From Discrete Probability Distributions”, arXiv:2001.04555 [cs.DS], also in Proc. ACM Program. Lang. 4, POPL, Article
36 (January 2020), 33 pages. https://arxiv.org/abs/2001.04555

61Baccetti, Valentina, and Matt Visser. “Infinite Shannon entropy.” Journal of Statistical Mechanics: Theory and Experiment
2013, no. 04 (2013): P04010, also in arXiv:1212.5630.

62https://creativecommons.org/publicdomain/zero/1.0/

16

https://peteroupc.github.io/randomfunc.html#RNDINT_Random_Integers_in_0_N
https://creativecommons.org/publicdomain/zero/1.0/
https://dc.uwm.edu/etd/1888
https://arxiv.org/abs/1502.02539v6
https://arxiv.org/abs/2001.04555

	Contents
	About This Document
	Specific Distributions
	Normal (Gaussian) Distribution
	Gamma Distribution
	Beta Distribution
	Uniform Partition with a Positive Sum
	Noncentral Hypergeometric Distributions
	von Mises Distribution
	Stable Distribution
	Phase-Type Distributions
	Multivariate Normal (Multinormal) Distribution
	Gaussian and Other Copulas
	Multivariate Phase-Type Distributions

	Notes
	Appendix
	Exact, Error-Bounded, and Approximate Algorithms

	License

