
The Most Common Topics Involving Randomization

Peter Occil

This version of the document is dated 2024-12-24.

Peter Occil

Abstract: This article goes over some of the most common topics involving randomization in programming,
and serves as a guide to programmers looking to solve their randomization problems. They were based
on the most commonly pointed-to questions involving randomization on a Q&A site. The topics included
generating uniform random variates, unique random values, choosing one or more random items, shuffling,
and querying random records from a database.

1 Introduction
This page goes over some of the most common topics involving randomization (including “random number
generation”) in programming, and serves as a guide to programmers looking to solve their randomization
problems.

The topics on this page were chosen based on an analysis of the Stack Overflow questions that other questions
were most often marked as duplicates of (using the Stack Exchange Data Explorer query named “Most popular
duplicate targets by tag”, with “random” as the TagName).

The analysis showed the following topics were among the most commonly asked:

• Generating uniform random integers in a range.
• Generating uniform random floating-point numbers in a range.
• Generating unique random integers in a range.
• Choosing an item at random from a list.
• Choosing several unique items from a list.
• Choosing items with separate probabilities.
• Choosing records at random from a database.
• Shuffling.
• Generating a random text string of characters selected from a restricted character set (such as only A

to Z, a to z, 0 to 9).

Not all topics are covered above. Notably, the analysis ignores questions that were API-specific or
programming-language specific, unless the underlying issue is present in multiple APIs or languages.

Another notable trend is that these topics were asked for programming languages where convenient APIs
for these tasks were missing. This is why I recommend that new programming language APIs1 provide
functionality covering the topics above in their standard libraries, to ease the burden of programmers using
that language.

The following sections will detail the topics given earlier, with suggestions on how to solve them. Many of
the links point to sections of my article “Randomization and Sampling Methods2”.

1https://peteroupc.github.io/random.html#Implementing_New_RNG_APIs
2https://peteroupc.github.io/randomfunc.html

1

mailto:poccil14@gmail.com
https://peteroupc.github.io/random.html#Implementing_New_RNG_APIs
https://peteroupc.github.io/randomfunc.html

The pseudocode conventions3 apply to this document.

All the randomization methods presented on this page assume there is a source of “truly” random numbers.

2 Contents
• Introduction
• Contents
• Uniform Numbers in a Range
• Choosing Random Items
• Unique Integers or Items
• Shuffling
• Random Records from a Database
• Random Character Strings
• Choosing Items with Separate Probabilities
• Other Topics
• Notes
• License

3 Uniform Numbers in a Range
For algorithms on generating uniform random integers in a range, see “Uniform Random Integers”4.
It should be noted there that most pseudorandom number generators in common use output 32- or 64-bit
nonnegative integers, and for JavaScript, the idiom (Math.random() < 0.5 ? 0 : 1) will work in many
practical cases to generate bits (zeros and ones) at random. Here is a JavaScript example of generating a
random integer in the interval [**minInclusive, maxExclusive), using the Fast Dice Roller by J. Lumbroso
(2013)5:

function randomInt(minInclusive, maxExclusive) {
var maxInclusive = (maxExclusive - minInclusive) - 1
if (minInclusive == maxInclusive) return minInclusive
var x = 1
var y = 0
while(true) {
x = x * 2
var randomBit = (Math.random() < 0.5 ? 0 : 1)
y = y * 2 + randomBit
if(x > maxInclusive) {
if (y <= maxInclusive) { return y + minInclusive }
x = x - maxInclusive - 1
y = y - maxInclusive - 1

}
}

}

Many common programming languages have no convenient or correct way to generate numbers in a range
at random. For example:

3https://peteroupc.github.io/pseudocode.html
4https://peteroupc.github.io/randomfunc.html#Uniform_Random_Integers
5Goualard F. (2020) Generating Random Floating-Point Numbers by Dividing Integers: A Case Study. In: Krzhizhanovskaya

V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12138. Springer, Cham.
https://doi.org/10.1007/978-3-030-50417-5_2

2

https://peteroupc.github.io/pseudocode.html
https://peteroupc.github.io/randomfunc.html#Uniform_Random_Integers
https://doi.org/10.1007/978-3-030-50417-5_2

• Java’s java.util.Random until version 8 had methods to produce ints in the interval [0, n) (nextInt),
but not longs in that interval or integers in an arbitrary interval [a, b). Additional methods named
longs and ints were later provided that offer this functionality, but even so, they are often not as
convenient as the existing nextInt method.

• JavaScript until recently has only one API that exposes a random number generator, namely
Math.random(), and no built-in method for shuffling or producing integers at random, among other
things. Naïve solutions such as Math.floor(Math.random()*x)+y are not guaranteed to work reliably,
in part because JavaScript doesn’t require any particular implementation for Math.random.

• C’s rand function produces random integers in a predetermined range ([0, RAND_MAX]) that is not within
the application’s control. This is just one of a host of issues with rand6, by the way (unspecified
algorithm, yet is initializable with “srand” for repeatability; nonthread-safety; unspecified distribution;
historical implementations had weak low bits; etc.).

For algorithms on generating uniform random floating-point numbers in a range, see “For Floating-Point
Number Formats”7. Floating-point number generation has a myriad of issues not present with integer
generation. For example, no computer can choose from all real numbers between two others, since there
are infinitely many of them, and also, naïvely multiplying or dividing an integer by a constant (for example,
Math.random()*x in JavaScript) will necessarily miss many representable floating-point numbers (for details,
see Goualard (2020)8).

4 Choosing Random Items
In general, choosing a random item from a list is trivial: choose a random integer in [0, n), where n is the
size of the list, then take the item at the chosen position. The previous section already discussed how to
generate a random integer.

However, if the number of items is not known in advance, then a technique called reservoir sampling can be
used to choose one or more items at random. Here is how to implement reservoir sampling.

1. Set N to 1.
2. If no items remain, return the last chosen item. Otherwise, take the next item and choose it with

probability 1/N.
3. Add 1 to N and go to step 2.

See “Pseudocode for Random Sampling9” for an algorithm for reservoir sampling.

5 Unique Integers or Items
Generating unique random integers or items is also known as sampling without replacement, without repetition,
or without duplicates.

There are many ways to generate unique items, depending on the number of items to choose, the number of
items to choose from, and so on, and they have different tradeoffs in terms of time and memory requirements.
See “Sampling Without Replacement: Choosing Several Unique Items10” for advice.

Some applications require generating unique values that identify something, such as database records, user
accounts, and so on. However, there are certain things to keep in mind when generating unique values for

6https://stackoverflow.com/questions/52869166/why-is-the-use-of-rand-considered-bad/52881465#52881465
7https://peteroupc.github.io/randomfunc.html#For_Floating_Point_Number_Formats
8Goualard F. (2020) Generating Random Floating-Point Numbers by Dividing Integers: A Case Study. In: Krzhizhanovskaya

V. et al. (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12138. Springer, Cham.
https://doi.org/10.1007/978-3-030-50417-5_2

9https://peteroupc.github.io/randomfunc.html#Pseudocode_for_Random_Sampling
10https://peteroupc.github.io/randomfunc.html#Sampling_Without_Replacement_Choosing_Several_Unique_Items

3

https://stackoverflow.com/questions/52869166/why-is-the-use-of-rand-considered-bad/52881465#52881465
https://peteroupc.github.io/randomfunc.html#For_Floating_Point_Number_Formats
https://peteroupc.github.io/randomfunc.html#For_Floating_Point_Number_Formats
https://peteroupc.github.io/randomfunc.html#Pseudocode_for_Random_Sampling
https://peteroupc.github.io/randomfunc.html#Sampling_Without_Replacement_Choosing_Several_Unique_Items
https://doi.org/10.1007/978-3-030-50417-5_2

this purpose; see “Unique Random Identifiers11” for more information.

6 Shuffling
An algorithm to randomize (shuffle) the order of a list is given in “Shuffling”12. It should be noted that
the algorithm is easy to implement incorrectly. Also, the choice of random number generator is important
when it comes to shuffling; see my RNG recommendation document on shuffling13.

7 Random Records from a Database
Querying random records (rows) from a database usually involves the database language SQL. However, SQL
is implemented very differently in practice between database management systems (DBMSs), so that even
trivial SQL statements are not guaranteed to work the same from one DBMS to another. Moreover, SQL
has no loops, no branches, and no standard way to produce randomly generated or pseudorandom numbers.
Thus, the correct way to query random records from a database will vary from DBMS to DBMS.

With that said, the following specific situations tend to come up in random record queries.

• Querying one random record from a database.
• Querying a specified number of random records from a database.
• Querying one or more records each with a probability proportional to its weight. Very generally, this

can be done by giving the table a column where each entry is a number generated as follows: ln(R) /
W (where W is the record’s weight greater than 0, itself its own column, and R is a per-record uniform
random variate in the open interval (0, 1)) (see also (Arratia 2002)14), then taking the records with
the highest values of that column, but the efficiency of this technique depends on the DBMS.

8 Random Character Strings
Many applications need to generate a random string whose characters are chosen from a restricted set of
characters. Popular choices include so-called alphanumeric strings, where the restricted character set is A to
Z, a to z, 0 to 9. An algorithm for generating random strings is given in “Random Character Strings15”.

However, the following are some of the many considerations involving random string generation:

• If the string needs to be typed in by customers, or to be memorable, it may be important to choose a
character set carefully or allow typing mistakes to be detected16.

• If the string identifies something, the application may require strings it generates to be unique; see
Unique Random Identifiers17 for considerations.

• If the string is a secret value of any kind, including a password, a bearer credential, a session identifier,
a nonce, a “confirmation code”, a “verification code”, or a “forgot-password” code, then the string
has to be generated using a cryptographic RNG18 (such as the secrets module in Python or the
random_bytes function in PHP).

11https://peteroupc.github.io/random.html#Unique_Random_Identifiers
12https://peteroupc.github.io/randomfunc.html#Shuffling
13https://peteroupc.github.io/random.html#Shuffling
14Arratia, R., “On the amount of dependence in the prime factorization of a uniform random integer”, Contemporary Com-

binatorics 10(29), 91, 2002.
15https://peteroupc.github.io/randomfunc.html#Random_Character_Strings
16https://espadrine.github.io/blog/posts/a-base32-checksum.html
17https://peteroupc.github.io/random.html#Unique_Random_Identifiers
18https://peteroupc.github.io/random.html#Existing_RNG_APIs_in_Programming_Languages

4

https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://peteroupc.github.io/randomfunc.html#Shuffling
https://peteroupc.github.io/random.html#Shuffling
https://peteroupc.github.io/randomfunc.html#Random_Character_Strings
https://espadrine.github.io/blog/posts/a-base32-checksum.html
https://peteroupc.github.io/random.html#Unique_Random_Identifiers
https://peteroupc.github.io/random.html#Existing_RNG_APIs_in_Programming_Languages

9 Choosing Items with Separate Probabilities
Weighted choice (also known as a categorical distribution) is a random choice of items, where each item has
a weight and is chosen with a probability proportional to its weight.

For algorithms on weighted choice, see “Weighted Choice With Replacement19”, which covers choices
in which items are taken and put back.

The pseudocode shown there is a straightforward way to implement weighted choice, but there are other
alternatives (many of which are implemented in Python sample code20). They include rejection sam-
pling, Vose’s version of the alias method (VoseAlias; see “Darts, Dice, and Coins: Sampling from
a Discrete Distribution21” by Keith Schwarz for more information), and the Fast Loaded Dice Roller
(FastLoadedDiceRoller) (Saad et al. 2020)22.

Weighted choice without replacement is a choice where each item can be chosen no more than once. If the
weights have the property that higher-weighted items have a greater chance of appearing first, then:

• The simplest way to implement this is to use weighted choice with replacement, except that after an
index is chosen, that index’s weight is set to 0 to keep the index from being chosen again.

• Other options are given in “Weighted Choice Without Replacement23”.

However, these methods do not necessarily ensure that a random sample of n items will include a given item
with probability proportional to that item’s weight. This is a similar problem that is not solved by these
methods; for that problem, see “Algorithms of sampling with equal or unequal probabilities24”.

Note that choosing true with a given probability, or false otherwise, is a special case of weighted sampling
involving two items (also known as a Bernoulli trial). But there are much simpler ways of choosing true
or false this way; see “Boolean (True/False) Conditions25”. Perhaps the most practical is the idiom
RNDINTEXC(Y) < X, which chooses true with probability X/Y, false otherwise.

10 Other Topics
Other topics showed up in the analysis, and it’s worth mentioning them here. These topics included:

• Generating a random derangement, or a random shuffle where every item moves to a different position
(see “Shuffling”26; see also questions/25200220).

• Generating a number that follows the normal distribution27.
• Generating a number that follows an arbitrary distribution28.
• Random colors29.
• Randomly generating numbers with a given sum30.
• Randomly generating dates and times31.
• Stratified sampling (per-group sampling).

19https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
20https://peteroupc.github.io/randomgen.zip
21https://www.keithschwarz.com/darts-dice-coins/
22Saad, F.A., Freer C.E., et al. “The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability

Distributions”, in AISTATS 2020: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research 108, Palermo, Sicily, Italy, 2020.

23https://peteroupc.github.io/randomfunc.html#Weighted_Choice_Without_Replacement
24https://www.eustat.eus/productosServicios/52.1_Unequal_prob_sampling.pdf
25https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
26https://peteroupc.github.io/randomfunc.html#Shuffling
27https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
28https://peteroupc.github.io/randomfunc.html#Random_Numbers_from_an_Arbitrary_Distribution
29https://peteroupc.github.io/colorgen.html#Generating_a_Random_Color
30https://peteroupc.github.io/randomfunc.html#Random_Integers_with_a_Given_Positive_Sum
31https://peteroupc.github.io/randomfunc.html#Random_Dates_and_Times

5

https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
https://peteroupc.github.io/randomgen.zip
https://www.keithschwarz.com/darts-dice-coins/
https://www.keithschwarz.com/darts-dice-coins/
https://peteroupc.github.io/randomfunc.html#Weighted_Choice_Without_Replacement
https://www.eustat.eus/productosServicios/52.1_Unequal_prob_sampling.pdf
https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
https://peteroupc.github.io/randomfunc.html#Shuffling
https://peteroupc.github.io/randomnotes.html#Normal_Gaussian_Distribution
https://peteroupc.github.io/randomfunc.html#Random_Numbers_from_an_Arbitrary_Distribution
https://peteroupc.github.io/colorgen.html#Generating_a_Random_Color
https://peteroupc.github.io/randomfunc.html#Random_Integers_with_a_Given_Positive_Sum
https://peteroupc.github.io/randomfunc.html#Random_Dates_and_Times

• Generating a random point inside a circle32.

11 Notes

12 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero33.

32https://peteroupc.github.io/randomfunc.html#Random_Points_Inside_a_Ball_Shell_or_Cone
33https://creativecommons.org/publicdomain/zero/1.0/

6

https://peteroupc.github.io/randomfunc.html#Random_Points_Inside_a_Ball_Shell_or_Cone
https://creativecommons.org/publicdomain/zero/1.0/

	Introduction
	Contents
	Uniform Numbers in a Range
	Choosing Random Items
	Unique Integers or Items
	Shuffling
	Random Records from a Database
	Random Character Strings
	Choosing Items with Separate Probabilities
	Other Topics
	Notes
	License

