
Randomization and Sampling Methods

Peter Occil

Randomization and Sampling Methods

This version of the document is dated 2023-06-17.

Peter Occil

Abstract: This page discusses many ways applications can sample randomized content by transforming the
numbers produced by an underlying source of random numbers, such as numbers produced by a pseudoran-
dom number generator, and offers pseudocode and Python sample code for many of these methods.

2020 Mathematics Subject Classification: 68W20.

1 Introduction
This page catalogs randomization methods and sampling methods. A randomization or sampling method is
driven by a “source of random numbers” and produces numbers or other values called random variates.
These variates are the result of the randomization. (The “source of random numbers” is often simulated in
practice by so-called pseudorandom number generators, or PRNGs.) This document covers many methods,
including—

• ways to sample integers or real numbers from a uniform distribution (such as the core method,
RNDINT(N)),

• ways to generate randomized content and conditions, such as true/false conditions, shuffling, and
sampling unique items from a list, and

• non-uniform distributions, including weighted choice, the Poisson distribution, and other prob-
ability distributions.

This page is focused on randomization and sampling methods that exactly sample from the distribution
described, without introducing additional errors beyond those already present in the inputs (and assuming
that an ideal “source of random numbers” is available). This will be the case if there is a finite number of
values to choose from. But for the normal distribution and other distributions that take on infinitely many
values, there will always be some level of approximation involved; in this case, the focus of this page is on
methods that minimize the error they introduce.

This document shows pseudocode for many of the methods, and sample Python code1 that implements
many of the methods in this document is available, together with documentation for the code2.

The randomization methods presented on this page assume we have an endless source of numbers chosen
independently at random and with a uniform distribution. For more information, see “Sources of Random
Numbers” in the appendix.

In general, the following are outside the scope of this document:
1https://peteroupc.github.io/randomgen.zip
2https://peteroupc.github.io/randomgendoc.html

1

mailto:poccil14@gmail.com
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgendoc.html

• This document does not cover how to choose an underlying PRNG (or device or program that simulates
a “source of random numbers”) for a particular application, including in terms of security, performance,
and quality. I have written more on recommendations in another document3.

• This document does not include algorithms for specific PRNGs, such as Mersenne Twister, PCG,
xorshift, linear congruential generators, or generators based on hash functions.

• This document does not cover how to test PRNGs for correctness or adequacy, and the same applies
to other devices and programs that simulate a “source of random numbers”. Testing is covered, for
example, in “Testing PRNGs for High-Quality Randomness4”.

• This document does not explain how to specify or generate “seeds” for use in PRNGs. This is covered
in detail5 elsewhere.

• This document does not show how to generate random security parameters such as encryption keys.
• This document does not cover randomness extraction (also known as unbiasing, deskewing, or whiten-

ing). See my Note on Randomness Extraction6.
• “Variance reduction” methods, such as importance sampling or common random numbers, are outside

the scope of this document.

In addition, this page is not focused on sampling methods used for computer graphics rendering (such as
Poisson disk sampling, multiple importance sampling, blue noise, and gradient noise), because this appli-
cation tends to give performance and visual acceptability a greater importance than accuracy and exact
sampling.

1.1 About This Document
This is an open-source document; for an updated version, see the source code7 or its rendering
on GitHub8. You can send comments on this document either on CodeProject9 or on the
GitHub issues page10.

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus.

I encourage readers to implement any of the algorithms given in this page, and report their implementation
experiences. In particular, I seek comments on the following aspects11:

• Are the algorithms in this article easy to implement? Is each algorithm written so that someone could
write code for that algorithm after reading the article?

• Does this article have errors that should be corrected?
• Are there ways to make this article more useful to the target audience?

Comments on other aspects of this document are welcome.

2 Contents
• Introduction

– About This Document
• Contents
• Notation

3https://peteroupc.github.io/random.html
4https://peteroupc.github.io/randomtest.html
5https://peteroupc.github.io/random.html#Nondeterministic_Sources_and_Seed_Generation
6https://peteroupc.github.io/randextract.html
7https://github.com/peteroupc/peteroupc.github.io/raw/master/randomfunc.md
8https://github.com/peteroupc/peteroupc.github.io/blob/master/randomfunc.md
9https://www.codeproject.com/Articles/1190459/Random-Number-Generation-and-Sampling-Methods

10https://github.com/peteroupc/peteroupc.github.io/issues
11https://github.com/peteroupc/peteroupc.github.io/issues/18

2

https://peteroupc.github.io/random.html
https://peteroupc.github.io/randomtest.html
https://peteroupc.github.io/random.html#Nondeterministic_Sources_and_Seed_Generation
https://peteroupc.github.io/random.html#Nondeterministic_Sources_and_Seed_Generation
https://peteroupc.github.io/randextract.html
https://github.com/peteroupc/peteroupc.github.io/raw/master/randomfunc.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomfunc.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomfunc.md
https://www.codeproject.com/Articles/1190459/Random-Number-Generation-and-Sampling-Methods
https://github.com/peteroupc/peteroupc.github.io/issues
https://github.com/peteroupc/peteroupc.github.io/issues/18

• Uniform Random Integers
– RNDINT: Random Integers in [0, N]
– RNDINTRANGE: Random Integers in [N, M]
– RNDINTEXC: Random Integers in [0, N)
– RNDINTEXCRANGE: Random Integers in [N, M)
– Uniform Random Bits
– Examples of Using the RNDINT Family

• Randomization Techniques
– Boolean (True/False) Conditions
– Random Sampling

∗ Sampling With Replacement: Choosing a Random Item from a List
∗ Sampling Without Replacement: Choosing Several Unique Items
∗ Shuffling
∗ Random Character Strings
∗ Pseudocode for Random Sampling

– Rejection Sampling
– Random Walks
– Random Dates and Times
– Randomization in Statistical Testing
– Markov Chains
– Random Graphs
– A Note on Sorting Random Variates

• General Non-Uniform Distributions
– Weighted Choice

∗ Weighted Choice With Replacement
∗ Weighted Choice Without Replacement
∗ Unequal Probability Sampling

– Mixtures of Distributions
– Transformations of Random Variates

• Specific Non-Uniform Distributions
– Dice
– Binomial Distribution
– Negative Binomial Distribution
– Geometric Distribution
– Exponential Distribution
– Poisson Distribution
– Pólya–Eggenberger Distribution
– Random Integers with a Given Positive Sum
– Multinomial Distribution

• Randomization with Real Numbers
– Uniform Random Real Numbers

∗ For Fixed-Point Number Formats
∗ For Rational Number Formats
∗ For Floating-Point Number Formats

– Monte Carlo Sampling: Expected Values, Integration, and Optimization
– Point Sample Selection
– Notes on Randomization Involving Real Numbers

∗ Random Walks: Additional Examples
∗ Transformations: Additional Examples

– Sampling from a Distribution of Data Points
– Sampling from an Arbitrary Distribution

∗ Sampling for Discrete Distributions

3

∗ Inverse Transform Sampling
∗ Rejection Sampling with a PDF-Like Function
∗ Alternating Series
∗ Markov-Chain Monte Carlo

– Piecewise Linear Distribution
– Specific Distributions
– Index of Non-Uniform Distributions
– Geometric Sampling

∗ Random Points Inside a Simplex
∗ Random Points on a Sphere
∗ Random Points Inside a Box, Ball, Shell, or Cone
∗ Random Latitude and Longitude

• Acknowledgments
• Other Documents
• Notes
• Appendix

– Sources of Random Numbers
– Implementation Considerations
– Security Considerations

• License

3 Notation
In this document:

• The pseudocode conventions12 apply to this document.
• The following notation for intervals is used: [a, b) means “a or greater, but less than b”. (a, b) means

“greater than a, but less than b”. (a, b] means “greater than a and less than or equal to b”. [a, b]
means “a or greater and b or less”.

• log1p(x) is equivalent to ln(1 + x) and is a “robust” alternative to ln(1 + x) where x is a floating-
point number (Pedersen 2018)13.

• MakeRatio(n, d) creates a rational number with the given numerator n and denominator d.
• Sum(list) calculates the sum of the numbers in the given list of integers or rational numbers. (Sum-

ming floating-point numbers naïvely can introduce round-off errors.)

4 Uniform Random Integers
This section shows how to derive independent uniform random integers with the help of a “source of random
numbers” (or a device or program that simulates that source).

This section describes four methods: RNDINT, RNDINTEXC, RNDINTRANGE, RNDINTEXCRANGE. Of these, RNDINT,
described next, can serve as the basis for the remaining methods.

4.1 RNDINT: Random Integers in [0, N]
In this document, RNDINT(maxInclusive) is the core method in this document; it derives independent uni-
form integers in the interval [0, maxInclusive] from a “source of random numbers”14. In the pseudocode
below, which implements RNDINT:

12https://peteroupc.github.io/pseudocode.html
13Pedersen, K., “Reconditioning your quantile function”, arXiv:1704.07949v3 [stat.CO], 2018. https://arxiv.org/abs/

1704.07949
14For an exercise solved by part of the RNDINT pseudocode, see A. Koenig and B. E. Moo, Accelerated C++, 2000; see also a

blog post by Johnny Chan.

4

https://peteroupc.github.io/pseudocode.html
https://arxiv.org/abs/1704.07949
https://arxiv.org/abs/1704.07949
http://mathalope.co.uk/2014/10/26/accelerated-c-solution-to-exercise-7-9/

• NEXTRAND() reads the next number generated by a “source of (uniform) random numbers” as defined
in the appendix (an endless source of numbers, each of which is chosen independently of any other
choice and with a uniform distribution). As noted in the appendix, a pseudorandom number generator
can simulate this source in practice. For this method, the source can have a non-uniform instead of
uniform distribution.

• MODULUS is the number of different outcomes possible with that source.

Specifically:

If the underlying source produces: Then NEXTRAND() is: And MODULUS is:
Non-uniform numbers15. The next bit from a new

source formed by taking the
underlying source’s outputs
as input to a randomness
extraction16 technique to
produce independent
unbiased random bits (zeros
or ones).

2.

Uniform numbers not described below. Same as above. 2𝑛.
Uniform 32-bit nonnegative integers. The next number from the

source.
232.

Uniform 64-bit nonnegative integers. The next number from the
source.

264.

Uniform integers in the interval [0, n). The next number from the
source.

n.

Uniform numbers in the interval [0, 1)
known to be evenly spaced by a number p
(for example, dSFMT).

The next number from the
source, multiplied by p.

1/p.

Uniform numbers in the interval [0, 1),
where numbers in [0, 0.5) and those in [0.5,
1) are known to occur with equal
probability (for example, Java’s
Math.random()).

0 if the source outputs a
number less than 0.5, or 1
otherwise.

2.

METHOD RndIntHelperNonPowerOfTwo(maxInclusive)
if maxInclusive <= MODULUS - 1:
// NOTE: If the programming language implements
// division with two integers by discarding the result's
// fractional part, the division can be used as is without
// using a "floor" function.
nPlusOne = maxInclusive + 1
maxexc = floor((MODULUS - 1) / nPlusOne) * nPlusOne
while true // until a value is returned
ret = NEXTRAND()
if ret < nPlusOne: return ret
if ret < maxexc: return rem(ret, nPlusOne)

end
else
cx = floor(maxInclusive / MODULUS) + 1

15An example of such a source is a Gaussian noise generator. This kind of source is often called an entropy source.
16https://peteroupc.github.io/randextract.html

5

https://peteroupc.github.io/randextract.html
https://peteroupc.github.io/randextract.html

while true // until a value is returned
ret = cx * NEXTRAND()
// NOTE: The addition operation below should
// check for integer overflow and should reject the
// number if overflow would result.
ret = ret + RNDINT(cx - 1)
if ret <= maxInclusive: return ret

end
end

END METHOD

METHOD RndIntHelperPowerOfTwo(maxInclusive)
// NOTE: Finds the number of bits minus 1 needed
// to represent MODULUS (in other words, the number
// of random bits returned by NEXTRAND()). In practice,
// this will be a constant and can be calculated in advance.
modBits = ln(MODULUS)/ln(2)
// Lumbroso's Fast Dice Roller.
x = 1
y = 0
nextBit = modBits
rngv = 0
maxIncMinus1 = maxInclusive - 1
while true // until a value is returned
if nextBit >= modBits
nextBit = 0
rngv = NEXTRAND()

end
nextBit = nextBit + 1
// if modBits=1, this can read "bit=rngv"
bit = rem(rngv, 2)
x = x * 2
y = y * 2 + bit
// if modBits=1, the following line
// can be left out
rngv = floor(rngv / 2)
if x > maxInclusive
x = x - maxIncMinus1
if y <= maxInclusive: return y
y = y - maxIncMinus1

end
end

END METHOD

METHOD RNDINT(maxInclusive)
// maxInclusive must be 0 or greater
if maxInclusive < 0: return error
if maxInclusive == 0: return 0
if maxInclusive == MODULUS - 1: return NEXTRAND()
// NOTE: Finds the number of bits minus 1 needed
// to represent MODULUS (if it's a power of 2).
// This will be a constant here, though.

6

modBits=ln(MODULUS)/ln(2)
if floor(modBits) == modBits // Is an integer
return RndIntHelperPowerOfTwo(maxInclusive)

else
return RndIntHelperNonPowerOfTwo(maxInclusive)

end
END METHOD

The table below shows algorithms that have been proposed for choosing an integer uniformly at random.
Some are unbiased (exact) and others are biased, but in general, the algorithm can be unbiased only if it
runs forever in the worst case. The algorithms listed take n as a parameter, where n = maxInclusive + 1,
and thus sample from the interval [0, n). (The column “Unbiased?” means whether the algorithm generates
random integers without bias, even if n is not a power of 2.)

Algorithm Optimal? Unbiased? Time Complexity
Rejection sampling:
Sample in a bigger range
until a sampled number
fits the smaller range.

Not always Yes Runs forever in worst
case

Multiply-and-shift
reduction: Generate
bignumber, an integer
made of k unbiased bits,
where k is much greater
than n, then find
(bignumber * n) >> k
(see (Lemire 2016)17,
(Lemire 2018)18, and the
“Integer Multiplication”
algorithm surveyed by
M. O’Neill).

No No Constant

Modulo reduction:
Generate bignumber as
above, then find
rem(bignumber, n).

No No Constant

Fast Dice Roller
(Lumbroso 2013)19 (see
pseudocode above).

Yes Yes Runs forever in worst
case

Algorithm FYKY
(Bacher et al. 2017)20.
Effectively the same as
replacing the lines “if y
<= maxInclusive:
return y; y = y -
maxIncMinus1” in the
pseudocode above with
“if y >= x: return
y-x”.

Yes Yes Runs forever in worst
case

Math Forum (2004)21 or
(Mennucci 2018)22

(batching/recycling
random bits).

Yes Yes Runs forever in worst
case

7

Algorithm Optimal? Unbiased? Time Complexity
“FP Multiply” surveyed
by M. O’Neill23.

No No Constant

Algorithm in
“Conclusion” section by
O’Neill.

No Yes Runs forever in worst
case

“Debiased” and
“Bitmask with
Rejection” surveyed by
M. O’Neill.

No Yes Runs forever in worst
case

Notes:

1. RNDINT as a binary tree walker. Donald E. Knuth and Andrew C. Yao (1976)24 showed
that any algorithm that generates random integers using random unbiased bits (each bit is
0 or 1 with equal probability) can be described as a binary tree (also known as a DDG tree
or discrete distribution generating tree). (This also applies to RNDINT algorithms.) Random
unbiased bits trace a path in this tree, and each leaf (terminal node) in the tree represents
an outcome. In the case of RNDINT(maxInclusive), there are n = maxInclusive + 1 out-
comes that each occur with probability 1/n.Knuth and Yao showed that any optimal DDG
tree algorithm needs at least log2(n) and at most log2(n) + 2 bits on average (where
log2(x) = ln(x)/ln(2)).25 But as they also showed, for the algorithm to be unbiased
(exact), it must run forever in the worst case, even if it uses few random bits on average
(that is, there is no way in general to “fix” this worst case while remaining unbiased). This
is because 1/n will have an infinite run of base-2 digits except when n is a power of 2, so that
the resulting DDG tree will have to either be infinitely deep, or include “rejection leaves”
at the end of the tree.For instance, the modulo reduction method can be represented by a
DDG tree in which rejection leaves are replaced with labeled outcomes, but the method
is biased because only some outcomes can replace rejection leaves this way. For the same
reason, stopping the rejection sampler after a fixed number of tries likewise leads to bias.
However, which outcomes are biased this way depends on the algorithm.

2. Reducing “bit waste”. Any implementation of RNDINT needs at least log2(n) bits per
chosen integer on average, as noted above, but most of them use many more. There are
various ways to bring an algorithm closer to log2(n). They include batching, bit recycling,
and randomness extraction, and they are discussed, for example, in the Math Forum page
and the Lumbroso and Mennucci papers referenced above, and in Devroye and Gravel (2020,

17D. Lemire, “A fast alternative to the modulo reduction”, Daniel Lemire’s blog, 2016.
18Lemire, D., “Fast Random Integer Generation in an Interval”, arXiv:1805.10941v4 [cs.DS], 2018. https://arxiv.org/

abs/1805.10941v4
19Lumbroso, J., “Optimal Discrete Uniform Generation from Coin Flips, and Applications”, arXiv:1304.1916

[cs.DS] https://arxiv.org/abs/1304.1916
20Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. 2017. Generating Random Permutations by Coin

Tossing: Classical Algorithms, New Analysis, and Modern Implementation. ACM Trans. Algorithms 13, 2, Article 24 (April
2017), 43 pages. https://doi.org/10.1145/3009909 .

21“Probability and Random Numbers”, Feb. 29, 2004. https://web.archive.org/web/20170705004415/http://mathforu
m.org/library/drmath/view/65653.html

22Mennucci, A.C.G., “Bit Recycling for Scaling Random Number Generators”, arXiv:1012.4290 [cs.IT], 2018. https:
//arxiv.org/abs/1012.4290

23https://www.pcg-random.org/posts/bounded-rands.html
24Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
25This is because the binary entropy of p = 1/n is p * log2(1/p) = log2(n) / n, and the sum of n binary entropies (for n

outcomes with probability 1/n each) is log2(n) = ln(n)/ln(2).

8

https://www.pcg-random.org/posts/bounded-rands.html
https://arxiv.org/abs/1805.10941v4
https://arxiv.org/abs/1805.10941v4
https://arxiv.org/abs/1304.1916
https://doi.org/10.1145/3009909
https://web.archive.org/web/20170705004415/http://mathforum.org/library/drmath/view/65653.html
https://web.archive.org/web/20170705004415/http://mathforum.org/library/drmath/view/65653.html
https://arxiv.org/abs/1012.4290
https://arxiv.org/abs/1012.4290

section 2.3)26. Batching example: To generate three digits from 0 through 9, we can call
RNDINT(999) to generate an integer in [0, 999], then break the number it returns into three
digits.

3. Simulating dice. If we have a (virtual) fair p-sided die, how can we use it to simulate rolls
of a k-sided die? This can’t be done without “wasting” randomness, unless “every prime
number dividing k also divides p” (see “Simulating a dice with a dice27” by B. Kloeckner,
2008). However, randomness extraction (see my Note on Randomness Extraction28) can
turn die rolls into unbiased bits, so that the discussion earlier in this section applies.

4.2 RNDINTRANGE: Random Integers in [N, M]
The naïve way of generating a random integer in the interval [minInclusive, maxInclusive], shown
below, works well for nonnegative integers and arbitrary-precision integers.

METHOD RNDINTRANGE(minInclusive, maxInclusive)
// minInclusive must not be greater than maxInclusive
if minInclusive > maxInclusive: return error
return minInclusive + RNDINT(maxInclusive - minInclusive)

END METHOD

The naïve approach won’t work as well, though, if the integer format can express negative and nonnegative
integers and the difference between maxInclusive and minInclusive exceeds the highest possible integer
for the format. For integer formats that can express—

1. every integer in the interval [-1 - MAXINT, MAXINT] (for example, Java int, short, or long), or
2. every integer in the interval [-MAXINT, MAXINT] (for example, Java float and double and .NET’s

implementation of System.Decimal),

where MAXINT is an integer greater than 0, the following pseudocode for RNDINTRANGE can be used.

METHOD RNDINTRANGE(minInclusive, maxInclusive)
// minInclusive must not be greater than maxInclusive
if minInclusive > maxInclusive: return error
if minInclusive == maxInclusive: return minInclusive
if minInclusive==0: return RNDINT(maxInclusive)
// Difference does not exceed maxInclusive
if minInclusive > 0 or minInclusive + MAXINT >= maxInclusive

return minInclusive + RNDINT(maxInclusive - minInclusive)
end
while true // until a value is returned

ret = RNDINT(MAXINT)
// NOTE: For case 1, use the following line:
if RNDINT(1) == 0: ret = -1 - ret
// NOTE: For case 2, use the following three lines
// instead of the preceding line; these lines
// avoid negative zero
// negative = RNDINT(1) == 0
// if negative: ret = 0 - ret
// if negative and ret == 0: continue
if ret >= minInclusive and ret <= maxInclusive: return ret

end
26Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
27https://perso.math.u-pem.fr/kloeckner.benoit/papiers/DiceSimulation.pdf
28https://peteroupc.github.io/randextract.html

9

https://perso.math.u-pem.fr/kloeckner.benoit/papiers/DiceSimulation.pdf
https://peteroupc.github.io/randextract.html
https://arxiv.org/abs/1502.02539v6

END METHOD

4.3 RNDINTEXC: Random Integers in [0, N)
RNDINTEXC(maxExclusive), which generates a random integer in the interval [0, maxExclusive), can
be implemented as follows29:

METHOD RNDINTEXC(maxExclusive)
if maxExclusive <= 0: return error
return RNDINT(maxExclusive - 1)

END METHOD

Note: RNDINTEXC is not given as the core random generation method because it’s harder to fill
integers in popular integer formats with random bits with this method.

4.4 RNDINTEXCRANGE: Random Integers in [N, M)
RNDINTEXCRANGE returns a random integer in the interval [minInclusive, maxExclusive). It can be
implemented using RNDINTRANGE, as the following pseudocode demonstrates.

METHOD RNDINTEXCRANGE(minInclusive, maxExclusive)
if minInclusive >= maxExclusive: return error
if minInclusive >=0: return RNDINTRANGE(

minInclusive, maxExclusive - 1)
while true // until a value is returned
ret = RNDINTRANGE(minInclusive, maxExclusive)
if ret < maxExclusive: return ret

end
END METHOD

4.5 Uniform Random Bits
The idiom RNDINT((1 << b) - 1) is a naïve way of generating a uniform random b-bit integer (with
maximum 2 ‵𝑏‵ - 1).

In practice, memory is usually divided into bytes, or 8-bit integers in the interval [0, 255]. In this case, a
block of memory can be filled with random bits—

• by setting each byte in the block to RNDINT(255), or
• via a PRNG (or another device or program that simulates a “source of random numbers”), if it outputs

one or more 8-bit chunks at a time.

4.6 Examples of Using the RNDINT Family
1. To choose either − 1 or 1 with equal probability (the Rademacher distribution), one of the following

idioms can be used: (RNDINT(1) * 2 - 1) or (RNDINTEXC(2) * 2 - 1).
29A naïve RNDINTEXC implementation often seen in certain languages like JavaScript is the idiom floor(Math.random() *

maxExclusive), where Math.random() is any method that outputs a floating-point number that behaves like an independent
uniform random variate in the interval [0, 1). However, no implementation of Math.random() can choose from all real numbers
in [0, 1), so this idiom can bias some results over others depending on the value of maxExclusive. For example, if Math.random()
is implemented as RNDINT(X - 1)/X and X is not divisible by maxExclusive, the result will be biased. Also, an implementation
might pre-round Math.random() * maxExclusive (before the floor) to the closest number it can represent; in rare cases, that
might be maxExclusive for certain rounding modes. If an application is concerned about these issues, it should treat the
Math.random() implementation as simulating the “source of random numbers” for RNDINT and implement RNDINTEXC through
RNDINT instead.

10

2. To generate a random integer that’s divisible by a positive integer (DIV), generate the integer with
any method (such as RNDINT), let X be that integer, then generate X - rem(X, DIV) if X >= 0, or X -
(DIV - rem(abs(X), DIV)) otherwise. (Depending on the method, the resulting integer may be out
of range, in which case this procedure is to be repeated.)

3. A random 2-dimensional point on an N×M grid can be expressed as a single integer as follows:
• To generate a random N×M point P, generate P = RNDINT(N * M - 1) (P is thus in the interval

[0, N * M)).
• To convert a point P to its 2D coordinates, generate [rem(P, N), floor(P / N)]. (Each coordi-

nate starts at 0.)
• To convert 2D coordinates coord to an N×M point, generate P = coord[1] * N + coord[0].

4. To simulate rolling an N-sided die (N greater than 1): RNDINTRANGE(1, N), which chooses a number
in the interval [1, N] with equal probability.

5. To generate a random integer with one base-10 digit: RNDINTRANGE(0, 9).
6. To generate a random integer with N base-10 digits (where N is 2 or greater), where the first digit

can’t be 0: RNDINTRANGE(pow(10, N-1), pow(10, N) - 1).
7. To choose a number in the interval [mn, mx), with equal probability, in increments equal to step:

mn+step*RNDINTEXC(ceil((mx-mn)/(1.0*step))).
8. To choose an integer in the interval [0, X) at random:

• And favor numbers in the middle: floor((RNDINTEXC(X) + RNDINTEXC(X)) / 2).
• And favor high numbers: max(RNDINTEXC(X), RNDINTEXC(X)).
• And favor low numbers: min(RNDINTEXC(X), RNDINTEXC(X)).
• And strongly favor high numbers: max(RNDINTEXC(X), RNDINTEXC(X), RNDINTEXC(X)).
• And strongly favor low numbers: min(RNDINTEXC(X), RNDINTEXC(X), RNDINTEXC(X)).

5 Randomization Techniques
This section describes commonly used randomization techniques, such as shuffling, selection of several unique
items, and creating random strings of text.

5.1 Boolean (True/False) Conditions
To generate a condition that is true at the specified probabilities, use the following idioms in an if condition:

• True or false with equal probability: RNDINT(1) == 0.
• True with X percent probability: RNDINTEXC(100) < X.
• True with probability X/Y (a Bernoulli trial): RNDINTEXC(Y) < X.
• True with odds of X to Y: RNDINTEXC(X + Y) < X.

The following helper method generates 1 with probability x/y and 0 otherwise:

METHOD ZeroOrOne(x,y)
if RNDINTEXC(y)<x: return 1
return 0

END METHOD

The method can also be implemented in the following way (as pointed out by Lumbroso (2013, Appendix
B)30):

// NOTE: Modified from Lumbroso
// Appendix B to add 'z==0' and error checks
METHOD ZeroOrOne(x,y)
if y <= 0: return error

30Lumbroso, J., “Optimal Discrete Uniform Generation from Coin Flips, and Applications”, arXiv:1304.1916
[cs.DS] https://arxiv.org/abs/1304.1916

11

https://arxiv.org/abs/1304.1916

if x==y: return 1
z = x
while true // until a value is returned
z = z * 2
if z >= y
if RNDINT(1) == 0: return 1
z = z - y

else if z == 0 or RNDINT(1) == 0: return 0
end

END METHOD

Note: Probabilities can be rational or irrational numbers. Rational probabilities are of the form
n/d and can be simulated with ZeroOrOne above. Irrational probabilities (such as exp(-x/y)
or ln(2)) have an infinite digit expansion (0.ddddd....), and they require special algorithms
to simulate; see “Algorithms for General Irrational Constants31” and “Algorithms for
Specific Constants32” in my page on Bernoulli Factory algorithms.

Examples:

• True with probability 3/8: RNDINTEXC(8) < 3.
• True with odds of 100 to 1: RNDINTEXC(101) < 1.
• True with 20% probability: RNDINTEXC(100) < 20.
• To generate a random integer in [0, y), or -1 instead if that number would be less than

x, using fewer random bits than the naïve approach: if ZeroOrOne(x, y) == 1: return
-1; else: return RNDINTEXCRANGE(x, y).

5.2 Random Sampling
This section contains ways to choose one or more items from among a collection of them, where each item
in the collection has the same chance to be chosen as any other. This is called random sampling and can be
done with replacement or without replacement.

5.2.1 Sampling With Replacement: Choosing a Random Item from a List

Sampling with replacement essentially means taking a random item and putting it back. To choose a random
item from a list—

• whose size is known in advance, use the idiom list[RNDINTEXC(size(list))]; or
• whose size is not known in advance, generate RandomKItemsFromFile(file, 1), in pseudocode

given later (the result will be a 1-item list or be an empty list if there are no items).

5.2.2 Sampling Without Replacement: Choosing Several Unique Items

Sampling without replacement essentially means taking a random item without putting it back. There are
several approaches for doing a uniform random choice of k unique items or values from among n available
items or values, depending on such things as whether n is known and how big n and k are.

1. If n is not known in advance: Use the reservoir sampling method; see the RandomKItemsFromFile
method, in pseudocode given later.

2. If n is relatively small (for example, if there are 200 available items, or there is a range
of numbers from 0 through 200 to choose from):
• If items have to be chosen from a list in relative (index) order, or if n is 1, then use

RandomKItemsInOrder (given later).
31https://peteroupc.github.io/bernoulli.html#Algorithms_for_General_Irrational_Constants
32https://peteroupc.github.io/bernoulli.html#Algorithms_for_Specific_Constants

12

https://peteroupc.github.io/bernoulli.html#Algorithms_for_General_Irrational_Constants
https://peteroupc.github.io/bernoulli.html#Algorithms_for_Specific_Constants
https://peteroupc.github.io/bernoulli.html#Algorithms_for_Specific_Constants

• Otherwise, if the order of the sampled items is unimportant, and each item can be derived from
its index (the item’s position as an integer starting at 0) without looking it up in a list: Use the
RandomKItemsFromFile method.33

• Otherwise, if k is much smaller than n, proceed as in item 3 instead.
• Otherwise, any of the following will choose k items in random order:

– Store all the items in a list, shuffle that list, then choose the first k items from that list.
– If the items are already stored in a list and the list’s order can be changed, then shuffle that

list and choose the first k items from the shuffled list.
– If the items are already stored in a list and the list’s order can’t be changed, then store the

indices to those items in another list, shuffle the latter list, then choose the first k indices (or
the items corresponding to those indices) from the latter list.

3. If k is much smaller than n and the order of the items must be random or is unimportant:
1. If the items are stored in a list whose order can be changed: Do a partial shuffle of that

list, then choose the last k items from that list. A partial shuffle proceeds as given in the section
“Shuffling”, except the partial shuffle stops after k swaps have been made (where swapping one
item with itself counts as a swap).

2. Otherwise: Create another empty list newlist, and create a key/value data structure such
as a hash table. Then, for each integer i in the interval [0, k − 1], do j = RNDINTEXC(n-i);
AddItem(newlist, HGET(j,j)); HSET(j,HGET(n-i-1,n-i-1)), where HSET(k,v) sets the item
with key k in the hash table to v, and HGET(k,v) gets the item with key k in that table, or returns
v if there is no such item (Ting 2021)34. The new list stores the indices to the chosen items, in
random order.

4. If n - k is much smaller than n, the items are stored in a list, and the order of the sampled
items is unimportant:
1. If the list’s order can be changed: Do a partial shuffle of that list, except that n-k rather

than k swaps are done, then choose the first k items from that list. (Note 5 in “Shuffling” can’t
be used.)

2. Otherwise, if n is not very large (for example, less than 5000): Store the indices to those
items in another list, do a partial shuffle of the latter list, except that n-k rather than k swaps
are done, then choose the first k indices (or the items corresponding to those indices) from the
latter list. (Note 5 in “Shuffling” can’t be used.)

3. Otherwise: Proceed as in item 5 instead.
5. Otherwise (for example, if 32-bit or larger integers will be chosen so that n is 232, or if n

is otherwise very large):
• If the items have to be chosen in relative (index) order: Let n2 = floor(n/2). Generate

h = PolyaEggenberger(k, n2, n, -1). Sample h integers in relative order from the list [0,
1, ..., n2 - 1] by doing a recursive run of this algorithm (items 1 to 5), then sample k -
h integers in relative order from the list [n2, n2 + 1, ..., n - 1] by running this algorithm
recursively. The integers chosen this way are the indices to the desired items in relative (index)
order (Sanders et al. 2019)35.

• Otherwise, create a data structure to store the indices to items already chosen. When a new index
to an item is randomly chosen, add it to the data structure if it’s not already there, or if it is,
choose a new random index. Repeat this process until k indices were added to the data structure
this way. Examples of suitable data structures are—

– a hash table36,
– a compressed bit set (e.g, “roaring bitmap”, EWAH), and

33The user “BVtp” from the Stack Overflow community led me to this insight.
34Daniel Ting, “Simple, Optimal Algorithms for Random Sampling Without Replacement”, arXiv:2104.05091,

2021. https://arxiv.org/abs/2104.05091
35Sanders, P., Lamm, S., et al., “Efficient Parallel Random Sampling – Vectorized, Cache-Efficient, and Online”,

arXiv:1610.0514v2 [cs.DS], 2019. https://arxiv.org/abs/1610.0514v2
36https://en.wikipedia.org/wiki/Hash_table

13

https://en.wikipedia.org/wiki/Hash_table
https://arxiv.org/abs/2104.05091
https://arxiv.org/abs/1610.0514v2

– a self-sorting data structure such as a red–black tree37, if the random items are to be
retrieved in sorted order or in index order.

Many applications require generating “unique random” values to identify database records or
other shared resources, among other reasons. For ways to generate such values, see my recom-
mendation document38.

5.2.3 Shuffling

The Fisher–Yates shuffle method39 shuffles a list (puts its items in a random order) such that all
permutations (arrangements) of that list occur with the same probability. However, that method is also easy
to write incorrectly — see also (Atwood 2007)40. The following pseudocode is designed to shuffle a list’s
contents.

METHOD Shuffle(list)
// NOTE: Check size of the list early to prevent
// `i` from being less than 0 if the list's size is 0 and
// `i` is implemented using a nonnegative integer
// type available in certain programming languages.
if size(list) >= 2

// Set i to the last item's index
i = size(list) - 1
while i > 0

// Choose an item ranging from the first item
// up to the item given in `i`. Observe that the item
// at i+1 is excluded.
j = RNDINTEXC(i + 1)
// Swap item at index i with item at index j;
// in this case, i and j may be the same
tmp = list[i]
list[i] = list[k]
list[k] = tmp
// Move i so it points to the previous item
i = i - 1

end
end
// NOTE: An implementation can return the
// shuffled list, as is done here, but this is not required.
return list

END METHOD

Notes:

1. j = RNDINTEXC(i + 1) can’t be replaced with j = RNDINTEXC(size(list)) since it intro-
duces biases. If that line is replaced with j = RNDINTEXC(i), the result is Sattolo’s algo-
rithm (which chooses from among permutations with cycles), rather than a Fisher–Yates
shuffle.

2. When it comes to shuffling, the choice of pseudorandom number generator (or whatever is
simulating a “source of random numbers”) is important; see my recommendation docu-
ment on shuffling41.

37https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
38https://peteroupc.github.io/random.html#Unique_Random_Identifiers
39https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
40Jeff Atwood, “The danger of naïveté”, Dec. 7, 2007. https://blog.codinghorror.com/the-danger-of-naivete/
41https://peteroupc.github.io/random.html#Shuffling

14

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
https://peteroupc.github.io/random.html#Shuffling
https://peteroupc.github.io/random.html#Shuffling
https://blog.codinghorror.com/the-danger-of-naivete/

3. A shuffling algorithm that can be carried out in parallel is described in (Bacher et al.,
2015)42.

4. A derangement is a permutation where every item moves to a different position. A
random derangement can be generated as follows (Merlini et al. 2007)43: (1) modify
Shuffle by adding the following line after j = RNDINTEXC(i + 1): if i == list[j]:
return nothing, and changing while i > 0 to while i >= 0; (2) use the following
pseudocode with the modified Shuffle method: while True; list = []; for i in
0...n: AddItem(list, i); s=Shuffle(list); if s!=nothing: return s; end.

5. Ting (2021)44 showed how to reduce the space complexity of shuffling via a hash table: Mod-
ify Shuffle as follows: (1) Create a hash table at the start of the method; (2) instead of the
swap tmp = list[i]; list[i] = list[j]; list[j] = tmp, use the following: list[i]
= HGET(j,j); HSET(k,HGET(i,i)); if k==i: HDEL(i), where HSET(k,v) sets the item
with key k in the hash table to v; HGET(k,v) gets the item with key k in that table, or
returns v if there is no such item; and HDEL(k) deletes the item with key k from that table.
(The hash table can instead be any key/value map structure, including a red–black tree.
This can be combined with note 4 to generate derangements, except replace list[j] in
note 4 with HGET(j,j).)

5.2.4 Random Character Strings

To generate a random string of characters:

1. Prepare a list of the characters (including letters or digits) the string can have. Examples are given
later in this section.

2. Build a new string whose characters are chosen at random from that character list. The method,
shown in the pseudocode below, demonstrates this. The method samples characters at random with
replacement, and returns a list of the sampled characters. (How to convert this list to a text string
depends on the programming language and is outside the scope of this page.) The method takes
two parameters: characterList is the list from step 1, and stringSize is the number of random
characters.

METHOD RandomString(characterList, stringSize)
i = 0
newString = NewList()
while i < stringSize
// Choose a character from the list
randomChar = characterList[RNDINTEXC(size(characterList))]
// Add the character to the string
AddItem(newString, randomChar)
i = i + 1

end
return newString

END METHOD

The following are examples of character lists:

1. For an alphanumeric string, or string of letters and digits, the characters can be the basic digits “0”
to “9” (U+0030-U+0039, nos. 48-57), the basic upper case letters “A” to “Z” (U+0041-U+005A, nos.

42Bacher, A., Bodini, O., et al., “MergeShuffle: A Very Fast, Parallel Random Permutation Algorithm”,
arXiv:1508.03167 [cs.DS], 2015. https://arxiv.org/abs/1508.03167

43Merlini, D., Sprugnoli, R., Verri, M.C., “An Analysis of a Simple Algorithm for Random Derangements”, 2007.
44Daniel Ting, “Simple, Optimal Algorithms for Random Sampling Without Replacement”, arXiv:2104.05091,

2021. https://arxiv.org/abs/2104.05091

15

https://arxiv.org/abs/1508.03167
https://arxiv.org/abs/2104.05091

65-90), and the basic lower case letters “a” to “z” (U+0061-U+007A, nos. 96-122), as given in the
Unicode Standard.

2. For a base-10 digit string, the characters can be the basic digits only.
3. For a base-16 digit (hexadecimal) string, the characters can be the basic digits as well as the basic

letters “A” to “F” or “a” to “f” (not both).

Notes:

1. If the list of characters is fixed, the list can be created in advance at runtime or compile time,
or (if every character takes up the same number of code units) a string type as provided in
the programming language can be used to store the list as a string.

2. Unique random strings: Generating character strings that are not only random, but also
unique, can be done by storing a list (such as a hash table) of strings already generated
and checking newly generated strings against that list. However, if the unique values will
identify something, such as database records or user accounts, an application may care
about the choice of PRNG (or other device or program that simulates a “source of random
numbers”), so that using random unique values might not be best; see my recommendation
document45.

3. Word generation: This technique could also be used to generate “pronounceable” words,
but this is less flexible than other approaches; see also “Markov Chains”.

5.2.5 Pseudocode for Random Sampling

The following pseudocode implements two methods:

1. RandomKItemsFromFile implements reservoir sampling46; it chooses up to k random items from a
file of indefinite size (file). Although the pseudocode refers to files and lines, the technique works
whenever items are retrieved one at a time from a data set or list whose size is not known in advance.
In the pseudocode, ITEM_OUTPUT(item, thisIndex) is a placeholder for code that returns the item
to store in the list; this can include the item’s value, its index starting at 0, or both.

2. RandomKItemsInOrder returns a list of up to k random items from the given list (list), in the order
in which they appeared in the list. It is based on a technique presented in (Devroye 1986)47, p. 620.

METHOD RandomKItemsFromFile(file, k)
list = NewList()
j = 0
index = 0
while true // until a value is returned
// Get the next line from the file
item = GetNextLine(file)
thisIndex = index
index = index + 1
// If the end of the file was reached, break
if item == nothing: break
// NOTE: The following line is OPTIONAL
// and can be used to choose only random lines
// in the file that meet certain criteria,
// expressed as MEETS_CRITERIA below.
// ------
// if not MEETS_CRITERIA(item): continue

45https://peteroupc.github.io/random.html#Unique_Random_Identifiers
46https://en.wikipedia.org/wiki/Reservoir_sampling
47Devroye, L., Non-Uniform Random Variate Generation, 1986.

16

https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://en.wikipedia.org/wiki/Reservoir_sampling
http://luc.devroye.org/rnbookindex.html

// ------
if j < k // phase 1 (fewer than k items)
AddItem(list, ITEM_OUTPUT(item, thisIndex))
j = j + 1

else // phase 2
j = RNDINT(thisIndex)
if j < k: list[j] = ITEM_OUTPUT(item, thisIndex)

end
end
// NOTE: Shuffle at the end in case k or
// fewer lines were in the file, since in that
// case the items would appear in the same
// order as they appeared in the file
// if the list weren't shuffled. This line
// can be removed, however, if the order of
// the items in the list is unimportant.
if size(list)>=2: Shuffle(list)
return list

end

METHOD RandomKItemsInOrder(list, k)
n = size(list)
// Special case if k is 1
if k==1: return [list[RNDINTEXC(n)]]
i = 0
kk = k
ret = NewList()
while i < n and size(ret) < k
u = RNDINTEXC(n - i)
if u <= kk
AddItem(ret, list[i])
kk = kk - 1

end
i = i + 1

end
return ret

END METHOD

Examples:

1. Removing k random items from a list of n items (list) is equivalent to generating a new
list by RandomKItemsInOrder(list, n - k).

2. Filtering: If an application needs to sample the same list (with or without replacement)
repeatedly, but only from among a selection of that list’s items, it can create a list of items
it wants to sample from (or a list of indices to those items), and sample from the new list
instead.48 This won’t work well, though, for lists of indefinite or very large size.

5.3 Rejection Sampling
Rejection sampling is a simple and flexible approach for generating random content that meets certain
requirements. To implement rejection sampling:

48See also the Stack Overflow question “Random index of a non zero value in a numpy array”.

17

1. Generate the random content (such as a number or text string) by any method and with any distribution
and range.

2. If the content doesn’t meet predetermined criteria, go to step 1.

Example criteria include checking—

• whether a number generated this way—
– is not less than a minimum threshold (left-truncation),
– is not greater than a maximum threshold (right-truncation),
– is prime,
– is divisible or not by certain numbers,
– is not among numbers chosen recently by the sampling method,
– was not already chosen (with the aid of a hash table, red–black tree, or similar structure),
– was not chosen more often in a row than desired, or
– is not included in a “blacklist” of numbers,

• whether a point generated this way is sufficiently distant from previous random points (with the aid
of a KD-tree or similar structure),

• whether a point generated this way lies in a simple or complex shape,
• whether a text string generated this way matches a regular expression, or
• two or more of the foregoing criteria.

(KD-trees, hash tables, red–black trees, prime-number testing algorithms, and regular expressions are outside
the scope of this document.)

Notes:

1. The running time for rejection sampling depends on the acceptance rate, that is, how often
the sampler accepts a sampled outcome rather than rejecting it. In general, this rate is the
number of acceptable outcomes divided by the total number of outcomes.

2. All rejection sampling strategies have a chance to reject data, so they all have a variable
running time (in fact, they could run indefinitely). But graphics processing units (GPUs)
and other devices that run multiple tasks at once work better if all the tasks finish their work
at the same time. This is not possible if they all implement a rejection sampling technique
because of its variable running time. If each iteration of the rejection sampler has a low
rejection rate, one solution is to have each task run one iteration of the sampler, with its
own “source of random numbers” (such as numbers generated from its own PRNG), then
to take the first sampled number that hasn’t been rejected this way by a task (which can
fail at a very low rate).49

5.4 Random Walks
A random walk is a process with random behavior over time. A simple form of random walk involves choosing,
at random, a number that changes the state of the walk. The pseudocode below generates a random walk
with n steps, where STATEJUMP() is the next number to add to the current state (see examples later in this
section).

METHOD RandomWalk(n)
// Create a new list with an initial state
list=[0]
// Add 'n' new numbers to the list.
for i in 0...n: AddItem(list, list[i] + STATEJUMP())
return list

END METHOD
49S. Linderman, “A Parallel Gamma Sampling Implementation”, Laboratory for Independent Probabilistic Systems Blog,

Feb. 21, 2013, illustrates one example, a GPU-implemented sampler of gamma-distributed random variates.

18

Notes:

1. A white noise process is simulated by creating a list of independent random variates
generated in the same way. Such a process generally models behavior over time that does not
depend on the time or the current state. One example is ZeroOrOne(px,py) (for modeling
a Bernoulli process, where each number is either 1 with probability px/py or 0 otherwise).

2. A useful reference here is De Bruyne et al. (2021)50.

Examples:

1. If STATEJUMP() is RNDINT(1) * 2 - 1, the random walk generates numbers that each differ
from the last by -1 or 1, chosen at random.

2. If STATEJUMP() is ZeroOrOne(px,py) * 2 - 1, the random walk generates numbers that
each differ from the last by either 1 with probability px/py or − 1 otherwise.

3. Binomial process: If STATEJUMP() is ZeroOrOne(px,py), the random walk advances the
state with probability px/py.

5.5 Random Dates and Times
Pseudocode like the following can be used to choose a random date-and-time bounded by two dates-and-
times (date1, date2): dtnum1 = DATETIME_TO_NUMBER(date1); dtnum2 = DATETIME_TO_NUMBER(date2);
num = RNDINTRANGE(date1, date2); result = NUMBER_TO_DATETIME(num).

In that pseudocode, DATETIME_TO_NUMBER and NUMBER_TO_DATETIME convert a date-and-time to or from a
number, respectively, at the required granularity, for instance, month, day, or hour granularity (the details
of such conversion depend on the date-and-time format and are outside the scope of this document). Instead
of RNDINTRANGE(date1, date2), any other random selection strategy can be used.

5.6 Randomization in Statistical Testing
Statistical testing uses shuffling and bootstrapping to help draw conclusions on data through randomization.

• Shuffling is used when each item in a data set belongs to one of several mutually exclusive groups.
Here, one or more simulated data sets are generated by shuffling the original data set and regrouping
each item in the shuffled data set in order, such that the number of items in each group for the simulated
data set is the same as for the original data set.

• Bootstrapping51 is a method of creating one or more random samples (simulated data sets) of an
existing data set, where the items in each sample are chosen at random with replacement. (Each
random sample can contain duplicates this way.) See also (Brownlee 2018)52.

After creating the simulated data sets, one or more statistics, such as the mean, are calculated for each
simulated data set as well as the original data set, then the statistics for the simulated data sets are compared
with those of the original (such comparisons are outside the scope of this document).

5.7 Markov Chains
A Markov chain53 models one or more states (for example, individual letters or syllables), and stores the
probabilities to transition from one state to another (for example, “b” to “e” with a chance of 20 percent, or
“b” to “b” with a chance of 1 percent). Thus, each state can be seen as having its own list of weights for each
relevant state transition (see “Weighted Choice With Replacement). For example, a Markov chain for

50De Bruyne, B., et al., “Generating discrete-time constrained random walks and Lévy flights, arXiv:2104.06145 (2021).
51https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
52Brownlee, J. “A Gentle Introduction to the Bootstrap Method”, Machine Learning Mastery, May 25, 2018. https:

//machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
53https://en.wikipedia.org/wiki/Markov_chain

19

https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
https://en.wikipedia.org/wiki/Markov_chain
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/

generating ”pronounceable” words, or words similar to natural-language words, can include”start” and
“stop” states for the start and end of the word, respectively.

An algorithm called coupling from the past (Propp and Wilson 1996)54 can sample a state from a Markov
chain’s stationary distribution, that is, the chain’s steady state, by starting multiple chains at different states
and running them until they all reach the same state at the same time. However, stopping the algorithm
early can introduce bias unless precautions are taken (Fill 1998)55. The algorithm works correctly if the
chain has a finite number of states and is not periodic, and each state is reachable from every other.

The following pseudocode implements coupling from the past. In the method, StateCount is the number of
states in the Markov chain, UPDATE(chain, state, random) transitions the Markov chain to the next state
given the current state and random variates, and RANDOM() generates one or more random variates needed
by UPDATE.

METHOD CFTP(chain)
states=[]
numstates=StateCount(chain)
done=false
randoms=[]
while not done

// Start multiple chains at different states. NOTE:
// If the chain is monotonic (meaning the states
// are ordered and, whenever state A is less
// than state B, A's next state is never higher than
// B's next state), then just two chains can be
// created instead, starting
// at the first and last state, respectively.
for i in 0...numstates: AddItem(states, i)
// Update each chain with the same randomness
AddItem(randoms, RANDOM())
for k in 0...size(randoms):

for i in 0...numstates: states[i]=
UPDATE(chain, states[i], randoms[size(randoms)-1-k])

end
// Stop when all states are the same
fs=states[0]
done=true
for i in 1...numstates: done=(done and states[i]==fs)

end
return states[0] // Return the steady state

END METHOD

Note: A discrete phase-type distribution consists of a Markov chain, a start state, and an
end state. It models the (random) number of steps, minus 1, needed for the Markov chain to
move from the start state to the end state.

5.8 Random Graphs
A graph is a listing of points and the connections between them. The points are called vertices and the
connections, edges.

54Propp, J.G., Wilson, D.B., “Exact sampling with coupled Markov chains and applications to statistical mechanics”, 1996.
55Fill, J.A., “An interruptible algorithm for perfect sampling via Markov chains”, Annals of Applied Probability

8(1), 1998. https://projecteuclid.org/euclid.aoap/1027961037

20

https://projecteuclid.org/euclid.aoap/1027961037

A convenient way to represent a graph is an adjacency matrix. This is an n×n matrix with n rows and n
columns (signifying n vertices in the graph). For simple graphs, an adjacency matrix contains only 1s and
0s — for the cell at row r and column c, a 1 means there is an edge pointing from vertex r to vertex c, and
a 0 means there are none.

In this section, Zeros(n) creates an n×n zero matrix (such as a list consisting of n lists, each of which
contains n zeros).

The following method generates a random n-vertex graph that follows the model G(n, p) (also known as the
Gilbert model (Gilbert 1959)56), where each edge is drawn with probability px/py (Batagelj and Brandes
2005)57.

METHOD GNPGraph(n, px, py)
graph=Zeros(n)
for i in 2...n

j = i
while j > 0

j = j - 1 - min(NegativeBinomialInt(1, px, py), j - 1)
if j > 0

// Build an edge
graph[i][j]=1
graph[j][i]=1

end
end

end
return graph

END METHOD

Other kinds of graphs are possible, including Erdős–Rényi graphs (choose m random edges uniformly without
replacement, given an n×n adjacency matrix), Chung–Lu graphs, preferential attachment graphs, and more.
For example, a mesh graph is a graph in the form of a rectangular mesh, where vertices are the corners and
edges are the sides of the mesh’s rectangles. A random maze is a random spanning tree (Costantini 2020)58

of a mesh graph. Penschuck et al. (2020)59 give a survey of random graph generation techniques.

5.9 A Note on Sorting Random Variates
In general, sorting random variates is no different from sorting any other data. (Sorting algorithms are
outside this document’s scope.)60

6 General Non-Uniform Distributions
Some applications need to choose random values such that some of them have a greater chance to be chosen
than others (a non-uniform distribution). Most of the techniques in this section show how to use the uniform
random integer methods to generate such random values.

56E. N. Gilbert, “Random Graphs”, Annals of Mathematical Statistics 30(4), 1959.
57V. Batagelj and U. Brandes, “Efficient generation of large random networks”, Phys.Rev. E 71:036113, 2005.
58Costantini, Lucia. “Algorithms for sampling spanning trees uniformly at random.” Master’s thesis, Universitat Politècnica

de Catalunya, 2020. https://upcommons.upc.edu/bitstream/handle/2117/328169/memoria.pdf
59Penschuck, M., et al., “Recent Advances in Scalable Network Generation”, arXiv:2003.00736v1 [cs.DS], 2020. https:

//arxiv.org/abs/2003.00736v1
60Jon Louis Bentley and James B. Saxe, “Generating Sorted Lists of Random Numbers”, ACM Trans. Math. Softw. 6 (1980),

pp. 359-364, describes a way to generate certain kinds of random variates in sorted order, but it’s not given here because it
relies on generating real numbers in the interval [0, 1], which is inherently imperfect because computers can’t choose among all
real numbers between 0 and 1, and there are infinitely many of them.

21

https://upcommons.upc.edu/bitstream/handle/2117/328169/memoria.pdf
https://arxiv.org/abs/2003.00736v1
https://arxiv.org/abs/2003.00736v1

6.1 Weighted Choice
The weighted choice method generates a random item or value from among a collection of them with separate
probabilities of each item or value being chosen. There are several kinds of weighted choice.

6.1.1 Weighted Choice With Replacement

The first kind is called weighted choice with replacement (which can be thought of as drawing a ball, then
putting it back) or a categorical distribution, where the probability of choosing each item doesn’t change as
items are chosen. In the following pseudocode:

• WeightedChoice takes a single list weights of weights (integers 0 or greater) and returns the index of
a weight from that list. The greater the weight, the greater the chance its index will be chosen.

• CumulativeWeightedChoice takes a single list weights of N cumulative weights; they start at 0 and
the next weight is not less than the previous. Returns a number in the interval [0, N - 1).

• NormalizeRatios calculates a list of integers with the same proportions as the given list of rational
numbers (numbers of the form x/y). This is useful for converting rational weights to integer weights
for use in WeightedChoice.

• gcd(a, b) is the greatest common divisor between two numbers (where gcd(0, a) = gcd(a, 0) =
a whenever a >= 0).

METHOD WChoose(weights, value)
// Choose the index according to the given value
runningValue = 0
for i in 0...size(weights) - 1

if weights[i] > 0
newValue = runningValue + weights[i]
// NOTE: Includes start, excludes end
if value < newValue: break
runningValue = newValue

end
end
// Should not happen with integer weights
return error

END METHOD

METHOD WeightedChoice(weights)
return WChoose(weights,

RNDINTEXC(Sum(weights)))
END METHOD

METHOD CumulativeWeightedChoice(weights)
if size(weights)==0 or weights[0]!=0: return error
value = RNDINTEXC(weights[size(weights) - 1])
// Choose the index according to the given value
for i in 0...size(weights) - 1

// Choose only if difference is positive
if weights[i] < weights[i+1] and

weights[i]>=value: return i
end
return 0

END METHOD

22

METHOD NormalizeRatios(ratios)
prod=1; gc=0
for r in ratios: prod*=r[1] // Multiply denominators
weights=[]
for r in ratios

rn = floor(r * prod)
gc = gcd(rn, gc); AddItem(weights, rn)

end
if gc==0: return weights
for i in 0...size(weights): weights[i]=floor(weights[i]/gc)
return weights

END METHOD

The following are various ways to implement WeightedChoice. Many of them require using a special data
structure.

Algorithm Notes
Linear search See the pseudocode for WeightedChoice above.
Linear search with cumulative weights Calculates a list of cumulative weights (also known

as a cumulative distribution table or CDT), then
generates, at random, a number less than the sum
of (original) weights (which should be an integer if
the weights are integers), then does a linear scan of
the new list to find the first item whose cumulative
weight exceeds the generated number.

Fast Loaded Dice Roller (Saad et al., 2020a)61. Uses integer weights only, and samples using
random bits (“fair coins”). This sampler comes
within 6 bits, on average, of the optimal number of
random bits per sample.

Samplers described in (Saad et al., 2020b)62 Uses integer weights only, and samples using
random bits. The samplers come within 2 bits, on
average, of the optimal number of random bits per
sample as long as the sum of the weights is of the
form 2 𝑘 or 2 𝑘 − 2 𝑚 .

23

Algorithm Notes
Rejection sampling Given a list (weights) of n weights: (1) find the

highest weight and call it max; (2) set i to RNDINT(n
- 1); (3) With probability weights[i]/max (for
example, if ZeroOrOne(weights[i], max)==1 for
integer weights), return i, and go to step 2 otherwise.
(See, for example, sec. 4 of the Fast Loaded Dice
Roller paper, or the Tang or Klundert papers.
weights[i] can also be a function that calculates
the weight for i “on the fly”; in that case, max is the
maximum value of weights[i] for every i.)If the
weights are instead log-weights (that is, each weight
is ln(x)/ln(b) where x is the original weight and b
is the logarithm base), step 3 changes to: “(3) If
Expo(ln(b)) > max - weights[i] (which happens
with probability pow(b, -(max - weights[i]))),
return i, and go to step 2 otherwise.”If the weights
are instead “coins”, each with a separate but
unknown probability of heads, the algorithm is also
called Bernoulli race (Dughmi et al. 2017)63: (1) set
i to RNDINT(n - 1); (2) flip coin i (the first coin is
0, the second is 1, and so on), then return i if it
returns 1 or heads, or go to step 1 otherwise.

Bringmann and Panagiotou (2012/2017)64. Shows a sampler designed to work on a sorted list of
weights.

Alias method (Walker 1977)65 Michael Vose’s version of the alias method (Vose
1991)66 is described in “Darts, Dice, and Coins:
Sampling from a Discrete Distribution67”.
Weights should be rational numbers.

(Klundert 2019)68 Various data structures, with emphasis on how they
can support changes in weights.

The Bringmann–Larsen succinct data structure
(Bringmann and Larsen 2013)69

Uses rejection sampling if the sum of weights is
large, and a compressed structure otherwise.

Hübschle-Schneider and Sanders (2019)70. Parallel weighted random samplers.
(Tang 2019)71. Presents various algorithms, including two- and

multi-level search, binary search (with cumulative
weights), and a new “flat” method.

“Loaded Die from Biased Coins” Given a list of probabilities probs that must sum to
1 and should be rational numbers: (1) Set cumu to 1
and i to 0; (2) with probability probs[i]/cumu,
return i; (3) subtract probs[i] from cumu, then
add 1 to i, then go to step 2. For a correctness
proof, see “Darts, Dice, and Coins”. If each
probability in probs is calculated “on the fly”, this
is also called sequential search; see chapter 10 of
Devroye (1986)72 (but this generally won’t be exact
unless all the probabilities involved are rational
numbers).

24

https://www.keithschwarz.com/darts-dice-coins/
https://www.keithschwarz.com/darts-dice-coins/

Algorithm Notes
Knuth and Yao (1976)73 Generates a binary DDG tree from the binary

expansions of the probabilities (that is, they have
the base-2 form 0.bbbbbb… where b is 0 or 1).
Comes within 2 bits, on average, of the optimal
number of random bits per sample. This is
suggested in exercise 3.4.2 of chapter 15 of Devroye
(1986)74, implemented in randomgen.py as the
discretegen method, and also described in
(Devroye and Gravel 2020)75. discretegen can
work with probabilities that are irrational numbers
(which have infinite binary expansions) as long as
there is a way to calculate the binary expansion “on
the fly”.

Han and Hoshi (1997)76 Uses cumulative probabilities as input and comes
within 3 bits, on average, of the optimal number of
random bits per sample. Also described in (Devroye
and Gravel 2020)77.

Notes:

1. Weighted choice algorithms as binary tree walkers. Just like RNDINT algorithms (see
61(2020a) Saad, F.A., Freer C.E., et al., “The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete

Probability Distributions”, arXiv:2003.03830v2 [stat.CO], also in AISTATS 2020: Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research 108, Palermo, Sicily, Italy, 2020.
https://arxiv.org/abs/2003.03830v2

62Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka, “Optimal Approximate Sampling
From Discrete Probability Distributions”, arXiv:2001.04555v1 [cs.DS], also in Proc. ACM Program. Lang. 4, POPL,
Article 36 (January 2020), 33 pages. https://arxiv.org/abs/2001.04555v1

63Shaddin Dughmi, Jason D. Hartline, Robert Kleinberg, and Rad Niazadeh. 2017. Bernoulli Factories and Black-Box
Reductions in Mechanism Design. In Proceedings of 49th Annual ACM SIGACT Symposium on the Theory of Computing,
Montreal, Canada, June 2017 (STOC’17).

64K. Bringmann and K. Panagiotou, “Efficient Sampling Methods for Discrete Distributions.” Algorithmica 79
(2007), also in Proc. 39th International Colloquium on Automata, Languages, and Programming (ICALP’12), 2012. https:
//link.springer.com/article/10.1007/s00453-016-0205-0

65A.J. Walker, “An efficient method for generating discrete random variables with general distributions”, ACM Transactions
on Mathematical Software 3, 1977.

66Vose, Michael D. “A linear algorithm for generating random numbers with a given distribution.” IEEE Transactions on
software engineering 17, no. 9 (1991): 972-975.

67https://www.keithschwarz.com/darts-dice-coins/
68Klundert, B. van de, “Efficient Generation of Discrete Random Variates”, Faculty of Science Theses, Universiteit

Utrecht, 2019. https://dspace.library.uu.nl/handle/1874/393383
69K. Bringmann and K. G. Larsen, “Succinct Sampling from Discrete Distributions”, In: Proc. 45th Annual ACM Symposium

on Theory of Computing (STOC’13), 2013.
70L. Hübschle-Schneider and P. Sanders, “Parallel Weighted Random Sampling”, arXiv:1903.00227v2 [cs.DS], 2019.

https://arxiv.org/abs/1903.00227v2
71Y. Tang, “An Empirical Study of Random Sampling Methods for Changing Discrete Distributions”, Master’s thesis, Uni-

versity of Alberta, 2019.
72Devroye, L., Non-Uniform Random Variate Generation, 1986.
73Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
74Devroye, L., Non-Uniform Random Variate Generation, 1986.
75Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
76T. S. Han and M. Hoshi, “Interval algorithm for random number generation”, IEEE Transactions on Information Theory

43(2), March 1997.
77Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6

25

https://arxiv.org/abs/2003.03830v2
https://arxiv.org/abs/2001.04555v1
https://link.springer.com/article/10.1007/s00453-016-0205-0
https://link.springer.com/article/10.1007/s00453-016-0205-0
https://dspace.library.uu.nl/handle/1874/393383
https://arxiv.org/abs/1903.00227v2
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
https://arxiv.org/abs/1502.02539v6
https://arxiv.org/abs/1502.02539v6

the RNDINT section), weighted choice algorithms can all be described as random walks on
a binary DDG tree. In this case, though, the probabilities are not necessarily uniform, and
on average, the algorithm needs at least as many unbiased random bits as the sum of binary
entropies of all the probabilities involved. For example, say we give the four integers 1, 2,
3, 4 the following weights: 3, 15, 1, 2. The binary entropies of these weights add up to
0.4010… + 0.3467… + 0.2091… + 0.3230… = 1.2800… (because the sum of the weights is 21
and the binary entropy of 3/21 is 0 - (3/21) * log2(3/21) = 0.4010..., where log2(x)
= ln(x)/ln(2), and so on for the other weights). Thus, any weighted sampler will require
at least 1.2800… bits on average to generate a number with probability proportional to these
weights.78 The note “Reducing ‘bit waste’ ” from the RNDINT section also applies here.

2. For best results, weights passed to the algorithms in the table above should first be con-
verted to integers (for example, using NormalizeRatios in the pseudocode above), or
rational numbers when indicated. (Obviously, if the weights were originally irrational
numbers, this conversion will be lossy and the algorithm won’t be exact, unless noted oth-
erwise in the table.) Also, using floating-point numbers in the algorithms can introduce
unnecessary rounding errors, so such numbers should be avoided.

3. The Python sample code79 contains a variant of the WeightedChoice pseudocode for
generating multiple random points in one call.

Examples:

1. Assume we have the following list: ["apples", "oranges", "bananas", "grapes"], and
weights is the following: [3, 15, 1, 2]. The weight for “apples” is 3, and the weight
for “oranges” is 15. Since “oranges” has a higher weight than “apples”, the index for “or-
anges” (1) has a greater probability of being chosen than the index for “apples” (0) with the
WeightedChoice method. The following idiom implements how to get a randomly chosen
item from the list with that method: item = list[WeightedChoice(weights)].

2. Example 1 can be implemented with CumulativeWeightedChoice instead of WeightedChoice
if weights is the following list of cumulative weights: [0, 3, 18, 19, 21].

3. Piecewise constant distribution. Assume the weights from example 1 are used and
the list contains the following: [0, 5, 10, 11, 13] (one more item than the weights).
This expresses four intervals: [0, 5), [5, 10), and so on. Choose a random index (and thus
interval) with index = WeightedChoice(weights). Then independently, choose a number
in the chosen interval uniformly at random (for example, code like the following chooses a
random integer this way: number = RNDINTEXCRANGE(list[index], list[index + 1])).

6.1.2 Weighted Choice Without Replacement

Weighted choice without replacement can be thought of as drawing a ball without putting it back.

The following are ways to implement weighted choice without replacement, where each item can be chosen
no more than once at random. The weights have the property that higher-weighted items have a greater
chance to appear first.

• Use WeightedChoice to choose random indices. Each time an index is chosen, set the weight for the
chosen index to 0 to keep it from being chosen again. Or…

• Assign each index a random exponential random variate (with a rate equal to that index’s weight,
which must be an integer 1 or greater). Make a list of pairs assigning each number to an index, then
sort that list in ascending order (from low to high) by those numbers. Example: v=[]; for i in
0...size(weights): AddItem(v, [ExpoNew(weights[i]), i]); Sort(v) (see note 2 below). The
sorted list of indices will then correspond to a weighted choice without replacement. See “Algorithms

78This is because the binary entropy of p = 1/n is p * log2(1/p) = log2(n) / n, and the sum of n binary entropies (for n
outcomes with probability 1/n each) is log2(n) = ln(n)/ln(2).

79https://peteroupc.github.io/randomgen.zip

26

https://peteroupc.github.io/randomgen.zip
https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/

for sampling without replacement80” and see also (Efraimidis 2015)81. (Efraimidis and Spirakis
2005)82 describes how to implement this approach without having to store every item using reservoir
sampling (essentially a priority queue of the k items with the lowest random variates associated with
them).

Notes:

1. Some applications (particularly some games) wish to control which random outcomes appear,
to make those outcomes appear “fairer” to users (for example, to avoid long streaks of good
outcomes or of bad outcomes). Weighted choice without replacement of a list of outcomes
can be used for this purpose as long as the list is replenished once all the outcomes are
chosen. However, this kind of sampling should be avoided in applications that care about
information security, including when a player or user would have a significant and unfair
advantage if the outcomes were easy to guess.

2. ExpoNew(weight) creates an “empty” exponential random variate with rate weight, whose
bits are not yet determined (see “Partially-Sampled Random Numbers83”). Sorting
the variates relies on comparing two variates via ExpoLess(a, b), which returns whether
one exponential random variate (a) is less than another (b), building up the bits of both as
necessary.

6.1.3 Unequal Probability Sampling

For the methods given in the previous section, the weights have the property that higher-weighted items are
chosen first, but each item’s weight is not necessarily the chance that a given sample of n items will include
that item (an inclusion probability). The following method chooses a random sample of n indices from a list
of items (whose weights are integers stored in a list called weights), such that the chance that index k is in
the sample is given as weights[k]*n/Sum(weights). The chosen indices will not necessarily be in random
order. The method implements the “splitting method84” (Deville and Tillé 1998)85.

METHOD InclusionSelect(weights, n)
if n>size(weights): return error
if n==0: return []
ws=Sum(weights)
wts=[]
items=[]
// Calculate inclusion probabilities
for i in 0...size(weights):

AddItem(wts,[MakeRatio(weights[i],ws)*n, i])
Sort(wts)
// Check for invalid inclusion probabilities
if wts[size(wts)-1][0]>1: return error
last=size(wts)-n
if n==size(wts)
for i in 0...n: AddItem(items,i)
return items

end
80https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
81Efraimidis, P. “Weighted Random Sampling over Data Streams”, arXiv:1012.0256v2 [cs.DS], 2015. https://arxiv.or

g/abs/1012.0256v2
82Efraimidis, P. and Spirakis, P. “Weighted Random Sampling (2005; Efraimidis, Spirakis)”, 2005.
83https://peteroupc.github.io/exporand.html
84https://www.eustat.eus/productosServicios/52.1_Unequal_prob_sampling.pdf#page=68
85Deville, J.-C. and Tillé, Y. Unequal probability sampling without replacement through a splitting method. Biometrika 85

(1998).

27

https://timvieira.github.io/blog/post/2019/09/16/algorithms-for-sampling-without-replacement/
https://peteroupc.github.io/exporand.html
https://www.eustat.eus/productosServicios/52.1_Unequal_prob_sampling.pdf#page=68
https://arxiv.org/abs/1012.0256v2
https://arxiv.org/abs/1012.0256v2
http://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf

while true // until a value is returned
lamda=min(MakeRatio(1,1)-wts[last-1][0],wts[last][0])
if lamda==0: return error
if ZeroOrOne(lamda[0],lamda[1])
for k in 0...size(wts)
if k+1>ntotal-n:AddItem(items,wts[k][1])

end
return items

end
newwts=[]
for k in 0...size(wts)
newwt=(k+1<=last) ?

wts[k][0]/(1-lamda) : (wts[k][0]-lamda)/(1-lamda)
AddItem(newwts,[newwt,wts[k][1]])

end
wts=newwts
Sort(wts)

end
END METHOD

For the case when the list of items has an unknown size and its weight can be calculated “on the fly”, see
(Chao 1982)86; (Cohen et al. 2010)87 (VarOpt𝑘).

6.2 Mixtures of Distributions
A mixture consists of two or more probability distributions with separate probabilities of being sampled. To
generate random content from a mixture—

1. generate index = WeightedChoice(weights), where weights is a list of relative probabilities that
each distribution in the mixture will be sampled, then

2. based on the value of index, generate the random content from the corresponding distribution.

Examples:

1. One mixture consists of the sum of three six-sided virtual die rolls and the result
of one six-sided die roll, but there is an 80% chance to roll one six-sided virtual
die rather than three. The following pseudocode shows how this mixture can be
sampled: index = WeightedChoice([80, 20]); number = 0; if index==0: number
= RNDINTRANGE(1,6); else: number = RNDINTRANGE(1,6) + RNDINTRANGE(1,6) +
RNDINTRANGE(1,6).

2. Choosing an independent uniform random point, from a complex shape (in any number
of dimensions) is equivalent to doing such sampling from a mixture of simpler shapes that
make up the complex shape (here, the weights list holds the n-dimensional “volume” of
each simpler shape). For example, a simple closed 2D polygon can be triangulated88, or
decomposed into triangles, and a mixture of those triangles can be sampled.89

3. Take a set of nonoverlapping integer ranges (for example, [0, 5], [7, 8], [20, 25]). To choose
an independent uniform random integer from those ranges:

86Chao, M-T., “A general purpose unequal probability sampling plan”, Biometrika 69 (1982).
87Cohen E., Duffield N., Kaplan H., Lund C., Thorup M., “Stream sampling for variance-optimal estimation of subset

sums”, arXiv:0803.0473, 2010. https://arxiv.org/abs/0803.0473
88https://en.wikipedia.org/wiki/Polygon_triangulation
89The Python sample code includes a ConvexPolygonSampler class that implements this kind of sampling for convex

polygons; unlike other polygons, convex polygons are trivial to decompose into triangles. https://peteroupc.github.io/random
gen.zip

28

https://en.wikipedia.org/wiki/Polygon_triangulation
https://arxiv.org/abs/0803.0473
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip

• Create a list (weights) of weights for each range. Each range is given a weight of (mx
- mn) + 1, where mn is that range’s minimum and mx is its maximum.

• Choose an index using WeightedChoice(weights), then generate RNDINTRANGE(mn,
mx), where mn is the corresponding range’s minimum and mx is its maximum.

This method can be adapted for rational numbers with a common denominator by treating
the integers involved as the numerators for such numbers. For example, [0/100, 5/100],
[7/100, 8/100], [20/100, 25/100], where the numerators are the same as in the previous
example.

4. In the pseudocode index = WeightedChoice([80, 20]); list = [[0, 5], [5, 10]];
number = RNDINTEXCRANGE(list[index][0], list[index][1]), a random integer in [0,
5) is chosen at an 80% chance, and a random integer in [5, 10) at a 20% chance.

5. A hyperexponential distribution is a mixture of exponential distributions, each one
with a separate weight and separate rate parameter.

6.3 Transformations of Random Variates
Random variates can be generated by combining one or more random variates, by transforming them, by
discarding some of them, or any combination of these.

As an example, “Probability and Games: Damage Rolls” by Red Blob Games includes interactive
graphics showing score distributions for lowest-of, highest-of, drop-the-lowest, and reroll game mechanics.90

These and similar distributions can be generalized as follows.

Generate one or more random variates (numbers), each with a separate probability distribution, then:

1. Highest-of: Choose the highest generated variate.
2. Drop-the-lowest: Add all generated variates except the lowest.
3. Reroll-the-lowest: Add all generated variates except the lowest, then add a number generated ran-

domly by a separate probability distribution.
4. Lowest-of: Choose the lowest generated number.
5. Drop-the-highest: Add all generated variates except the highest.
6. Reroll-the-highest: Add all generated variates except the highest, then add a number generated

randomly by a separate probability distribution.
7. Sum: Add all generated variates.
8. Mean: Add all generated variates, then divide the sum by the number of variates.
9. Geometric transformation: Treat the variates as an n-dimensional point, then apply a geometric

transformation, such as a rotation or other affine transformation91, to that point.

If the probability distributions are the same, then strategies 1 to 3 give higher numbers a greater probability,
and strategies 4 to 6, lower numbers.

Note: Variants of strategy 4 — for example, choosing the second-, third-, or nth-lowest number
— are formally called second-, third-, or nth-order statistics distributions, respectively.

Examples:

1. The idiom min(RNDINTRANGE(1, 6), RNDINTRANGE(1, 6)) takes the lowest of two six-
sided die results (strategy 4). Due to this approach, 1 has a greater chance of occurring
than 6.

2. The idiom RNDINTRANGE(1, 6) + RNDINTRANGE(1, 6) takes the result of two six-sided dice
(see also “Dice”) (strategy 7).

90That article also mentions a critical-hit distribution, which is actually a mixture of two distributions: one roll of dice and
the sum of two rolls of dice.

91An affine transformation is one that keeps straight lines straight and parallel lines parallel.

29

http://www.redblobgames.com/articles/probability/damage-rolls.html

3. A binomial distribution models the sum of n numbers each generated by ZeroOrOne(px,py)
(strategy 7) (see “Binomial Distribution”).

4. A Poisson binomial distribution92 models the sum of n numbers each with a
separate probability of being 1 as opposed to 0 (strategy 7). Given probs, a list
of the n probabilities as rational numbers, the pseudocode is: for i in 0...n:
x=x+ZeroOrOne(probs[i][0],probs[i][1]); return x.

5. Clamped random variates. These are one example of transformed random variates. To
generate a clamped random variate, generate a number at random as usual, then—

• if that number is less than a minimum threshold, use the minimum threshold instead
(left-censoring), or

• if that number is greater than a maximum threshold, use the maximum threshold instead
(right-censoring),

or both.

An example of a clamped random variate is min(200, RNDINT(255)).

6. A compound Poisson distribution models the sum of n numbers each chosen at
random in the same way, where n follows a Poisson distribution (for example, n =
PoissonInt(10, 1) for an average of 10 numbers) (strategy 7, sum).

7. A Pólya–Aeppli distribution is a compound Poisson distribution in which the numbers
are generated by NegativeBinomial(1, 1-p)+1 for a fixed p.

7 Specific Non-Uniform Distributions
This section contains information on some of the most common non-uniform probability distributions.

7.1 Dice
The following method generates a random result of rolling virtual dice. It takes three parameters: the
number of dice (dice), the number of sides in each die (sides), and a number to add to the result (bonus)
(which can be negative, but the result of the method is 0 if that result is greater). See also Red Blob Games,
“Probability and Games: Damage Rolls”.

METHOD DiceRoll(dice, sides, bonus)
if dice < 0 or sides < 1: return error
ret = 0
for i in 0...dice: ret=ret+RNDINTRANGE(1, sides)
return max(0, ret + bonus)

END METHOD

Examples: The result of rolling— - four six-sided virtual dice (“4d6”) is DiceRoll(4,6,0), -
three ten-sided virtual dice, with 4 added (“3d10 + 4”), is DiceRoll(3,10,4), and - two six-sided
virtual dice, with 2 subtracted (“2d6 - 2”), is DiceRoll(2,6,-2).

7.2 Binomial Distribution
The binomial distribution uses two parameters: trials and p. This distribution models the number of
successes in a fixed number of independent trials (equal to trials), each with the same probability of
success (equal to p, where p <= 0 means never, p >= 1 means always, and p = 1/2 means an equal chance

92https://en.wikipedia.org/wiki/Poisson_binomial_distribution

30

https://en.wikipedia.org/wiki/Poisson_binomial_distribution
http://www.redblobgames.com/articles/probability/damage-rolls.html

of success or failure). In this document, Binomial(trials, p) is a binomial random variate with the given
parameters.

This distribution has a simple implementation: count = 0; for i in 0...trials: count=count+ZeroOrOne(px,
py). But for large numbers of trials, this can be very slow.

The pseudocode below implements an exact sampler of this distribution, with certain optimizations based on
(Farach-Colton and Tsai 2015)93. (Another exact sampler is given in (Bringmann et al. 2014)94 and described
in my “Miscellaneous Observations on Randomization95”.) Here, the parameter p is expressed as a
ratio px/py.

METHOD BinomialInt(trials, px, py)
if trials < 0: return error
if trials == 0: return 0
// Always succeeds
if mx: return trials
// Always fails
if p <= 0.0: return 0
count = 0
ret = 0
recursed = false
if py*2 == px // Is half
if i > 200
// Divide and conquer
half = floor(trials / 2)
return BinomialInt(half, 1, 2) + BinomialInt(trials - half, 1, 2)

else
if rem(trials,2)==1
count=count+RNDINT(1)
trials=trials-1

end
// NOTE: This step can be made faster
// by precalculating an alias table
// based on a list of n + 1 binomial(1/2)
// weights, which consist of n-choose-i
// for every i in [0, n], and sampling based on
// that table (see Farach-Colton and Tsai).
for i in 0...trials: count=count+RNDINT(1)

end
else
// Based on proof of Theorem 2 in Farach-Colton and Tsai.
// Decompose px/py into its base-2 digits.
pw = MakeRatio(px, py)
pt = MakeRatio(1, 2)
while trials>0 and pw>0
c=BinomialInt(trials, 1, 2)
if pw>=pt
count=count+c

93Farach-Colton, M. and Tsai, M.T., 2015. Exact sublinear binomial sampling. Algorithmica 73(4), pp. 637-651.
94K. Bringmann, F. Kuhn, et al., “Internal DLA: Efficient Simulation of a Physical Growth Model.” In: Proc. 41st Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP’14), 2014.
95https://peteroupc.github.io/randmisc.html#On_a_Binomial_Sampler

31

https://peteroupc.github.io/randmisc.html#On_a_Binomial_Sampler

trials=trials-c
pw=pw-pt

else
trials=c

end
pt=pt/2 // NOTE: Not rounded

end
end
if recursed: return count+ret
return count

END METHOD

Note: If px/py is 1/2, the binomial distribution models the task “Flip N coins, then count the
number of heads”, and the random sum is known as Hamming distance96 (treating each trial
as a “bit” that’s set to 1 for a success and 0 for a failure). If px is 1, then this distribution models
the task “Roll n py-sided dice, then count the number of dice that show the number 1.”

7.3 Negative Binomial Distribution
In this document, the negative binomial distribution models the number of failing trials that happen before
a fixed number of successful trials (successes). Each trial is independent and has a success probability of
px/py (where 0 means never and 1 means always). The following is a naïve implementation; see also the
notes for the geometric distribution, a special case of this one.

METHOD NegativeBinomialInt(successes, px, py)
// successes>=0; px/py needs to be greater than 0
if successes < 0 or px == 0: return error
if successes == 0 or px >= py: return 0
total = 0
count = 0
while total < successes

if ZeroOrOne(px, py) == 1: total = total + 1
else: count = count + 1

end
return count

END METHOD

If successes is a non-integer, the distribution is often called a Pólya distribution. In that case, it can be
sampled using the following pseudocode (Heaukulani and Roy 2019)97:

METHOD PolyaInt(sx, sy, px, py)
isinteger=rem(sx,sy)==0
sxceil=ceil(sx/sy)
while true // until a value is returned

w=NegativeBinomialInt(sxceil, px, py)
if isinteger or w==0: return w
tmp=MakeRatio(sx,sy)
anum=tmp
for i in 1...w: anum=anum*(tmp+i)
tmp=sxceil

96https://en.wikipedia.org/wiki/Hamming_distance
97Heaukulani, C., Roy, D.M., “Black-box constructions for exchangeable sequences of random multisets”,

arXiv:1908.06349v1 [math.PR], 2019. Note however that this reference defines a negative binomial distribution as the number
of successes before N failures (not vice versa). https://arxiv.org/abs/1908.06349v1

32

https://en.wikipedia.org/wiki/Hamming_distance
https://arxiv.org/abs/1908.06349v1

aden=tmp
for i in 1...w: aden=aden*(tmp+i)
a=anum/aden
if ZeroOrOne(a[0], a[1])==1: return w

end
END METHOD

7.4 Geometric Distribution
The geometric distribution is a negative binomial distribution with successes = 1. In this document, a
geometric random variate is the number of failures that have happened before one success happens. For
example, if p is 1/2, the geometric distribution models the task “Flip a coin until you get tails, then count
the number of heads.” As a unique property of the geometric distribution, given that n trials have failed, the
number of new failing trials has the same distribution (where n is an integer greater than 0).

Notes:

1. The negative binomial and geometric distributions are defined differently in different works.
For example, Mathematica’s definition excludes the last success, but the definition in (De-
vroye 1986, p. 498)98 includes it. And some works may define a negative binomial number
as the number of successes before N failures, rather than vice versa.

2. A bounded geometric random variate is either n (an integer greater than 0) or a geomet-
ric random variate, whichever is less. Exact and efficient samplers for the geometric and
bounded geometric distributions, such as the ones described in (Bringmann and Friedrich
2013)99, are described in my “Miscellaneous Observations on Randomization100”.

7.5 Exponential Distribution
The exponential distribution uses a parameter known as 𝜆 , the rate, or the inverse scale. Usually, 𝜆 is
the probability that an independent event of a given kind will occur in a given span of time (such as in a
given day or year), and the random result is the number of spans of time until that event happens. Usually,
𝜆 is equal to 1, or 1/1. 1/ 𝜆 is the scale (mean), which is usually the average waiting time between two
independent events of the same kind.

In this document, Expo(lamda) is an exponentially-distributed random variate with the rate lamda. For
algorithms to sample exponential random variates to arbitrary precision, see “Partially-Sampled Random
Numbers101”.

7.6 Poisson Distribution
The Poisson distribution uses a parameter mean (also known as 𝜆). 𝜆 is the average number of independent
events of a certain kind per fixed unit of time or space (for example, per day, hour, or square kilometer). A
Poisson-distributed number is the number of such events within one such unit.

In this document, Poisson(mean) is a Poisson-distributed number if mean is greater than 0, or 0 if mean is
0.

The method PoissonInt generates a Poisson random variate with mean mx/my, with the Poisson1 method
using an algorithm by Duchon and Duvignau (2016)102,

98Devroye, L., Non-Uniform Random Variate Generation, 1986.
99Bringmann, K., and Friedrich, T., 2013, July. Exact and efficient generation of geometric random variates and random

graphs, in International Colloquium on Automata, Languages, and Programming (pp. 267-278).
100https://peteroupc.github.io/randmisc.html#On_ _Geometric_Samplers
101https://peteroupc.github.io/exporand.html
102Duchon, P., Duvignau, D., “Preserving the number of cycles of length k in a growing uniform permutation”, Electronic

Journal of Combinatorics 23(4), 2016.

33

https://peteroupc.github.io/randmisc.html#On_%20_Geometric_Samplers
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/exporand.html
http://luc.devroye.org/rnbookindex.html

METHOD Poisson1()
ret=1; a=1; b=0
while true // until this method returns
j=RNDINT(a)
if j<a and j<b: return ret
if j==a: ret=ret+1
else
ret=ret-1; b=a+1

end
a=a+1

end
END METHOD

METHOD PoissonInt(mx, my)
if my == 0: return error
if mx == 0 or (mx < 0 and my < 0) or (mx > 0 and my < 0): return 0
r=0
while mx>=my

r=r+Poisson1(); mx=mx-my
end
if mx>0
// At this point, mx/my < 1, so sum a Poisson number
// of coin flips with heads prob. mx/my; see Devroye 1986, p. 487
r=r+BinomialInt(Poisson1(), mx, my)

end
return r

END METHOD

Note: To generate a sum of n independent Poisson random variates with separate means, gen-
erate a Poisson random variate whose mean is the sum of those means (see (Devroye 1986)103,
p. 501). For example, to generate a sum of 1000 independent Poisson random variates with a mean
of 1/1000000, simply generate PoissonInt(1, 1000) (because 1/1000000 * 1000 = 1/1000).

7.7 Pólya–Eggenberger Distribution
Suppose items are drawn at random from a collection of items each labeled either 1 or 0, and after drawing
an item, it’s put back and m more items of the same label as the drawn item are added. Then:

• The Pólya–Eggenberger distribution models the number of items drawn this way that are labeled 1.
• The inverse Pólya–Eggenberger distribution models the number of 0-labeled items drawn before

successes many 1-labeled items are drawn.

(Johnson and Kotz 1969)104. In the methods below, trials is the number of items drawn at random, ones is
the number of items labeled 1 in the collection, count is the number of items labeled 1 or 0 in that collection,
m is the number of items added after each draw (or − 1 for sampling without replacement), and successes
is the number of 1-labeled items drawn.

METHOD PolyaEggenberger(trials, ones, count, m)
if ones < 0 or count < 0 or trials < 0 or

ones > count or trials > count
return error

end
103Devroye, L., Non-Uniform Random Variate Generation, 1986.
104Johnson and Kotz, “Discrete Distributions”, 1969.

34

http://luc.devroye.org/rnbookindex.html

if ones == 0: return 0
zeros=count-ones
ret=0
for i in 0...trials

if zeros==0 or ZeroOrOne(ones,zeros)==1
ones=ones+m
ret=ret+1

else: zeros=zeros+m
end
return ret

END METHOD

METHOD InversePolyaEggenberger(successes, ones, count, m)
if ones <= 0 or count < 0 or successes < 0 or

ones > count or successes > count
return error

end
zeros=count-ones
ret=0; trials=0
while ret<successes

if zeros==0 or ZeroOrOne(ones,zeros)==1
ones=ones+m
ret=ret+1

else: zeros=zeros+m
trials=trials+1

end
return trials-successes

END METHOD

Notes:

1. A hypergeometric distribution is a Pólya–Eggenberger distribution with m=-1. For
example, in a 52-card deck of Anglo-American playing cards, 12 of the cards are face cards
(jacks, queens, or kings). After the deck is shuffled and seven cards are drawn, the number
of face cards drawn this way follows a hypergeometric distribution where trials is 7, ones
is 12, count is 52, and m is − 1.

2. A negative hypergeometric distribution is an inverse Pólya–Eggenberger distribution
with m=-1.

7.8 Random Integers with a Given Positive Sum
The following pseudocode shows how to generate n random integers with a given positive sum, in random
order (specifically, a uniformly chosen random partition of that sum into n parts with repetition and in
random order). (The algorithm for this was presented in (Smith and Tromble 2004)105.) In the pseudocode
below—

• the method PositiveIntegersWithSum returns n integers greater than 0 that sum to total, in random
order,

• the method IntegersWithSum returns n integers 0 or greater that sum to total, in random order, and
• Sort(list) sorts the items in list in ascending order (however, sort algorithms are outside the scope

of this document).
105Smith, Noah A., and Roy W. Tromble. “Sampling uniformly from the unit simplex.” Johns Hopkins University, Tech.

Rep 29 (2004).

35

http://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf

METHOD PositiveIntegersWithSum(n, total)
if n <= 0 or total <=0: return error
ls = [0]
ret = NewList()
while size(ls) < n
c = RNDINTEXCRANGE(1, total)
found = false
for j in 1...size(ls)
if ls[j] == c
found = true
break

end
end
if found == false: AddItem(ls, c)

end
Sort(ls)
AddItem(ls, total)
for i in 1...size(ls): AddItem(ret,

ls[i] - ls[i - 1])
return ret

END METHOD

METHOD IntegersWithSum(n, total)
if n <= 0 or total <=0: return error
ret = PositiveIntegersWithSum(n, total + n)
for i in 0...size(ret): ret[i] = ret[i] - 1
return ret

END METHOD

Notes:

1. To generate N random integers with a given positive average avg (an integer), in random
order, generate IntegersWithSum(N, N * avg).

2. To generate N random integers min or greater and with a given positive sum sum (an integer),
in random order, generate IntegersWithSum(N, sum - N * min), then add min to each
number generated this way. The Python sample code106 implements an efficient way to
generate such integers if each one can’t exceed a given maximum; the algorithm is thanks
to a Stack Overflow answer (questions/61393463) by John McClane.

3. To generate N rational numbers that sum to tx/ty, call IntegersWithSum(N, tx * ty *
x) or PositiveIntegersWithSum(N, tx * ty * x) as appropriate (where x is the desired
accuracy as an integer, such as pow(2, 32) or pow(2, 53), so that the results are accurate
to 1/x or less), then for each number c in the result, convert it to MakeRatio(c, tx * ty
* x) * MakeRatio(tx, ty).

7.9 Multinomial Distribution
The multinomial distribution uses two parameters: trials and weights. It models the number of times each
of several mutually exclusive events happens among a given number of trials (trials), where each event can
have a separate probability of happening (given as a list of weights).

A trivial implementation is to fill a list with as many zeros as weights, then for each trial, choose index =
106https://peteroupc.github.io/randomgen.zip

36

https://peteroupc.github.io/randomgen.zip

WeightedChoice(weights) and add 1 to the item in the list at the chosen index. The resulting list follows
a multinomial distribution. The pseudocode below shows an optimization suggested in (Durfee et al., 2018,
Corollary 45)107, but assumes all weights are integers.

METHOD Multinomial(trials, weights)
if trials < 0: return error
// create a list of successes
list = []
ratios = []
sum=Sum(weights)
for i in 0...size(weights): AddItem(ratios,

MakeRatio(weights[i], sum))
end
for i in 0...size(weights)

r=ratios[i]
b=BinomialInt(t,r[0],r[1])
AddItem(list, b)
trials=trials-b
if trials>0: for j in range(i+1,

len(weights)): ratios[j]=ratios[j]/(1-r)
end
return list

END METHOD

8 Randomization with Real Numbers
This section describes randomization methods that use random real numbers, not just random integers.
These include random rational numbers, fixed-point numbers, and floating-point numbers.

But whenever possible, applications should work with random integers, rather than other random
real numbers. This is because:

• No computer can choose from among all real numbers between two others, since there are infinitely
many of them.

• Algorithms that work with integers are more portable than those that work with other real numbers,
especially floating-point numbers.108 Integer algorithms are easier to control for their level of accuracy.

• For applications that may care about reproducible “random” numbers (unit tests, simulations, machine
learning, and so on), using non-integer numbers (especially floating-point numbers) can complicate the
task of making a method reproducible from run to run or across computers.

The methods in this section should not be used to sample at random for information security purposes, even
if a secure “source of random numbers” is available. See “Security Considerations” in the appendix.

8.1 Uniform Random Real Numbers
This section defines a method, namely RNDRANGEMinMaxExc(a, b), to generate independent “uniform” ran-
dom real numbers greater than a and less than b.109

107Durfee, et al., “l1 Regression using Lewis Weights Preconditioning and Stochastic Gradient Descent”, Proceedings of Machine
Learning Research 75(1), 2018.

108The NVIDIA white paper “Floating Point and IEEE 754 Compliance for NVIDIA GPUs”, and “Floating-Point
Determinism” by Bruce Dawson, discuss issues with floating-point numbers in much more detail. https://docs.nvidia.com/
cuda/floating-point/ https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
109“Uniform” in quotes means, as close to the uniform distribution as possible for the number format. Both bounds are excluded

because, mathematically, any specific real number from the uniform distribution occurs with probability 0.

37

https://docs.nvidia.com/cuda/floating-point/
https://docs.nvidia.com/cuda/floating-point/
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/

The section shows how this method can be implemented for fixed-point, rational, and floating-point numbers.
However, all three formats use a predetermined and fixed precision. Other formats for random real numbers
don’t have this limitation and include partially-sampled random numbers110 and “constructive reals”
or “recursive reals” (Boehm 2020)111.

8.1.1 For Fixed-Point Number Formats

For fixed-point number formats representing multiples of 1/n, this method is trivial. The following returns
an integer that represents a fixed-point number. In the method below (and in the note), fpa and fpb are
the bounds of the fixed-point number generated and are integers that represent fixed-point numbers (such
that fpa = a * n and fpb = b * n). For example, if n is 100, to generate a number in the open interval
(6.35, 9.96), generate RNDRANGEMinMaxExc(6.35, 9.96) or RNDINTRANGE(635 + 1, 996 - 1).

• RNDRANGEMinMaxExc(a, b): RNDINTRANGE(fpa + 1, fpb - 1), or an error if fpa >= fpb or a ==
fpb - 1. But if a is 0 and b is 1: (RNDINT(n - 2) + 1) or (RNDINTEXC(n - 1) + 1).

Note: Additional methods to sample fixed-point numbers in a different interval are given below,
but are not used in the rest of this article.

• RNDRANGE(a, b), interval [a, b]: RNDINTRANGE(fpa, fpb). But if a is 0 and b is 1:
RNDINT(n).

• RNDRANGEMinExc(a, b), interval (a, b]: RNDINTRANGE(fpa + 1, fpb), or an error if fpa
>= fpb. But if a is 0 and b is 1: (RNDINT(n - 1) + 1) or (RNDINTEXC(n) + 1).

• RNDRANGEMaxExc(a, b), interval [a, b): RNDINTEXCRANGE(fpa, fpb). But if a is 0 and b
is 1: RNDINTEXC(n) or RNDINT(n - 1).

8.1.2 For Rational Number Formats

A rational number is a ratio of integers. If the rational number’s denominator is n (which must be 1 or
greater), use the previous section to generate its numerator, so that the rational number is a multiple of 1/n.

8.1.3 For Floating-Point Number Formats

For floating-point number formats representing numbers of the form FPSign * FPSignificand * FPRADIX ‵𝑒‵

112, the following pseudocode implements RNDRANGEMinMaxExc(lo, hi). In the pseudocode:

• MINEXP is the lowest exponent a number can have in the floating-point format. For the IEEE 754
binary64 format (Java double), MINEXP = -1074. For the IEEE 754 binary32 format (Java float),
MINEXP = -149.

• FPPRECISION is the number of significant digits in the floating-point format, whether the format stores
them as such or not. Equals 53 for binary64, or 24 for binary32.

• FPRADIX is the digit base of the floating-point format. Equals 2 for binary64 and binary32.
• FPExponent(x) returns the value of e for the number x such that the number of digits in s equals

FPPRECISION. Returns MINEXP if x = 0 or if e would be less than MINEXP.
• FPSignificand(x) returns the significand (which is nonnegative) of the number x. Returns 0 if x =

0. Has FPPRECISION digits, but may have fewer if FPExponent(x) == MINEXP.
• FPSign(x) returns either -1 or 1 indicating whether the number is positive or negative. Can be − 1

even if s is 0.

See also (Downey 2007)113 and the Rademacher Floating-Point Library114.
110https://peteroupc.github.io/exporand.html
111Boehm, Hans-J. “Towards an API for the real numbers.” In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 562-576. 2020.
112This includes integers if e is limited to 0, and fixed-point numbers if e is limited to a single exponent less than 0.
113Downey, A. B. “Generating Pseudo-random Floating Point Values”, 2007.
114https://gitlab.com/christoph-conrads/rademacher-fpl

38

https://peteroupc.github.io/exporand.html
https://gitlab.com/christoph-conrads/rademacher-fpl
http://allendowney.com/research/rand/

METHOD RNDRANGEMinMaxExc(lo, hi)
if mn >= mx: return error
return RNDRANGEHelper(lo, hi)

END METHOD

METHOD RNDRANGEHelper(lo, hi)
losgn = FPSign(lo)
hisgn = FPSign(hi)
loexp = FPExponent(lo)
hiexp = FPExponent(hi)
losig = FPSignificand(lo)
hisig = FPSignificand(hi)
if lo > hi: return error
if losgn == 1 and hisgn == -1: return error
if losgn == -1 and hisgn == 1
// Straddles negative and positive ranges
// NOTE: Changes negative zero to positive
mabs = max(abs(lo),abs(hi))
while true // until a value is returned

ret=RNDRANGEHelper(0, mabs)
neg=RNDINT(1)
if neg==0: ret=-ret
if ret>=lo and ret<=hi: return ret

end
end
if lo == hi: return lo
if losgn == -1
// Negative range
return -RNDRANGEHelper(abs(lo), abs(hi))

end
// Positive range
expdiff=hiexp-loexp
if loexp==hiexp
// Exponents are the same
// NOTE: Automatically handles
// subnormals
s=RNDINTRANGE(losig, hisig)
return s*1.0*pow(FPRADIX, loexp)

end
while true // until a value is returned
ex=hiexp
while ex>MINEXP
v=RNDINTEXC(FPRADIX)
if v==0: ex=ex-1
else: break

end
s=0
if ex==MINEXP
// Has FPPRECISION or fewer digits
// and so can be normal or subnormal
s=RNDINTEXC(pow(FPRADIX,FPPRECISION))

else if FPRADIX != 2

39

// Has FPPRECISION digits
s=RNDINTEXCRANGE(
pow(FPRADIX,FPPRECISION-1),
pow(FPRADIX,FPPRECISION))

else
// Has FPPRECISION digits (bits), the highest
// of which is always 1 because it's the
// only nonzero bit
sm=pow(FPRADIX,FPPRECISION-1)
s=RNDINTEXC(sm)+sm

end
ret=s*1.0*pow(FPRADIX, ex)
if ret>=lo and ret<=hi: return ret

end
END METHOD

Notes:

1. Additional methods to sample “uniform” floating-point numbers in a different interval are
given below, but are not used in the rest of this article.

• RNDRANGE(mn, mx), interval [mn, mx]: Generate RNDRANGEHelper(mn, mx).
• RNDRANGEMaxExc(mn, mx), interval [mx, mx): If mn >= mx, return an error. Otherwise,

generate RNDRANGEHelper(mn, mx) in a loop until a number other than mx is generated
this way.

• RNDRANGEMinExc(mn, mx), interval (mn, mx]: If mn >= mx, return an error. Otherwise,
generate RNDRANGEHelper(mn, mx) in a loop until a number other than mn is generated
this way.

2. Many software libraries sample “uniform” real numbers by multiplying or dividing a uniform
random integer by a constant. For example, a method to sample “uniformly” at random
from the half-open interval [0, 1) is often implemented like RNDINTEXC(X) * (1.0/X) or
RNDINTEXC(X) / X, where X varies based on the software library.115 The disadvantage here
is that doing so does not necessarily cover all numbers a floating-point format can represent
in the range (Goualard 2020)116. As another example, a method to sample “uniformly” at
random from the half-open interval [a, b) is often implemented like a + Math.random()
* (b - a), where Math.random() is a “uniform” random floating-point number in [0, 1);
however, this not only has the same disadvantage, but has many other issues where floating-
point numbers are involved (Monahan 1985)117.

8.2 Monte Carlo Sampling: Expected Values, Integration, and Optimization
Requires random real numbers.

Randomization is the core of Monte Carlo sampling. There are three main uses of Monte Carlo sampling:
estimation, integration, and optimization.

1. Estimating expected values. Monte Carlo sampling can help estimate the expected value (mean
or “long-run average”) of a sampling distribution, or of a function of values sampled from that distri-
bution. This function is called EFUNC(x) in this section, where x is one of the values in the sample.

115Ideally, X is the highest integer p such that all multiples of 1/p in the interval [0, 1] are representable in the number format
in question. For example, X is 2^53 (9007199254740992) for binary64, and 2^24 (16777216) for binary32.
116Goualard F. (2020) Generating Random Floating-Point Numbers by Dividing Integers: A Case Study. In: Krzhizhanovskaya

V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12138. Springer, Cham.
https://doi.org/10.1007/978-3-030-50417-5_2
117Monahan, J.F., “Accuracy in Random Number Generation”, Mathematics of Computation 45(172), 1985.

40

https://doi.org/10.1007/978-3-030-50417-5_2

Algorithms to estimate expected values are called estimators. One such estimator is to sample n values,
apply EFUNC(x) to each sampled value x, add the values, and divide by n (see note below). However,
this estimator won’t work for all distributions, since they may have an infinite expected value, and it
also doesn’t allow controlling for the estimate’s error. This estimator is called:

• The nth sample raw moment (a raw moment is a mean of nth powers) if EFUNC(x) is pow(x,
n).

• The sample mean, if EFUNC(x) is x or pow(x, 1).
• The nth sample central moment (a central moment is a moment about the mean) if EFUNC(x)

is pow(x-m, n), where m is the sample mean.
• The (biased) sample variance, the second sample central moment.
• The sample probability, if EFUNC(x) is 1 if some condition is met or 0 otherwise.

There are two sources of error in Monte Carlo estimators: bias and variance. An estimator is unbiased
(has bias 0) if its expected value equals the distribution’s expected value. For example, any nth sample
raw moment is an unbiased estimator provided the sample size is at least n, but the sample variance is
not unbiased, and neither is one for any sample central moment other than the first (Halmos 1946)118.
(“Variance reduction” methods are outside the scope of this document.) An estimator’s mean squared
error equals variance plus square of bias.

For Monte Carlo estimators with accuracy guarantees, see “Randomized Estimation Algo-
rithms119”.

2. Monte Carlo integration120. This is usually a special case of Monte Carlo estimation that approxi-
mates a multidimensional integral over a sampling domain; here, EFUNC(z) is the function to find the
integral of, where z is a randomly chosen point in the sampling domain. For example, EFUNC(z) can
be 1 if z is in the true volume and 0 if not.

3. Stochastic optimization. This uses randomness to help find the minimum or maximum value of a
function with one or more variables; examples include simulated annealing121 and simultaneous
perturbation stochastic approximation122 (see also (Spall 1998)123).

Note: Assuming the true population has a finite mean and variance, the sample mean is an
unbiased estimator of the mean, but the sample variance is generally a biased estimator of
variance for every sample smaller than the whole population (Halmos 1946)124. The following
pseudocode returns a two-item list containing the sample mean and an unbiased estimator of
the variance, in that order, of a list of real numbers (list), using the Welford method125

presented by J. D. Cook. The square root of the variance calculated here is what many APIs
call a standard deviation (for example, Python’s statistics.stdev). For the usual (biased)
sample variance, replace (size(list)-1) with size(list) in the pseudocode shown next.
The pseudocode follows: if size(list)==0: return [0, 0]; if size(list)==1: return
[list[0], 0]; xm=list[0]; xs=0; i=1; while i < size(list); c = list[i]; i = i +
1; cxm = (c - xm); xm = xm + cxm *1.0/ i; xs = xs + cxm * (c - xm); end; return
[xm, xs*1.0/(size(list)-1)].

118Halmos, P.R., “The theory of unbiased estimation”, Annals of Mathematical Statistics 17(1), 1946.
119https://peteroupc.github.io/estimation.html
120https://en.wikipedia.org/wiki/Monte_Carlo_integration
121https://en.wikipedia.org/wiki/Simulated_annealing
122https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
123Spall, J.C., “An Overview of the Simultaneous Perturbation Method for Efficient Optimization”, Johns Hopkins APL

Technical Digest 19(4), 1998, pp. 482-492.
124Halmos, P.R., “The theory of unbiased estimation”, Annals of Mathematical Statistics 17(1), 1946.
125https://www.johndcook.com/blog/standard_deviation/

41

https://peteroupc.github.io/estimation.html
https://peteroupc.github.io/estimation.html
https://en.wikipedia.org/wiki/Monte_Carlo_integration
http://mathworld.wolfram.com/StochasticOptimization.html
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
http://mathworld.wolfram.com/Variance.html
http://mathworld.wolfram.com/Variance.html
https://www.johndcook.com/blog/standard_deviation/

8.3 Point Sample Selection
Requires random real numbers.

Various methods have been developed for selecting a uniform-behaving sample of points, especially for Monte
Carlo methods.

Among these methods, a low-discrepancy sequence126 (or quasirandom point set or quasi-Monte Carlo
point set) is a deterministic sequence of points with a low discrepancy to the uniform distribution on the
box, as compared to independent points from that distribution. The following are examples:

• A base-N van der Corput sequence is generated as follows: For each nonnegative integer index in the
sequence, take the index as a base-N number, then divide the least significant base-N digit by N, the
next digit by N2, the next by N3, and so on, and add together these results of division.

• A Halton sequence is a set of two or more van der Corput sequences with different prime bases; a
Halton point at a given index has coordinates equal to the points for that index in the van der Corput
sequences.

• Roberts, M., in “The Unreasonable Effectiveness of Quasirandom Sequences”, presents a low-
discrepancy sequence based on a “generalized” version of the golden ratio.

• Sobol sequences are explained in “Sobol sequence generator127” by S. Joe and F. Kuo.

The points of a low-discrepancy sequence can be “scrambled” with the help of a pseudorandom number
generator (or another device or program that simulates a “source of random numbers”). In Monte Carlo
sampling, low-discrepancy sequences are often used to achieve more efficient “random” sampling, but in
general, they can be safely used this way only if none of their points is skipped (Owen 2020)128.

Other methods that likewise produce a uniform-behaving point sample include the following.

• Stratified sampling divides an N-dimensional box into smaller boxes of the same size and chooses one
or more points uniformly at random in each box.

• Latin hypercube sampling can be implemented using the following pseudocode for an n-number
sequence: lhs = []; for i in 0...n: AddItem(RNDRANGEMinMaxExc(i*1.0/n,(i+1)*1.0/n));
lhs = Shuffle(lhs).

• Special versions of pseudorandom number generators. One example is linear congruential generators
with modulus m, a full period, and “good lattice structure”; a sequence of n-dimensional points is
then [MLCG(i), MLCG(i+1), ..., MLCG(i+n-1)] for each integer i in the interval [1, m] (L’Ecuyer
1999)129. One example is MLCG(seed): rem(92717*seed,262139)/262139.0. Another example is
certain linear feedback shift register generators (Harase 2020)130.

• If a low-discrepancy sequence outputs numbers in the interval [0, 1], the Baker’s map of the sequence
is 2 * (MakeRatio(1,2)-abs(x - MakeRatio(1,2))), where x is each number in the sequence.

• Other random point sampling methods, including Poisson disk sampling, the “best candidate algo-
rithm”, and N-farthest-points, are described in Kamath (2022)131.

8.4 Notes on Randomization Involving Real Numbers
Requires random real numbers.
126https://en.wikipedia.org/wiki/Low-discrepancy_sequence
127https://web.maths.unsw.edu.au/~fkuo/sobol/
128Owen, Art B. “On dropping the first Sobol’point.” In International Conference on Monte Carlo and Quasi-Monte Carlo

Methods in Scientific Computing, pp. 71-86. Springer, Cham, 2022. “Preprint”: arXiv:2008.08051. https://arxiv.org/abs/20
08.08051
129P. L’Ecuyer, “Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure”, Mathematics of

Computation 68(225), January 1999, with errata.
130Harase, S., “A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo”,

arXiv:2002.09006 [math.NA], 2020. https://arxiv.org/abs/2002.09006
131Kamath, Chandrika. “Intelligent sampling for surrogate modeling, hyperparameter optimization, and data analysis.” Ma-

chine Learning with Applications (2022): 100373, https://doi.org/10.1016/j.mlwa.2022.100373.

42

https://en.wikipedia.org/wiki/Low-discrepancy_sequence
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
https://web.maths.unsw.edu.au/~fkuo/sobol/
http://en.wikipedia.org/wiki/Baker's_map
https://arxiv.org/abs/2008.08051
https://arxiv.org/abs/2008.08051
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/latrules99Errata.pdf
https://arxiv.org/abs/2002.09006
https://doi.org/10.1016/j.mlwa.2022.100373

8.4.1 Random Walks: Additional Examples

• One example of a white noise process is a list of Normal(0, 1) numbers (Gaussian white noise).
• If STATEJUMP() is RNDRANGEMinMaxExc(-1, 1), the random state is advanced by a random real number

in the interval (-1, 1).
• A continuous-time process models random behavior at every moment, not just at discrete times.

There are two popular examples:
– A Wiener process (also known as Brownian motion) has random states and jumps that are nor-

mally distributed. For a random walk that follows a Wiener process, STATEJUMP() is Normal(mu
* timediff, sigma * sqrt(timediff)), where mu is the drift (or average value per time unit),
sigma is the volatility, and timediff is the time difference between samples. A Brownian bridge
(Revuz and Yor 1999)132 modifies a Wiener process as follows: For each time X, calculate W(X)
- W(E) * (X - S) / (E - S), where S and E are the starting and ending times of the process,
respectively, and W(X) and W(E) are the state at times X and E, respectively.

– In a Poisson point process, the time between each event is its own exponential random variate
with its own rate parameter (for example, Expo(rate)) (see “Exponential Distribution”). The
process is homogeneous if all the rates are the same, and inhomogeneous if the rate is a function
of the “timestamp” before each event jump (the hazard rate function); to generate arrival times
here, potential arrival times are generated at the maximum possible rate (maxrate) and each one
is accepted if RNDRANGEMinMaxExc(0, maxrate) < thisrate, where thisrate is the rate for the
given arrival time (Lewis and Shedler 1979)133.

8.4.2 Transformations: Additional Examples

1. Bates distribution: Find the mean of n uniform random variates in a given range (such as variates
generated by RNDRANGEMinMaxExc(minimum, maximum)) (strategy 8, mean).

2. A random point (x, y) can be transformed (strategy 9, geometric transformation) to derive a point
with correlated random coordinates (old x, new x) as follows (see (Saucier 2000)134, sec. 3.8): [x,
y*sqrt(1 - rho * rho) + rho * x], where x and y are independent numbers chosen at random in
the same way, and rho is a correlation coefficient in the interval [-1, 1] (if rho is 0, x and y are
uncorrelated).

3. It is reasonable to talk about sampling the sum or mean of N random variates, where N has a fractional
part. In this case, ceil(N) random variates are generated and the last variate is multiplied by that
fractional part. For example, to sample the sum of 2.5 random variates, generate three random variates,
multiply the last by 0.5 (the fractional part of 2.5), then add together all three variates.

4. A hypoexponential distribution models the sum of n random variates that follow an exponential
distribution and each have a separate rate parameter (see “Exponential Distribution”).

5. The maximal coupling method mentioned by P. Jacob135 generates correlated random variates
from two distributions, P and Q, with known probability density functions or PDFs (PPDF and QPDF,
respectively); this works only if the area under each PDF is 1: Sample a number x at random from dis-
tribution P, and if RNDRANGEMinMaxExc(0, PPDF(x)) < QPDF(x), return [x, x]. Otherwise, sample
a number y at random from distribution Q until PPDF(y) < RNDRANGEMinMaxExc(0, QPDF(y)), then
return [x, y].

8.5 Sampling from a Distribution of Data Points
Requires random real numbers.

Generating random data points based on how a list of data points is distributed involves the field of machine
132D. Revuz, M. Yor, “Continuous Martingales and Brownian Motion”, 1999.
133Lewis, P.W., Shedler, G.S., “Simulation of nonhomogeneous Poisson processes by thinning”, Naval Research Logistics

Quarterly 26(3), 1979.
134Saucier, R. “Computer Generation of Statistical Distributions”, March 2000.
135https://statisfaction.wordpress.com/2017/09/06/sampling-from-a-maximal-coupling/

43

https://statisfaction.wordpress.com/2017/09/06/sampling-from-a-maximal-coupling/

learning: fit a data model to the data points, then predict a new data point based on that model, with
randomness added to the mix. Three kinds of data models, described below, serve this purpose. (How fitting
works is outside the scope of this page. Moreover, the variety of machine learning models available makes
clear that sampling using only preexisting data points is an ill-posed problem.)

1. Density estimation models. Density estimation models seek to describe the distribution of data
points in a given data set, where areas with more points have a greater chance to be sampled.136 The
following are examples.

• Histograms are sets of one or more non-overlapping bins, which are generally of equal size.
Histograms are mixtures, where each bin’s weight is the number of data points in that bin. After
a bin is randomly chosen, a random data point that could fit in that bin is generated (that point
need not be an existing data point).

• Gaussian mixture models137 are also mixtures, in this case, mixtures of one or more Gaussian
(normal) distributions.

• Kernel distributions are mixtures of sampling distributions, one for each data point. Esti-
mating a kernel distribution is called kernel density estimation138. To sample from a kernel
distribution:
1. Choose one of the numbers or points in the list uniformly at random with replacement.
2. Add a randomized “jitter” to the chosen number or point; for example, add a separately

generated Normal(0, sigma) to the chosen number or each component of the chosen point,
where sigma is the bandwidth139.

• Stochastic interpolation is described in (Saucier 2000)140, sec. 5.3.4.
• Fitting a known distribution (such as the normal distribution), with unknown parameters, to

data can be done by maximum likelihood estimation141, among other ways.

2. Regression models. A regression model is a model that summarizes data as a formula and an error
term. If an application has data in the form of inputs and outputs (for example, monthly sales figures)
and wants to sample a random but plausible output given a known input point (for example, sales for a
future month), then the application can fit and sample a regression model for that data. For example,
a linear regression model, which simulates the value of y given known inputs a and b, can be sampled
as follows: y = c1 * a + c2 * b + c3 + Normal(0, sqrt(mse)), where mse is the mean squared
error and c1, c2, and c3 are the coefficients of the model. (Here, Normal(0, sqrt(mse)) is the error
term.)

3. Generative models. These are machine learning models that take random variates as input and
generate outputs (such as images or sounds) that are similar to examples they have already seen.

Notes:

1. Usually, more than one kind of data model or machine learning model is a possible choice to
fit to a given data set (for example, multiple kinds of density estimation models, regression
models, parametric distributions, decision trees, or combinations of these). If several kinds
of model are fitting choices, then the simplest kind that shows an acceptable predictive

136Other references on density estimation include a Wikipedia article on multiple-variable kernel density estimation,
and a blog post by M. Kay. https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation https://web.archive.
org/web/20160501200206/http://mark-kay.net/2013/12/24/kernel-density-estimation
137https://en.wikipedia.org/wiki/Mixture_model
138https://en.wikipedia.org/wiki/Kernel_density_estimation
139“Jitter”, as used in this step, follows a distribution formally called a kernel, of which the normal distribution is one example.

Bandwidth should be set so that the estimated distribution fits the data and remains smooth. A more complex kind of “jitter”
(for multi-component data points) consists of a point generated from a multinormal distribution with all the means equal to
0 and a covariance matrix that, in this context, serves as a bandwidth matrix. “Jitter” and bandwidth are not further discussed
in this document. https://en.wikipedia.org/wiki/Multivariate_normal_distribution
140Saucier, R. “Computer Generation of Statistical Distributions”, March 2000.
141https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

44

http://scikit-learn.org/stable/modules/density.html
https://en.wikipedia.org/wiki/Mixture_model
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
https://web.archive.org/web/20160501200206/http://mark-kay.net/2013/12/24/kernel-density-estimation
https://web.archive.org/web/20160501200206/http://mark-kay.net/2013/12/24/kernel-density-estimation
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

performance for the data set (for example, information criterion, precision, recall) should be
chosen.

2. If the existing data points each belong in one of several categories, choosing a random
category could be done by choosing a number at random with probability proportional to
the number of data points in each category (see “Weighted Choice”).

3. If the existing data points each belong in one of several categories, choosing a random data
point and its category could be done—
• by choosing a random data point based on all the existing data points, then finding its

category (for example, via machine learning models known as classification models), or
• by choosing a random category as given in note 2, then by choosing a random data

point based only on the existing data points of that category.

8.6 Sampling from an Arbitrary Distribution
Requires random real numbers.

Many probability distributions can be defined in terms of any of the following:

• The cumulative distribution function142, or CDF, CDF(x), is the probability of choosing a number
less than or equal to x at random. The probabilities are in the interval [0, 1].

• Discrete distributions143 have a probability mass function, or PMF, which gives the probability that
each number is randomly chosen.

• Absolutely continuous distributions have a probability density function144, or PDF, PDF(x), which
is the “slope” function of the CDF, or the relative probability of choosing a number “close” to x at
random. The relative probabilities are 0 or greater, and the area under the PDF is 1.

• The quantile function (also known as inverse cumulative distribution function or inverse CDF) maps
numbers in the interval (0, 1) to numbers in the distribution, from low to high.

In this section, a PDF-like function is the PDF, the PMF, or either function times a (possibly unknown)
positive constant.

The following sections show different ways to generate random variates based on a distribution, depending
on what is known about that distribution.

Note: Lists of CDFs, PDF-like functions, or quantile functions are outside the scope of this page.

8.6.1 Sampling for Discrete Distributions

If the distribution is discrete, numbers that closely follow it can be sampled by choosing points that cover
all or almost all of the distribution, finding their weights or cumulative weights, and choosing a random
point based on those weights.

If—

• the discrete distribution has a known PDF-like function PDF(x), where x must be an integer,
• the interval [mini, maxi] covers all the distribution, and
• the function’s values are all rational numbers (numbers of the form y/z where y and z are integers),

the following method samples exactly from that distribution:
142https://en.wikipedia.org/wiki/Cumulative_distribution_function
143A discrete distribution is a distribution that takes on values that can map to integers and back without loss. These values

are usually integers, but they need not be. For example, the values can be non-integer values (for example, x/y with probability
x/(1+y)) as long as the values can be converted to and from integers without loss. Two examples: - A rational number in lowest
terms can be converted to an integer by interleaving the bits of the numerator and denominator. - Integer-quantized numbers
(popular in “deep-learning” neural networks) take a relatively small number of bits (usually 8 bits or even smaller). An 8-bit
quantized number format is effectively a “look-up table” that maps 256 integers to real numbers.
144https://en.wikipedia.org/wiki/Probability_density_function

45

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probability_density_function

METHOD SampleDiscrete(mini, maxi)
// Setup
ratios=[]
for i in mini..maxi: AddItem(ratios, PDF(i))
ratios=NormalizeRatios(ratios)
// Sampling
return mini + WeightedChoice(ratios)

END METHOD

If—

• the discrete distribution has a known CDF CDF(x), where x must be an integer,
• the interval [mini, maxi] covers all the distribution, and
• the CDF’s values are all rational numbers,

the following method samples exactly from that distribution:

METHOD SampleDiscreteCDF(mini, maxi)
// Setup
ratios=[MakeRatio(0,1)]
for i in mini..maxi: AddItem(ratios, CDF(i))
ratios=NormalizeRatios(ratios)
// Sampling
value=ratios[size(ratios) - 1]
for i in 0...size(ratios) - 1

if ratios[i] < ratios[i+1] and
ratios[i]>=value: return mini + i

end
return mini

END METHOD

In other cases, the discrete distribution can still be approximately sampled. The following cases will lead to
an approximate sampler unless the values of the CDF or PDF-like function cover all the distribution and
are calculated exactly (without error).

• The values of the CDF or PDF-like function are often calculated in practice as floating-point num-
bers of the form FPSignificand * FPRadix ‵𝐹𝑃𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡‵ (which include Java’s double and float)145.
(In general, calculating the values this way will already lead to an approximate sampling algorithm
that doesn’t allow controlling for the approximation error.) In that case, there are various ways to
turn these numbers to rational numbers or integers.
1. One way is to use FPRatio(x) (in the pseudocode below), which is lossless and calculates the

rational number for the given floating-point number x.
2. Another way is to scale and round the values to integers (for example, floor(x * mult) if

floor(x * mult) < 0.5 and ceil(x * mult) otherwise, where mult is a large integer); this
is not lossless.

• An application can approximate the values of the PDF-like function as integers in a way that bounds
the sampling error, such as given in (Saad et al., 2020)146. Although this is not lossless and works only
for PDF-like functions, this may allow controlling for the approximation error, especially if the values
of the PDF-like function cover all the distribution.

145This includes integers if FPExponent is limited to 0, and fixed-point numbers if FPExponent is limited to a single exponent
less than 0.
146Saad, F.A., et al., “Optimal Approximate Sampling from Discrete Probability Distributions”, arXiv:2001.04555

[cs.DS], 2020. See also the associated source code. https://arxiv.org/abs/2001.04555 https://github.com/probcomp/opti
mal-approximate-sampling

46

https://arxiv.org/abs/2001.04555
https://github.com/probcomp/optimal-approximate-sampling
https://github.com/probcomp/optimal-approximate-sampling

• The values of the CDF or PDF-like function may be calculated approximately as rational numbers.
(In general, calculating the values this way will already lead to an approximate sampling algorithm
that doesn’t allow controlling for the approximation error.) These rational numbers can be turned into
integer weights using NormalizeRatios, which is lossless.

• If the distribution takes on an infinite number of values, an appropriate interval [mini, maxi] can
be chosen that covers almost all of the distribution. In general, this does not allow controlling for the
approximation error in sampling the distribution.

METHOD FPRatio(fp)
expo=FPExponent(fp)
sig=FPSignificand(fp)
radix=FPRadix(fp)
if expo>=0: return MakeRatio(sig * pow(radix, expo), 1)
return MakeRatio(sig, pow(radix, abs(expo)))

END METHOD

Note: In addition, some distributions are known only through an oracle (or “black box”) that
produces random variates that follow that distribution. Algorithms can use this oracle to produce
new random variates that follow a different distribution. One example is the Bernoulli factory (see
my article “Bernoulli Factory Algorithms147”), which takes flips of a coin with one probability
of heads (the oracle) and produces the flip of a new “coin” with a different probability of heads.
Another example is the “Bernoulli race” described in Weighted Choice.

8.6.2 Inverse Transform Sampling

Inverse transform sampling148 (or simply inversion) is the most generic way to sample a number from
a probability distribution.

If the distribution has a known quantile function, generate a uniform random variate between 0 and 1
if that number wasn’t already pregenerated, and take the quantile of that number. However:

• In most cases, the quantile function is not available. Thus, it has to be approximated.
• Even if the quantile function is available, a naïve quantile calculation (for example, ICDF(RNDRANGEMinMaxExc(0,

1))) may mean that small changes in the uniform number lead to huge changes in the quantile,
leading to gaps in sampling coverage (Monahan 1985, sec. 4 and 6)149.

The following method samples from a distribution via inversion, with an accuracy of 1/BASE ‵𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛‵

((Devroye and Gravel 2020)150, but extended for any base; see also (Bringmann and Friedrich 2013, Appendix
A)151). In the method, ICDF(u, ubits, prec) returns a two-item list containing upper and lower bounds,
respectively, of a number that is within 1/BASE ‵𝑝𝑟𝑒𝑐‵ of the true quantile of u/BASE ‵𝑢𝑏𝑖𝑡𝑠‵ , and BASE is
the digit base (for example, 2 for binary or 10 for decimal). For this method to work, the quantile function
must be continuous on the interval (0, 1) except at a countable number of points (countable means each
discontinuous point can be mapped to a different integer).

METHOD Inversion(precision)
u=0
ubits=0
threshold=MakeRatio(1,pow(BASE, precision))*2
incr=8

147https://peteroupc.github.io/bernoulli.html
148https://en.wikipedia.org/wiki/Inverse_transform_sampling
149Monahan, J.F., “Accuracy in Random Number Generation”, Mathematics of Computation 45(172), 1985.
150Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
151Bringmann, K., and Friedrich, T., 2013, July. Exact and efficient generation of geometric random variates and random

graphs, in International Colloquium on Automata, Languages, and Programming (pp. 267-278).

47

https://peteroupc.github.io/bernoulli.html
https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://arxiv.org/abs/1502.02539v6

while true // until a value is returned
incr=8
if ubits==0: incr=precision
// NOTE: If a uniform number (`n`) is already pregenerated,
// use the following instead:
// u = rem(floor(n*pow(BASE, ubits+incr)), pow(BASE, incr))
u=u*pow(BASE,incr)+RNDINTEXC(pow(BASE,incr))
ubits=ubits+incr
// Get upper and lower bound
bounds=ICDF(u,ubits,precision)
if lower>upper: return error
diff=bounds[1]-bounds[0]
if diff<=threshold: return bounds[1]+diff/2

end
end

Devroye and Gravel (2020, Theorem 8)152 proved the following statement. If X is a random variate with
quantile function QX(x), and Y is a variate that approximates X and has quantile function QY(x), then the
Wasserstein distance between X and Y is the least upper bound of abs(QX(x)-QY(x)) for every x greater
than 0 and less than 1. This means that, if QY(x) is within epsilon of QX(x) where 0 < x < 1, then
(in theory) an application can sample a random variate that is close to X with an accuracy of epsilon by
sampling Y = QY(RNDRANGEMinMaxExc(0, 1)).

Some applications need to convert a pregenerated number between 0 and 1 (usually a number sampled
from a uniform distribution), called u01 below, to a non-uniform distribution via quantiles. Notable cases
include copula methods, order statistics, and Monte Carlo methods involving low-discrepancy sequences.
The following way to compute quantiles is exact in theory:

• Distribution is discrete, with known PMF (and the distribution takes on integers): Sequential
search (Devroye 1986, p. 85)153: i = 0; p = PMF(i); while u01 > p; u01 = u01 - p; i = i +
1; p = PMF(i); end; return p, but this is not always fast. (This works only if PMF’s values sum to
1, which is why a PMF and not a PDF-like function is allowed here.)

In addition, the following methods approximate the quantile:

• Distribution is discrete, with known PDF-like function (and the distribution takes on in-
tegers): If the interval [a, b] covers all or almost all the distribution, then the application can
store the PDF-like function’s values in that interval in a list and call WChoose: wsum = 0; for
i in a..b: wsum=wsum+PDF(i); for i in a..b: AddItem(weights, PDF(i)); return a +
WChoose(weights, u01 * wsum). 154 (In this case, the method is exact in theory for sampling
the original distribution restricted to [a, b].) See also integers_from_u01 in the Python sample
code155.

• Distribution is absolutely continuous, with known PDF-like function: ICDFFromContPDF(u01,
mini, maxi, step), below, finds an approximate quantile based on a piecewise linear approxima-
tion of the PDF-like function in [mini, maxi], with pieces up to step wide. This method does
not currently allow controlling for the approximation error in sampling the distribution. See also
DensityInversionSampler and numbers_from_dist_inversion (Derflinger et al. 2010)156, (Devroye

152Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and
identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
153Devroye, L., Non-Uniform Random Variate Generation, 1986.
154In floating-point arithmetic, finding the quantile based on the CDF instead of a PDF-like function can introduce more

error (Walter 2019)[^81].
155https://peteroupc.github.io/randomgen.zip
156Gerhard Derflinger, Wolfgang Hörmann, and Josef Leydold, “Random variate generation by numerical inversion when only

the density is known”, ACM Transactions on Modeling and Computer Simulation 20(4) article 18, October 2010.

48

https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://arxiv.org/abs/1502.02539v6
http://luc.devroye.org/rnbookindex.html

and Gravel 2020)157 in the Python sample code 158.

• Distribution is absolutely continuous, with known CDF: If the interval [a, b] covers all or almost
all the distribution, and the CDF is continuous and strictly increasing on that interval, then let D be
the original distribution restricted to [a, b]. Then it’s possible to sample from a distribution that is
close to D by a Wasserstein distance of no more than eps (Devroye and Gravel 2020, especially Theorem
8)159 by the following method 160:

– In a setup phase: Create an empty list. Then, at values of x in [a, b] spaced evenly with a step
size of eps or less, starting at a and ending at b, add the sublist [x, (CDF(x)-a)/(b-a)] to the
list. The first item in the sublist is the sampled point x, and the second item is the adjusted CDF
value.

– In a sampling phase: Find the greatest adjusted CDF value less than or equal to u01, and the
largest one greater than or equal to u01, such as by a binary search. (These two values will be the
same if u01 is one of the adjusted CDF values.) Call their sampled points y and z, respectively.
Then return either y, if y=z; or y+(z-y)*(u01-y)/(z-y) otherwise.

METHOD ICDFFromContPDF(u01, mini, maxi, step)
pieces=[]
areas=[]
// Setup
lastvalue=i
lastweight=PDF(i)
cumuarea=0
i = mini+step; while i <= maxi

weight=i; value=PDF(i)
cumuarea=cumuarea+abs((weight + lastweight) * 0.5 *

(value - lastvalue))
AddItem(pieces,[lastweight,weight,lastvalue,value])
AddItem(areas,cumuarea)
lastweight=weight;lastvalue=value
if i==maxi: break
i = min(i + step, maxi)

end
for i in 0...size(areas): areas[i]=areas[i]/cumuarea
// Sampling
prevarea=0
for i in 0...size(areas)

cu=areas[i]
if u01<=cu

p=pieces[i]; u01=(u01-prevarea)/(cu-prevarea)
s=p[0]; t=p[1]; v=u01
if s!=t: v=(s-sqrt(t*t*u01-s*s*u01+s*s))/(s-t)

157Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and
identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
158Part of numbers_from_u01 uses algorithms described in Arnas, D., Leake, C., Mortari, D., “Random Sampling using k-

vector”, Computing in Science & Engineering 21(1) pp. 94-107, 2019, and Mortari, D., Neta, B., “k-Vector Range Searching
Techniques”.
159Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
160There is a paper by Arnas et al. that describes approximate random sampling using the values of the CDF by the so-called

k-vector technique, but the paper doesn’t formally prove how good the approximation is. Arnas, D., Leake, C., Mortari, D.,
“Random Sampling using k-vector”, Computing in Science & Engineering 21(1) pp. 94-107, 2019. See also Mortari, D., Neta,
B., “k-Vector Range Searching Techniques”.

49

https://arxiv.org/abs/1502.02539v6
https://arxiv.org/abs/1502.02539v6

return p[2]+(p[3]-p[2])*v
end
prevarea=cu

end
return error

END METHOD

Notes:

1. If only percentiles of data (such as the median or 50th percentile, the minimum or 0th
percentile, or the maximum or 100th percentile) are available, the quantile function can
be approximated via those percentiles. The Nth percentile corresponds to the quantile for
N/100.0. Missing values for the quantile function can then be filled in by interpolation
(such as spline fitting). Sampling using only percentiles this way is an ill-posed problem,
though. If the raw data points are available, see “Sampling from a Distribution of
Data Points” instead.

2. Taking the kth smallest of n random variates distributed the same way is the same as
taking the kth smallest of n uniform random variates in the interval [0, 1) (also known as
the kth order statistic; for example, BetaDist(k, n+1-k)) and finding its quantile (Devroye
2006)161; (Devroye 1986, p. 30)162.

8.6.3 Rejection Sampling with a PDF-Like Function

If the distribution has a known PDF-like function (PDF), and that function can be more easily sampled by
another distribution with its own PDF-like function (PDF2) that “dominates” PDF in the sense that PDF2(x)
>= PDF(x) at every valid x, then generate random variates with the latter distribution until a variate (call
it n) that satisfies r < PDF(n), where r = RNDRANGEMinMaxExc(0, PDF2(n)), is generated this way (that
is, sample points in PDF2 until a point falls within PDF).

A variant of rejection sampling is the squeeze principle, in which a third PDF-like function (PDF3) is chosen
that is “dominated” by the first one (PDF) and easier to sample than PDF. Here, a number is accepted if r <
PDF3(n) or r < PDF(n) , where r = RNDRANGEMinMaxExc(0, PDF2(n)) (Devroye 1986, p. 53)163.

See also (von Neumann 1951)164; (Devroye 1986)165, pp. 41-43; “Rejection Sampling”; and “Generating
Pseudorandom Numbers166”.

Examples:

1. To sample a random variate in the interval [low, high) from a PDF-like function
with a positive maximum value no greater than peak at that interval, generate x =
RNDRANGEMinMaxExc(low, high) and y = RNDRANGEMinMaxExc(0, peak) until y <
PDF(x), then take the last x generated this way. (See also Saucier 2000, pp. 6-7.) If the
distribution is discrete and integer-valued, generate x with x = RNDINTEXCRANGE(low,
high) instead.

2. A PDF-like function for a custom distribution, PDF, is exp(-abs(x*x*x)), and the expo-
nential distribution’s, PDF2, is exp(-x). The exponential PDF-like function PDF2 “domi-
nates” PDF (at every x 0 or greater) if we multiply it by 1.5, so that PDF2 is now 1.5 *
exp(-x). Now we can generate numbers from our custom distribution by sampling expo-

161Devroye, L., “Non-Uniform Random Variate Generation”. In Handbooks in Operations Research and Management Science:
Simulation, Henderson, S.G., Nelson, B.L. (eds.), 2006, p.83.
162Devroye, L., Non-Uniform Random Variate Generation, 1986.
163Devroye, L., Non-Uniform Random Variate Generation, 1986.
164von Neumann, J., “Various techniques used in connection with random digits”, 1951.
165Devroye, L., Non-Uniform Random Variate Generation, 1986.
166https://mathworks.com/help/stats/generating-random-data.html

50

https://mathworks.com/help/stats/generating-random-data.html
https://mathworks.com/help/stats/generating-random-data.html
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html

nential points until a point falls within PDF. This is done by generating n = Expo(1) until
RNDRANGEMinMaxExc(0, PDF2(n)) < PDF(n).

3. The normal distribution’s upside-down bell curve has the PDF-like function 1-exp(-(x*x)),
and the highest point for this function is peak = max(1-exp(-(low*low)), 1-exp(-(high*high))).
Sampling this distribution then uses the algorithm in example 1.

Note: In the Python sample code, moore.py167 and numbers_from_dist sample from a distri-
bution via rejection sampling (Devroye and Gravel 2020)168, (Sainudiin and York 2013)169.

8.6.4 Alternating Series

If a PDF-like function for the target distribution is not known exactly, but can be approximated from above
and below by two series expansions that converge to that function as more terms are added, the alternating
series method (which is exact in theory) can be used. This still requires a “dominating” PDF-like function
(PDF2(x)) to serve as the “easy-to-sample” distribution. Call the series expansions UPDF(x, n) and LPDF(x,
n), respectively, where n is the number of terms in the series to add. To sample the distribution using
this method (Devroye 2006)170: (1) Sample from the “dominating” distribution, and let x be the sampled
number; (2) set n to 0; (3) accept x if r < LPDF(x, n), or go to step 1 if r >= UPDF(x, n), or repeat this
step with n increased by 1 if neither is the case, where r = RNDRANGEMinMaxExc(0, PDF2(n)).

8.6.5 Markov-Chain Monte Carlo

Markov-chain Monte Carlo171 (MCMC) is a family of algorithms for sampling from a probability distri-
bution by building a Markov chain of random values that approach the given distribution as the chain takes
more steps. In general, however, MCMC is approximate, it doesn’t allow for controlling the approximation
error, and the values generated by a given chain will have a statistical dependence on each other (which is
why techniques such as “thinning” — keeping only every Nth sample — are often employed).172

MCMC algorithms173 include Metropolis–Hastings, slice sampling, and Gibbs sampling (see also the Python
sample code174). The latter is special in that it uses not a PDF-like function, but two or more distributions,
each of which uses a number sampled at random from the previous distribution (conditional distributions),
that converge to a joint distribution.

Example: In one Gibbs sampler, an initial value for y is chosen, then multiple x, y pairs of
random variates are generated, where x = BetaDist(y, 5) then y = Poisson(x * 10).

8.7 Piecewise Linear Distribution
Requires random real numbers.
167https://github.com/peteroupc/peteroupc.github.io/blob/master/moore.py
168Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
169Sainudiin, Raazesh, and Thomas L. York. “An Auto-Validating, Trans-Dimensional, Universal Rejection Sampler for Locally

Lipschitz Arithmetical Expressions,” Reliable Computing 18 (2013): 15-54.
170Devroye, L., “Non-Uniform Random Variate Generation”. In Handbooks in Operations Research and Management Science:

Simulation, Henderson, S.G., Nelson, B.L. (eds.), 2006, p.83.
171https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
172Many Markov chains converge to a stationary distribution. The chain’s mixing time is how fast this happens; it’s the

number of steps after which the next draw will follow a distribution within 𝜀 of the stationary distribution. This approximate
distribution is then sampled by initializing several Markov chains (independently at random), then running each of them for
their mixing time (“burn-in”), then taking the next draw of each chain. For further information see Levin and Peres, Markov
chains and mixing times, second edition, 2017.

173Tran, K.H., “A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and In-
tractable Targets”, arXiv:1607.01985v5 [stat.CO], 2018, gives a common framework for describing many MCMC algorithms,
including Metropolis–Hastings, slice sampling, and Gibbs sampling. https://arxiv.org/abs/1607.01985v5
174https://peteroupc.github.io/randomgen.zip

51

https://github.com/peteroupc/peteroupc.github.io/blob/master/moore.py
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://arxiv.org/abs/1502.02539v6
https://arxiv.org/abs/1607.01985v5

A piecewise linear distribution describes an absolutely continuous distribution with weights at known
points and other weights determined by linear interpolation (smoothing). The PiecewiseLinear method
(in the pseudocode below) takes two lists as follows (see also (Kscischang 2019)175):

• values is a list of rational numbers. The numbers should be arranged in ascending order.
• weights is a list of rational-valued weights for the given numbers (where each number and its weight

have the same index in both lists). The greater a number’s weight, the greater the probability that a
number close to that number will be chosen. Each weight should be 0 or greater.

METHOD PiecewiseLinear(values, weights)
if size(values)!=size(weights) or size(values)==0: return error
if size(values)==1: return values[0]
areas=[]
for i in 1...size(values)

area=abs((weights[i] + weights[i-1]) *
(values[i] - values[i-1]) / 2) // NOTE: Not rounded

AddItem(areas,area)
end
// NOTE: If values and weights are rational
// numbers, use `areas=NormalizeRatios(areas)` instead
// of finding `areas` as given below.
ratios=[]
for w in areas: AddItem(ratios, FPRatio(w))
areas=NormalizeRatios(ratios)
index=WeightedChoice(areas)
w=values[index+1]-values[index]
if w==0: return values[index]
m=(weights[index+1]-weights[index])/w
h2=(weights[index+1]+weights[index])
ww=w/2.0; hh=h2/2.0
x=RNDRANGEMinMaxExc(-ww, ww)
if RNDRANGEMinMaxExc(-hh, hh)>x*m: x=-x
return values[index]+x+ww

END METHOD

Note: The Python sample code176 contains a variant to the method above for returning more
than one random variate in one call.

Example: Assume values is the following: [0, 1, 2, 2.5, 3], and weights is the following:
[0.2, 0.8, 0.5, 0.3, 0.1]. The weight for 2 is 0.5, and that for 2.5 is 0.3. Since 2 has a
higher weight than 2.5, numbers near 2 have a greater probability of being chosen than numbers
near 2.5 with the PiecewiseLinear method.

8.8 Specific Distributions
Methods to sample additional distributions are given in a separate page177. They cover the normal, gamma,
beta, von Mises, stable, and multivariate normal distributions as well as copulas.
175Kschischang, Frank R. “A Trapezoid-Ziggurat Algorithm for Generating Gaussian Pseudorandom Variates.” (2019).
176https://peteroupc.github.io/randomgen.zip
177https://peteroupc.github.io/randomnotes.html

52

http://en.cppreference.com/w/cpp/numeric/random/piecewise_linear_distribution
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomnotes.html

8.9 Index of Non-Uniform Distributions
Many distributions here require random real numbers.

A † symbol next to a distribution means that a sample from the distribution can be shifted by a location
parameter (mu) then scaled by a scale parameter greater than 0 (sigma). Example: num * sigma + mu.

A � symbol next to a distribution means the sample can be scaled to any range, which is given with the
minimum and maximum values mini and maxi. Example: mini + (maxi - mini) * num.

For further examples and distributions, see (Devroye 1996)178 and (Crooks 2019)179.

Most commonly used:

• Beta distribution�: See Beta Distribution180.
• Binomial distribution: See Binomial Distribution.
• Binormal distribution: See Multivariate Normal (Multinormal) Distribution181.
• Cauchy (Lorentz) distribution†: Stable(1, 0). This distribution is similar to the normal distri-

bution, but with “fatter” tails. Alternative algorithm based on one mentioned in (McGrath and Irving
1975)182: Generate x = RNDRANGEMinMaxExc(0,1) and y = RNDRANGEMinMaxExc(0,1) until x * x +
y * y <= 1, then generate (RNDINT(1) * 2 - 1) * y / x.

• Chi-squared distribution: GammaDist(df * 0.5 + Poisson(sms * 0.5))*2, where df is the num-
ber of degrees of freedom and sms is the sum of mean squares (where sms other than 0 indicates a
noncentral distribution).

• Dice: See Dice.
• Exponential distribution: See Exponential Distribution. The naïve implementation

-ln(1-RNDRANGEMinMaxExc(0, 1)) / lamda has several problems, such as being ill-conditioned at
large values because of the distribution’s right-sided tail (Pedersen 2018) 183. An application can reduce
some of these problems by applying Pedersen’s suggestion of using either -ln(RNDRANGEMinMaxExc(0,
0.5)) or -log1p(-RNDRANGEMinMaxExc(0, 0.5)) (rather than -ln(1-RNDRANGEMinMaxExc(0, 1))),
chosen uniformly at random each time; an alternative is ln(1/RNDRANGEMinMaxExc(0,1)) mentioned
in (Devroye 2006)184.

• Extreme value distribution: See generalized extreme value distribution.
• Gamma distribution: See Gamma Distribution185. Generalized gamma distributions include the

Stacy distribution (pow(GammaDist(a), 1.0 / c) * b, where c is another shape parameter) and
the Amoroso distribution (Crooks 2015)186, (pow(GammaDist(a), 1.0 / c) * b + d, where d is
the minimum value).

• Gaussian distribution: See Normal (Gaussian) Distribution187.
• Geometric distribution: See Geometric Distribution. The following is “exact” assuming com-

puters can operate “exactly” on real numbers: floor(-Expo(1)/ln(1-p)) (Devroye 1986, p. 500)188

(ceil replaced with floor because this page defines geometric distribution differently).
178Devroye, L., 1996, December, “Random variate generation in one line of code” In Proceedings Winter Simulation Conference

(pp. 265-272). IEEE.
179Crooks, G.E., Field Guide to Continuous Probability Distributions, 2019. https://threeplusone.com/pubs/FieldGuide

.pdf
180https://peteroupc.github.io/randomnotes.html#Beta_Distribution
181https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
182McGrath, E.J., Irving, D.C., “Techniques for Efficient Monte Carlo Simulation, Volume II”, Oak Ridge National Laboratory,

April 1975.
183Pedersen, K., “Reconditioning your quantile function”, arXiv:1704.07949v3 [stat.CO], 2018. https://arxiv.org/abs/

1704.07949
184Devroye, L., “Non-Uniform Random Variate Generation”. In Handbooks in Operations Research and Management Science:

Simulation, Henderson, S.G., Nelson, B.L. (eds.), 2006, p.83.
185https://peteroupc.github.io/randomnotes.html#Gamma_Distribution
186Crooks, G.E., “The Amoroso Distribution”, arXiv:1005.3274v2 [math.ST], 2015. https://arxiv.org/abs/1005.3274v2
187https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
188Devroye, L., Non-Uniform Random Variate Generation, 1986.

53

https://peteroupc.github.io/randomnotes.html#Beta_Distribution
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
https://peteroupc.github.io/randomnotes.html#Gamma_Distribution
https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
https://threeplusone.com/pubs/FieldGuide.pdf
https://threeplusone.com/pubs/FieldGuide.pdf
https://arxiv.org/abs/1704.07949
https://arxiv.org/abs/1704.07949
https://arxiv.org/abs/1005.3274v2
http://luc.devroye.org/rnbookindex.html

• Gumbel distribution: See generalized extreme value distribution.
• Inverse gamma distribution: b / GammaDist(a), where a and b have the same meaning as in the

gamma distribution. Alternatively, 1.0 / (pow(GammaDist(a), 1.0 / c) / b + d), where c and d
are shape and location parameters, respectively.

• Laplace (double exponential) distribution†: (Expo(1) - Expo(1)). Also, Normal(0,1) *
Normal(0, 1) - Normal(0, 1) * Normal(0, 1) (Kotz et al. 2012)189.

• Logarithmic distribution�: RNDRANGEMinMaxExc(0, 1) * RNDRANGEMinMaxExc(0, 1) (Saucier
2000, p. 26). In this distribution, lower numbers are exponentially more probable than higher numbers.

• Logarithmic normal distribution: exp(Normal(mu, sigma)), where mu and sigma are the under-
lying normal distribution’s parameters.

• Multinormal distribution: See multivariate normal distribution.
• Multivariate normal distribution: See Multivariate Normal (Multinormal) Distribution190.
• Normal distribution: See Normal (Gaussian) Distribution191.
• Poisson distribution: See “Poisson Distribution”. The following is “exact” assuming com-

puters can operate “exactly” on real numbers (Devroye 1986, p. 504)192: c = 0; s = 0;
while true; sum = sum + Expo(1); if sum>=mean: return c; else: c = c + 1; end; and
in addition the following optimization from (Devroye 1991)193 can be used: while mean > 20;
n=ceil(mean-pow(mean,0.7)); g=GammaDist(n); if g>=mean: return c+(n-1-Binomial(n-1,(g-mean)/g));
mean = mean - g; c = c + n; end.

• Pareto distribution: pow(RNDRANGEMinMaxExc(0, 1), -1.0 / alpha) * minimum, where alpha is
the shape and minimum is the minimum.

• Rayleigh distribution†: sqrt(Expo(0.5)). If the scale parameter (sigma) follows a logarithmic
normal distribution, the result is a Suzuki distribution.

• Standard normal distribution†: Normal(0, 1). See also Normal (Gaussian) Distribution194.
• Student’s t-distribution: Normal(cent, 1) / sqrt(GammaDist(df * 0.5)*2 / df), where df is

the number of degrees of freedom, and cent is the mean of the normally-distributed random variate. A
cent other than 0 indicates a noncentral distribution. Alternatively, cos(RNDRANGEMinMaxExc(0, pi
* 2)) * sqrt((pow(RNDRANGEMinMaxExc(0, 1),-2.0/df)-1) * df) (Bailey 1994)195.

• Triangular distribution† (Stein and Keblis (2009)196): (1-alpha) * min(a, b) + alpha *
max(a, b), where alpha is in [0, 1], a = RNDRANGEMinMaxExc(0, 1), and b = RNDRANGEMinMaxExc(0,
1).

• Weibull distribution: See generalized extreme value distribution.

Miscellaneous:

• Archimedean copulas: See Gaussian and Other Copulas197.
• Arcsine distribution�: BetaDist(0.5, 0.5) (Saucier 2000, p. 14).
• Bates distribution: See Transformations of Random Variates: Additional Examples198.
• Beckmann distribution: See Multivariate Normal (Multinormal) Distribution199.
• Beta binomial distribution: Binomial(trials, BetaDist(a, b)), where a and b are the two

parameters of the beta distribution, and trials is a parameter of the binomial distribution.
189Kotz, Samuel, Tomasz Kozubowski, and Krzystof Podgórski. The Laplace distribution and generalizations: a revisit with

applications to communications, economics, engineering, and finance. Springer Science & Business Media, 2012.
190https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
191https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
192Devroye, L., Non-Uniform Random Variate Generation, 1986.
193Devroye, L., “Expected Time Analysis of a Simple Recursive Poisson Random Variate Generator”, Computing 46, pp. 165-

173, 1991.
194https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
195Bailey, R.W., “Polar generation of random variates with the t distribution”, Mathematics of Computation 62 (1994).
196Stein, W.E. and Keblis, M.F., “A new method to simulate the triangular distribution”, Mathematical and Computer

Modelling 49(5-6), 2009, pp.1143-1147.
197https://peteroupc.github.io/randomnotes.html#Gaussian_and_Other_Copulas
198https://peteroupc.github.io/randomnotes.html#Transformations_of_Random_Numbers_Additional_Examples
199https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution

54

https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
https://peteroupc.github.io/randomnotes.html#Gaussian_and_Other_Copulas
https://peteroupc.github.io/randomnotes.html#Transformations_of_Random_Numbers_Additional_Examples
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
http://luc.devroye.org/rnbookindex.html

• Beta negative binomial distribution: NegativeBinomial(successes, BetaDist(a, b)), where
a and b are the two parameters of the beta distribution, and successes is a parameter of the negative
binomial distribution. If successes is 1, the result is a Waring–Yule distribution. A Yule–Simon
distribution results if successes and b are both 1 (for example, in Mathematica) or if successes and a
are both 1 (in other works).

• Beta-PERT distribution: startpt + size * BetaDist(1.0 + (midpt - startpt) * shape /
size, 1.0 + (endpt - midpt) * shape / size). The distribution starts at startpt, peaks at
midpt, and ends at endpt, size is endpt - startpt, and shape is a shape parameter that’s 0 or
greater, but usually 4. If the mean (mean) is known rather than the peak, midpt = 3 * mean / 2 -
(startpt + endpt) / 4.

• Beta prime distribution†: pow(GammaDist(a), 1.0 / alpha) / pow(GammaDist(b), 1.0 /
alpha), where a, b, and alpha are shape parameters. If a is 1, the result is a Singh–Maddala
distribution; if b is 1, a Dagum distribution; if a and b are both 1, a logarithmic logistic distribution.

• Birnbaum–Saunders distribution: pow(sqrt(4+x*x)+x,2)/(4.0*lamda), where x = Normal(0,gamma),
gamma is a shape parameter, and lamda is a scale parameter.

• Borel distribution (Borel (1942)200): r=0; q=1; while q>=1; q+=Poisson(la); q-=1; r+=1;
end; return r. la, the mean number of arrivals, should be in the interval (0, 1).

• Chi distribution: Square root of a chi-squared random variate. See chi-squared distribution.
• Compound Poisson distribution: See Transformations of Random Variates: Additional

Examples.
• Cosine distribution�: atan2(x, sqrt(1 - x * x)) / pi, where x = (RNDINT(1) * 2 - 1) *

RNDRANGEMinMaxExc(0, 1) (Saucier 2000, p. 17; inverse sine replaced with atan2 equivalent).
• CUB or MUB distribution (Piccolo (2003)201): if ZeroOrOne(px,py)==1: return 1+BinomialInt(m-1,

zy-zx, zy); else: return RNDINTRANGE(1, m), where m>=3, px/py is in [0, 1], and zx/zy is in [0,
1].

• Dagum distribution: See beta prime distribution.
• Dirichlet distribution: Suppose we (1) generate n+1 random gamma-distributed202 variates, each

with separate parameters; (2) take their sum; (3) divide each of them by that sum; then (4) multiply
each of them by a real number x greater than 0. Then:

– After step (4), if x was 1, the Dirichlet distribution203 (for example, (Devroye 1986)204, p. 593-
594) models the first n of those numbers.

– If the numbers at step (1) were each generated as Expo(1) (a special case of the gamma distribu-
tion), the result after step (4) is a uniformly distributed sum of n+1 numbers that sum to x (see
also linked article above).

• Double logarithmic distribution�: (0.5 + (RNDINT(1) * 2 - 1) * RNDRANGEMinMaxExc(0,
0.5) * RNDRANGEMinMaxExc(0, 1)) (see also Saucier 2000, p. 15, which shows the wrong X axes).

• Erlang distribution: GammaDist(n)/lamda, where n is an integer greater than 0. Returns a number
that simulates a sum of n exponential random variates with the given lamda parameter.

• Estoup distribution: See zeta distribution.
• Exponential power distribution (generalized normal distribution version 1): (RNDINT(1) * 2 -

1) * pow(GammaDist(1.0/a), a), where a is a shape parameter.
• Fréchet distribution: See generalized extreme value distribution.
• Fréchet–Hoeffding lower bound copula: See Gaussian and Other Copulas.
• Fréchet–Hoeffding upper bound copula: See Gaussian and Other Copulas.
• Gaussian copula: See Gaussian and Other Copulas.

200Borel, E., “Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’un infinité de coefficients. Application au probleme
de l’attente à un guichet”, 1942.
201Piccolo, Domenico. “On the moments of a mixture of uniform and shifted binomial random variables.” Quaderni di Statistica

5, no. 1 (2003): 85-104.
202https://peteroupc.github.io/randomnotes.md#Gamma_Distribution
203https://en.wikipedia.org/wiki/Dirichlet_distribution
204Brownlee, J. “A Gentle Introduction to the Bootstrap Method”, Machine Learning Mastery, May 25, 2018. https:

//machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/

55

https://peteroupc.github.io/randomnotes.md#Gamma_Distribution
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/

• Generalized extreme value (Fisher–Tippett or generalized maximum value) distribution
(GEV(c))†: (pow(Expo(1), -c) - 1) / c if c != 0, or -ln(Expo(1)) otherwise, where c is a shape
parameter. Special cases:

– The negative of the result expresses a generalized minimum value. In this case, a parameter of c
= 0 results in a Gumbel distribution.

– A parameter of c = 0 results in an extreme value distribution.
– Weibull distribution: 1 - 1.0/a * GEV(-1.0/a) (or pow(Expo(1), 1.0/a)), where a is a

shape parameter.
– Fréchet distribution: 1 + 1.0/a * GEV(1.0/a) (or pow(Expo(1), -1.0/a)), where a is a

shape parameter.
• Generalized Tukey lambda distribution: (s1 * (pow(x, lamda1)-1.0)/lamda1 - s2 *

(pow(1.0-x, lamda2)-1.0)/lamda2) + loc, where x is RNDRANGEMinMaxExc(0, 1), lamda1 and
lamda2 are shape parameters, s1 and s2 are scale parameters, and loc is a location parameter.

• Half-normal distribution. Parameterizations include:
– Mathematica: abs(Normal(0, sqrt(pi * 0.5) / invscale))), where invscale is a parameter

of the half-normal distribution.
– MATLAB: abs(Normal(mu, sigma))), where mu and sigma are the underlying normal distribu-

tion’s parameters.
• Hyperexponential distribution: See Mixtures of Distributions.
• Hypergeometric distribution: See Polya–Eggenberger Distribution.
• Hypoexponential distribution: See Transformations of Random Variates.
• Inverse chi-squared distribution†: df / (GammaDist(df * 0.5)*2), where df is the number of

degrees of freedom. The scale parameter (sigma) is usually 1.0 / df.
• Inverse Gaussian distribution (Wald distribution): Generate n = mu + (mu*mu*y/(2*lamda))

- mu * sqrt(4 * mu * lamda * y + mu * mu * y * y) / (2 * lamda), where y = pow(Normal(0,
1), 2), then return n with probability mu / (mu + n) (for example, if RNDRANGEMinMaxExc(0, 1)
<= mu / (mu + n)), or mu * mu / n otherwise. mu is the mean and lamda is the scale; both
parameters are greater than 0. Based on method published in (Devroye 1986)205.

• kth-order statistic: BetaDist(k, n+1-k). Returns the kth smallest out of n uniform random vari-
ates in [**0, 1). See also (Devroye 1986, p. 210)206.

• Kumaraswamy distribution�: pow(BetaDist(1, b), 1.0 / a), where a and b are shape parame-
ters.

• Landau distribution: See stable distribution.
• Lévy distribution†: 0.5 / GammaDist(0.5). The scale parameter (sigma) is also called dispersion.
• Logarithmic logistic distribution: See beta prime distribution.
• Logarithmic series distribution: Generate n = NegativeBinomialInt(1, py - px, py)+1

(where px/py is a parameter in (0,1)), then return n if ZeroOrOne(1, n) == 1, or repeat this process
otherwise (Flajolet et al., 2010)207. The following is “exact” assuming computers can operate “exactly”
on real numbers: floor(1.0 - Expo(log1p(-pow(1.0 - p, RNDRANGEMinMaxExc(0, 1))))), where
p is the parameter in (0, 1); see (Devroye 1986)208.

• Logistic distribution†: (ln(x)-log1p(-x)) (logit function), where x is RNDRANGEMinMaxExc(0,
1).

• Log-multinormal distribution: See Multivariate Normal (Multinormal) Distribution.
• Max-of-uniform distribution: BetaDist(n, 1). Returns a number that simulates the largest out

of n uniform random variates in [**0, 1). See also (Devroye 1986, p. 675)209.
• Maxwell distribution†: sqrt(GammaDist(1.5)*2).
• Min-of-uniform distribution: BetaDist(1, n). Returns a number that simulates the smallest out

205Devroye, L., Non-Uniform Random Variate Generation, 1986.
206Devroye, L., Non-Uniform Random Variate Generation, 1986.
207Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560v2 [math.PR], 2010. https:

//arxiv.org/abs/0906.5560v2
208Devroye, L., Non-Uniform Random Variate Generation, 1986.
209Devroye, L., Non-Uniform Random Variate Generation, 1986.

56

http://timvieira.github.io/blog/post/2016/07/04/fast-sigmoid-sampling/
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
https://arxiv.org/abs/0906.5560v2
https://arxiv.org/abs/0906.5560v2
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html

of n uniform random variates in [**0, 1). See also (Devroye 1986, p. 210)210.
• Moyal distribution: See the Python sample code211.
• Multinomial distribution: See Multinomial Distribution.
• Multivariate Poisson distribution: See the Python sample code212.
• Multivariate t-copula: See the Python sample code213.
• Multivariate t-distribution: See the Python sample code214.
• Negative binomial distribution (NegativeBinomial(successes, p)): See Negative Binomial

Distribution. The following is “exact” assuming computers can operate “exactly” on real numbers:
Poisson(GammaDist(successes)*(1 - p) / p) (works even if successes is not an integer).

• Negative multinomial distribution: See the Python sample code215.
• Noncentral beta distribution�: BetaDist(a + Poisson(nc), b), where nc (a noncentrality), a,

and b are greater than 0.
• Parabolic distribution�: BetaDist(2, 2) (Saucier 2000, p. 30).
• Pascal distribution: NegativeBinomial(successes, p) + successes, where successes and p

have the same meaning as in the negative binomial distribution, except successes is always an integer.
• Pearson VI distribution: GammaDist(v) / GammaDist(w), where v and w are shape parameters

greater than 0 (Saucier 2000, p. 33; there, an additional b parameter is defined, but that parameter is
canceled out in the source code).

• Piecewise constant distribution: See Weighted Choice With Replacement.
• Piecewise linear distribution: See Piecewise Linear Distribution.
• Pólya–Aeppli distribution: See Transformations of Random Variates.
• Power distribution: BetaDist(alpha, 1) / b, where alpha is the shape and b is the domain.

Nominally in the interval (0, 1).
• Power law distribution: pow(RNDRANGEMinMaxExc(pow(mn,n+1),pow(mx,n+1)), 1.0 / (n+1)),

where n is the exponent, mn is the minimum, and mx is the maximum. Reference.
• Power lognormal distribution: See the Python sample code216.
• Power normal distribution: See the Python sample code217.
• Product copula: See Gaussian and Other Copulas218.
• Rice distribution: See Multivariate Normal (Multinormal) Distribution219.
• Rice–Norton distribution: See Multivariate Normal (Multinormal) Distribution220.
• Singh–Maddala distribution: See beta prime distribution.
• sin^k distribution: Generate x = BetaDist(k+1, k+1) * pi, then return x if 0-Expo(k) <=

ln(pi*pi*sin(x) / ((4*x*(pi - x))), or repeat this process otherwise (Makalic and Schmidt
2018)221.

• Skellam distribution: Poisson(mean1) - Poisson(mean2), where mean1 and mean2 are the means
used in the Poisson method.

• Skew normal distribution† (Ghorbanzadeh et al. 2014)222: Generate c*max(a, b) + (1-c)*min(a,
b), where a = Normal(0, 1) and independently, b = Normal(0, 1), and c = (1+th)/sqrt(2.0*(1+th)),
and th is a real number in [0, 1]. Special cases: If th=0, generate Normal(0, 1); if th=1, generate

210Devroye, L., Non-Uniform Random Variate Generation, 1986.
211https://peteroupc.github.io/randomgen.zip
212https://peteroupc.github.io/randomgen.zip
213https://peteroupc.github.io/randomgen.zip
214https://peteroupc.github.io/randomgen.zip
215https://peteroupc.github.io/randomgen.zip
216https://peteroupc.github.io/randomgen.zip
217https://peteroupc.github.io/randomgen.zip
218https://peteroupc.github.io/randomnotes.html#Gaussian_and_Other_Copulas
219https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
220https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
221Makalic, E., Schmidt, D.F., “An efficient algorithm for sampling from sin^k(x) for generating random correla-

tion matrices”, arXiv:1809.05212v2 [stat.CO], 2018. https://arxiv.org/abs/1809.05212v2
222Ghorbanzadeh, D., Jaupi, L., Durand, P., “A Method to Simulate the Skew Normal Distribution”, Applied Math-

ematics 5(13), 2014. https://www.scirp.org/html/24-7402277_47986.htm

57

https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
http://mathworld.wolfram.com/RandomNumber.html
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomgen.zip
https://peteroupc.github.io/randomnotes.html#Gaussian_and_Other_Copulas
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
http://luc.devroye.org/rnbookindex.html
https://arxiv.org/abs/1809.05212v2
https://www.scirp.org/html/24-7402277_47986.htm

max(a, b); if th=1, generate min(a, b).
• Snedecor’s (Fisher’s) F-distribution: GammaDist(m * 0.5)*n / (GammaDist(n * 0.5 +

Poisson(sms * 0.5)) * m), where m and n are the numbers of degrees of freedom of two random
variates with a chi-squared distribution, and if sms is other than 0, one of those distributions is
noncentral with sum of mean squares equal to sms.

• Stable distribution: See Stable Distribution223. Four-parameter stable distribution:
Stable(alpha, beta) * sigma + mu, where mu is the mean and sigma is the scale; if alpha
and beta are 1, the result is a Landau distribution. “Type 0” stable distribution: Stable(alpha,
beta) * sigma + (mu - sigma * beta * x), where x is ln(sigma)*2.0/pi if alpha is 1, and
tan(pi*0.5*alpha) otherwise.

• Standard complex normal distribution: See Multivariate Normal (Multinormal) Distribu-
tion224.

• Suzuki distribution: See Rayleigh distribution.
• Tukey lambda distribution: (pow(x, lamda)-pow(1.0-x,lamda))/lamda, where x is

RNDRANGEMinMaxExc(0, 1) and lamda is a shape parameter.
• Twin-t distribution (Baker and Jackson 2018)225: Generate x, a random Student’s t-distributed

number (not a noncentral one). Accept x with probability z = pow((1 + y) / ((1 + y * y) + y),
(df + 1) * 0.5) (for example, if RNDRANGEMinMaxExc(0, 1) < z), where y = x * x / df and df
is the degrees of freedom used to generate the number; repeat this process otherwise.

• von Mises distribution: See von Mises Distribution226.
• Waring–Yule distribution: See beta negative binomial distribution.
• Wigner (semicircle) distribution†: (BetaDist(1.5, 1.5)*2-1). The scale parameter (sigma) is

the semicircular radius.
• Yule–Simon distribution: See beta negative binomial distribution.
• Zeta distribution: Generate n = floor(pow(RNDRANGEMinMaxExc(0, 1), -1.0 / r)), and if d

/ pow(2, r) < RNDRANGEMinMaxExc((d - 1) * n / (pow(2, r) - 1.0)), where d = pow((1.0 /
n) + 1, r), repeat this process. The parameter r is greater than 0. Based on method described in
(Devroye 1986)227. A zeta distribution truncated by rejecting random values greater than some integer
greater than 0 is called a Zipf distribution or Estoup distribution. (Devroye uses “Zipf distribution” to
refer to the untruncated zeta distribution.)

• Zipf distribution: See zeta distribution.

8.10 Geometric Sampling
Requires random real numbers.

This section contains ways to choose independent uniform random points in or on geometric shapes.

8.10.1 Random Points Inside a Simplex

The following pseudocode generates a random point inside an n-dimensional simplex (simplest convex figure,
such as a line segment, triangle, or tetrahedron). It takes one parameter, points, a list consisting of the n
plus one vertices of the simplex, all of a single dimension n or greater. The special case of 3 points came
from Osada et al. (2002)228.

METHOD VecAddProd(a, b, c)
for j in 0...size(a): a[j]=a[j]+b[j]*c

223https://peteroupc.github.io/randomnotes.html#Stable_Distribution
224https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
225Baker, R., Jackson, D., “A new distribution for robust least squares”, arXiv:1408.3237 [stat.ME], 2018. https:

//arxiv.org/abs/1408.3237
226https://peteroupc.github.io/randomnotes.html#von_Mises_Distribution
227Devroye, L., Non-Uniform Random Variate Generation, 1986.
228Osada, R., Funkhouser, T., et al., “Shape Distributions”, _ACM Transactions on Graphics 21(4), Oct. 2002.

58

https://peteroupc.github.io/randomnotes.html#Stable_Distribution
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
https://peteroupc.github.io/randomnotes.html#Multivariate_Normal_Multinormal_Distribution
https://peteroupc.github.io/randomnotes.html#von_Mises_Distribution
https://arxiv.org/abs/1408.3237
https://arxiv.org/abs/1408.3237
http://luc.devroye.org/rnbookindex.html

END METHOD

METHOD RandomPointInSimplex(points):
ret=NewList()
if size(points) > size(points[0])+1: return error
if size(points)==1 // Return a copy of the point
for i in 0...size(points[0]): AddItem(ret,points[0][i])
return ret

end
if size(points)==3

// Equivalent to sqrt(RNDRANGEMinMaxExc(0, 1))
rs=max(RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1))
r2=RNDRANGEMinMaxExc(0, 1)
ret=[0,0,0]
VecAddProd(ret,points[0],1.0-rs)
VecAddProd(ret,points[1],(1.0-r2)*rs)
VecAddProd(ret,points[2],r2*rs)
return ret

end
gammas=NewList()
// Sample from the simplex
for i in 0...size(points): AddItem(gammas, Expo(1))
tsum=0 // Will store sum of all gammas
for i in 0...size(gammas): tsum=tsum+gammas[i]
for i in 0...size(gammas): gammas[i] = gammas[i] / tsum
gammas[size(gammas)-1]=0 // To omit last gamma in sum
tot = 1.0 // Will store 1 minus the sum of all gammas
for i in 0...size(gammas): tot=tot - gammas[i]
// Build the final point
for i in 0...size(points[0]): AddItem(ret, points[0][i]*tot)
for i in 1...size(points): VecAddProd(

ret, points[i], gammas[i-1])
return ret

END METHOD

8.10.2 Random Points on a Sphere

The following pseudocode shows how to generate a random point on a sphere (surface of a ball) centered at
the origin, with the following parameters:

• dims, the number of dimensions of the sphere (and of the random point).
• radius, the sphere’s radius (if radius is 1, the result can also serve as a unit vector in dims-dimensional

space).
• p is greater than 0, or is infinity, and describes the sphere’s shape (if p is 2, the sphere is the usual

one).

See Schechtmann and Zinn (1990)229. Here, EPD generates an exponential power random variate (Devroye
1986, pp. 174-175)230.

METHOD PNorm(vec, p)
ret=0
if p==infinity

229Schechtman, G., Zinn, J., On the volume of intersection of two Lp^n balls. 1990.
230Devroye, L., Non-Uniform Random Variate Generation, 1986.

59

http://luc.devroye.org/rnbookindex.html

for i in 0...size(vec): ret=max(ret,abs(vec[i]))
return ret

else
for i in 0...size(vec): ret=ret+pow(abs(vec[i]),p)
return pow(ret,1.0/p)

end
END METHOD

METHOD EPD(p)
Infinity case is uniform in (-1,1) to be
appropriate for this section's purposes
if p==infinity: return RNDRANGEMinMaxExc(-1,1)
if p==2: return Normal(0,1)
return (RNDINT(1) * 2 - 1)*pow(GammaDist(1/p),1/p)

END METHOD

METHOD RandomPointOnSphere(dims, radius, p)
x=0
while x==0
ret=[]
for i in 0...dims: AddItem(ret, EPD(p))
x=PNorm(ret, p)

end
invnorm=radius/x
for i in 0...dims: ret[i]=ret[i]*invnorm
return ret

END METHOD

Notes:

1. PNorm(vec, p), also known as 𝑙 p norm, is a generalized notion of distance. p can be
any number 0 or greater, or can be infinity. PNorm(vec, 2) is the “usual” distance and,
for instance, forms the “usual” versions of spheres, while PNorm(vec, infinity) forms a
hypercube.

2. The Python sample code231 contains an optimized method for points on a circle (2-
dimensional sphere, p=2).

Example: To generate a random point on the surface of a cylinder running along the Z axis,
generate random X and Y coordinates on a circle and generate a random Z coordinate by
RNDRANGEMinMaxExc(mn, mx), where mn and mx are the highest and lowest Z coordinates possible.

8.10.3 Random Points Inside a Box, Ball, Shell, or Cone

To generate a random point inside—

• an N-dimensional box, generate RNDRANGEMinMaxExc(mn, mx) for each coordinate, where mn and
mx are the lower and upper bounds for that coordinate. For example—

– to generate a random point inside a rectangle bounded in [0, 2) along the X axis and [3, 6) along
the Y axis, generate [RNDRANGEMinMaxExc(0,2), RNDRANGEMinMaxExc(3,6)], and

– to generate a complex number with real and imaginary parts bounded in [0, 1], generate
[RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1)].

• an N-dimensional ball, centered at the origin, with a given radius, follow the pseudocode in
RandomPointOnSphere, except replace PNorm(ret, p) with pow(pow(PNorm(ret, p),p)+Expo(1),1.0/p)

231https://peteroupc.github.io/randomgen.zip

60

https://peteroupc.github.io/randomgen.zip

(Barthe et al. 2005)232. 233

• an N-dimensional spherical shell (a hollow ball), centered at the origin, with inner radius A and
outer radius B (where A is less than B), generate a random point on the surface of an N-dimensional
ball with radius equal to pow(RNDRANGEMinMaxExc(pow(A, N), pow(B, N)), 1.0 / N)234.

• a cone with height H and radius R at its base, running along the Z axis, generate a ran-
dom Z coordinate by Z = max(max(RNDRANGEMinMaxExc(0, H), RNDRANGEMinMaxExc(0, H)),
RNDRANGEMinMaxExc(0, H)), then generate random X and Y coordinates inside a disc (2-dimensional
ball) with radius equal to max(RNDRANGEMinMaxExc(0,Z*(R/H)), RNDRANGEMinMaxExc(0,Z*(R/H)))235.

Example: To generate a random point inside a cylinder running along the Z axis, generate
random X and Y coordinates inside a disc (2-dimensional ball) and generate a random Z coordi-
nate by RNDRANGEMinMaxExc(mn, mx), where mn and mx are the highest and lowest Z coordinates
possible.

Notes:

1. The Python sample code236 contains a method for generating a random point on the
surface of an ellipsoid modeling the Earth.

2. Sampling a half-ball, half-sphere, or half-shell can be done by sampling a full ball or shell
and replacing one of the dimensions of the result with its absolute value.

3. Lacko and Harman (2012)237 defined a family of non-uniform distributions of points inside a
ball: generate RandomPointOnSphere(dims, r*pow(BetaDist(dims/p, d/p), 1.0/p),p)
where r>0 is the radius, dims and p are as in RandomPointOnSphere, and d>=0 is a shape
parameter. If d = p, the distribution is uniform in the ball.

8.10.4 Random Latitude and Longitude

To generate a random point on the surface of a sphere in the form of a latitude and longitude (in radians
with west and south coordinates negative)238—

• generate the longitude RNDRANGEMinMaxExc(-pi, pi), where the longitude is in the interval [- 𝜋 , 𝜋),
and

• generate the latitude atan2(sqrt(1 - x * x), x) - pi / 2, where x = RNDRANGEMinMaxExc(-1,
1) and the latitude is in the interval [- 𝜋 /2, 𝜋 /2] (the interval excludes the poles, which have many
equivalent forms; if poles are not desired, generate x until neither -1 nor 1 is generated this way).

9 Acknowledgments
I acknowledge the commenters to the CodeProject version of this page, including George Swan, who referred
me to the reservoir sampling method.

I also acknowledge Christoph Conrads, who gave suggestions in parts of this article.
232Barthe, F., Guédon, O., et al., “A probabilistic approach to the geometry of the lP^N-ball”, Annals of Probability 33(2),

2005.
233Alternatively, if p is an integer greater than 0, generate a random point on the surface of an ball with N+p dimensions and

the given radius (for example, using RandomPointOnSphere(N+p,radius,p)), then discard the last p coordinates of that point
(Corollary 1 of Lacko, V., & Harman, R. (2012). A conditional distribution approach to uniform sampling on spheres and balls
in Lp spaces. Metrika, 75(7), 939-951).
234See the Mathematics Stack Exchange question titled “Random multivariate in hyperannulus”, questions/1885630.
235See the Stack Overflow question “Uniform sampling (by volume) within a cone”, questions/41749411. Square and cube

roots replaced with maximums.
236https://peteroupc.github.io/randomgen.zip
237Lacko, V., & Harman, R. (2012). A conditional distribution approach to uniform sampling on spheres and balls in Lp

spaces. Metrika, 75(7), 939-951.
238Reference: “Sphere Point Picking” in MathWorld (replacing inverse cosine with atan2 equivalent).

61

https://peteroupc.github.io/randomgen.zip
http://mathworld.wolfram.com/SpherePointPicking.html

10 Other Documents
The following are some additional articles I have written on the topic of randomization and pseudorandom
variate generation. All of them are open-source.

• Random Number Generator Recommendations for Applications239

• More Random Sampling Methods240

• Code Generator for Discrete Distributions241

• The Most Common Topics Involving Randomization242

• Partially-Sampled Random Numbers for Accurate Sampling of Continuous Distribu-
tions243

• Bernoulli Factory Algorithms244

• Testing PRNGs for High-Quality Randomness245

• Examples of High-Quality PRNGs246

11 Notes

12 Appendix

12.1 Sources of Random Numbers
All the randomization methods presented on this page assume that we have an endless source of numbers
such that—

• the numbers follow a uniform distribution, and
• each number is chosen independently of any other choice.

That is, the methods assume we have a “source of (uniform) random numbers”. (Thus, none of these
methods generate random numbers themselves, strictly speaking, but rather, they assume we have a source
of them already.)

However, this is an ideal assumption which is hard if not impossible to achieve in practice.

Indeed, most applications make use of pseudorandom number generators (PRNGs), which are algorithms that
produce random-behaving numbers, that is, numbers that simulate the ideal “source of random numbers”
mentioned above. As a result, the performance and quality of the methods on this page will depend in
practice on the quality of the PRNG (or other generator of random-behaving numbers) even if they don’t in
theory.

The “source of random numbers” can be simulated by a wide range of devices and programs, including
PRNGs, so-called ”true random number generators”, and application programming interfaces (APIs) that
provide uniform random-behaving numbers to applications. An application ought to choose devices or
programs that simulate the “source of random numbers” well enough for its purposes, including in terms
of their statistical quality, “unguessability”, or both. However, it is outside this document’s scope to give
further advice on this choice.
239https://peteroupc.github.io/random.html
240https://peteroupc.github.io/randomnotes.html
241https://peteroupc.github.io/autodist.html
242https://peteroupc.github.io/randomcommon.html
243https://peteroupc.github.io/exporand.html
244https://peteroupc.github.io/bernoulli.html
245https://peteroupc.github.io/randomtest.html
246https://peteroupc.github.io/hqprng.html

62

https://peteroupc.github.io/random.html
https://peteroupc.github.io/randomnotes.html
https://peteroupc.github.io/autodist.html
https://peteroupc.github.io/randomcommon.html
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/bernoulli.html
https://peteroupc.github.io/randomtest.html
https://peteroupc.github.io/hqprng.html

The randomization methods in this document are deterministic (that is, they produce the same values given
the same state and input), regardless of what simulates the “source of random numbers” (such as a PRNG
or a “true random number generator”). The exceptions are as follows:

• The methods do not “know” what numbers will be produced next by the “source of random numbers”
(or by whatever is simulating that source).

• A few methods read lines from files of unknown size; they won’t “know” the contents of those lines
before reading them.

12.2 Implementation Considerations
1. Shell scripts and Microsoft Windows batch files are designed for running other programs, rather

than general-purpose programming. However, batch files and bash (a shell script interpreter) might
support a variable which returns a uniformly distributed “random” integer in the interval [0, 32767]
(called %RANDOM% or $RANDOM, respectively); neither variable is designed for information security. When-
ever possible, the methods in this document should not be implemented in shell scripts or batch files,
especially if information security is a goal.

2. Query languages such as SQL have no procedural elements such as loops and branches. Moreover,
standard SQL has no way to choose a number at random, but popular SQL dialects often do — with
idiosyncratic behavior — and describing differences between SQL dialects is outside the scope of this
document. Whenever possible, the methods in this document should not be implemented in SQL,
especially if information security is a goal.

3. Stateless PRNGs. Most designs of pseudorandom number generators (PRNGs) in common use
maintain an internal state and update that state each time they generate a pseudorandom number. But
for stateless PRNG designs247 (including so-called “splittable” PRNGs), RNDINT(), NEXTRAND(),
and other random sampling methods in this document may have to be adjusted accordingly (usually
by adding an additional parameter).

4. Multithreading. Multithreading can serve as a fast way to generate multiple random variates at
once; it is not reflected in the pseudocode given in this page. In general, this involves dividing a block
of memory into chunks, assigning each chunk to a thread, giving each thread its own instance of a pseu-
dorandom number generator (or another program that simulates a “source of random numbers”), and
letting each thread fill its assigned chunk with random variates. For an example, see “Multithreaded
Generation248”.

5. Fixed amount of “randomness”. Given a k-bit integer n (which lies in the interval [0, 2𝑘) and is
chosen uniformly at random), values that approximate a probability distribution (for example, Poisson,
Normal) can be generated with the integer n by—

• finding the quantile for (2𝑛 + 1)/(2𝑘+1) (which comes from dividing the interval [0, 1] into 2𝑘

equal pieces and sampling the middle of one of the pieces), or
• using n to help initialize a local PRNG and using the PRNG to generate a sample from that

distribution.

An application should use this suggestion only if it wants to ensure a fixed amount of “randomness”
per sampled outcome is ultimately drawn, because the sampling method can return one of only 2𝑘

different outcomes or less this way. (In general, n can’t be chosen uniformly at random with a fixed
number of randomly chosen bits, unless the number of different outcomes for n is a power of 2.) In
general, neither approach given above allows for controlling the approximation error in generating a
value this way.

247https://peteroupc.github.io/random.html#Designs_for_PRNGs
248https://docs.scipy.org/doc/numpy/reference/random/multithreading.html

63

https://peteroupc.github.io/random.html#Designs_for_PRNGs
https://docs.scipy.org/doc/numpy/reference/random/multithreading.html
https://docs.scipy.org/doc/numpy/reference/random/multithreading.html

12.3 Security Considerations
If an application samples at random for information security purposes, such as to generate passwords or
encryption keys at random, the following applies:

1. “Cryptographic generators”. The application has to use a device or program that generates random-
behaving numbers that are hard to guess for information security purposes (a so-called “cryptographic
generator”). Choosing such a device or program is outside the scope of this document.

2. Timing attacks. Certain security and privacy attacks have exploited timing and other differences to
recover cleartext, encryption keys, or other secret or private data. Thus, security algorithms have been
developed to have no timing differences that reveal anything about any secret or private inputs, such
as keys, passwords, or “seeds” for pseudorandom number generators. But a sampling algorithm of this
kind does not exist for all sampling distributions (Ben Dov et al. 2023)249; 250.

3. Security algorithms out of scope. Security algorithms that take random secrets to generate random
security parameters, such as encryption keys, public/private key pairs, elliptic curves, or points on an
elliptic curve, are outside this document’s scope.

4. Floating-point numbers. Numbers chosen at random for security purposes are almost always inte-
gers (and, in very rare cases, fixed-point numbers). Even in the few security applications where those
numbers are floating-point numbers (notably differential privacy and lattice-based cryptography), there
are ways to avoid such floating-point numbers251.

13 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero252.

249Ben Dov, Y., David, L., et al., “Resistance to Timing Attacks for Sampling and Privacy Preserving Schemes”, FORC 2023.
250In the privacy context, see, for example, Awan, J. and Rao, V., 2022. “Privacy-Aware Rejection Sampling”,

arXiv:2108.00965. https://arxiv.org/abs/2108.00965
251For example, see Balcer, V., Vadhan, S., “Differential Privacy on Finite Computers”, Dec. 4, 2018; as well as Micciancio, D.

and Walter, M., “Gaussian sampling over the integers: Efficient, generic, constant-time”, in Annual International Cryptology
Conference, August 2017 (pp. 455-485).
252https://creativecommons.org/publicdomain/zero/1.0/

64

https://creativecommons.org/publicdomain/zero/1.0/
https://arxiv.org/abs/2108.00965

	Introduction
	About This Document

	Contents
	Notation
	Uniform Random Integers
	RNDINT: Random Integers in [0, N]
	RNDINTRANGE: Random Integers in [N, M]
	RNDINTEXC: Random Integers in [0, N)
	RNDINTEXCRANGE: Random Integers in [N, M)
	Uniform Random Bits
	Examples of Using the RNDINT Family

	Randomization Techniques
	Boolean (True/False) Conditions
	Random Sampling
	Sampling With Replacement: Choosing a Random Item from a List
	Sampling Without Replacement: Choosing Several Unique Items
	Shuffling
	Random Character Strings
	Pseudocode for Random Sampling

	Rejection Sampling
	Random Walks
	Random Dates and Times
	Randomization in Statistical Testing
	Markov Chains
	Random Graphs
	A Note on Sorting Random Variates

	General Non-Uniform Distributions
	Weighted Choice
	Weighted Choice With Replacement
	Weighted Choice Without Replacement
	Unequal Probability Sampling

	Mixtures of Distributions
	Transformations of Random Variates

	Specific Non-Uniform Distributions
	Dice
	Binomial Distribution
	Negative Binomial Distribution
	Geometric Distribution
	Exponential Distribution
	Poisson Distribution
	Pólya–Eggenberger Distribution
	Random Integers with a Given Positive Sum
	Multinomial Distribution

	Randomization with Real Numbers
	Uniform Random Real Numbers
	For Fixed-Point Number Formats
	For Rational Number Formats
	For Floating-Point Number Formats

	Monte Carlo Sampling: Expected Values, Integration, and Optimization
	Point Sample Selection
	Notes on Randomization Involving Real Numbers
	Random Walks: Additional Examples
	Transformations: Additional Examples

	Sampling from a Distribution of Data Points
	Sampling from an Arbitrary Distribution
	Sampling for Discrete Distributions
	Inverse Transform Sampling
	Rejection Sampling with a PDF-Like Function
	Alternating Series
	Markov-Chain Monte Carlo

	Piecewise Linear Distribution
	Specific Distributions
	Index of Non-Uniform Distributions
	Geometric Sampling
	Random Points Inside a Simplex
	Random Points on a Sphere
	Random Points Inside a Box, Ball, Shell, or Cone
	Random Latitude and Longitude

	Acknowledgments
	Other Documents
	Notes
	Appendix
	Sources of Random Numbers
	Implementation Considerations
	Security Considerations

	License

