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Most apps that use randomly generated or pseudorandom numbers care about either unpredictability, high
quality, or repeatability. This article gives recommendations on choosing the right kind of random number
generator (RNG) or pseudorandom number generator (PRNG) for the application.

1 Introduction
Many applications rely on random number generators (RNGs) to produce a sequence of numbers that seem-
ingly occur by chance; however, it’s not enough for this sequence to merely “look random”. But unfortunately,
most popular programming languages today—

• specify few and weak requirements on their built-in RNGs (such as C’s rand), or
• specify a relatively weak general-purpose RNG (such as Java’s java.math.Random), or
• implement RNGs by default that leave something to be desired (such as Mersenne Twister), or
• initialize RNGs with a timestamp by default (such as the .NET Framework implementation of

System.Random1), or
• use RNGs that are initialized with a fixed value by default (as is the case in MATLAB2 and C3),

so that as a result, many applications use RNGs, especially built-in RNGs, that have little assurance of
high quality or security. That is why this document discusses high-quality RNGs and suggests existing
implementations of them.

This document covers:

• Cryptographic RNGs4, noncryptographic RNGs, and manually-seeded pseudorandom number genera-
tors, as well as recommendations on their use and properties.

• Nondeterministic sources, entropy, and seed generation.
• Existing implementations of RNGs.
• Guidance for implementations of RNGs designed for reuse by applications.
• Issues on shuffling with an RNG.

This document does not cover:
1https://docs.microsoft.com/dotnet/api/system.random
2https://www.mathworks.com/help/matlab/examples/controlling-random-number-generation.html
3See also the question titled “Matlab rand and c++ rand()” on Stack Overflow.
4A distinction between cryptographic and noncryptographic RNGs seems natural, because many programming languages

offer a general-purpose RNG (such as C’s rand or Java’s java.util.Random) and sometimes an RNG intended for information
security purposes (such as Ruby’s SecureRandom).
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• Testing an RNG implementation for correctness5 or statistical quality. See my document on testing
PRNGs6.

• Generating numbers with unequal probabilities; I discuss this topic in another document7.
• Generators of low-discrepancy sequences (quasirandom sequences), such as Sobol sequences. They are

not RNGs since the numbers they produce depend on prior results.

Note: For some applications, such as the gambling industry or the financial industry, the selection
of RNGs may be limited by regulatory requirements. This document does not take precedence
over such requirements.

1.1 About This Document
This is an open-source document; for an updated version, see the source code8 or its rendering
on GitHub9. You can send comments on this document on the GitHub issues page10.
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5For example, see F. Dörre and V. Klebanov, “Practical Detection of Entropy Loss in Pseudo-Random Number Generators”,

2016.
6https://peteroupc.github.io/randomtest.html
7https://peteroupc.github.io/randomfunc.html
8https://github.com/peteroupc/peteroupc.github.io/raw/master/random.md
9https://github.com/peteroupc/peteroupc.github.io/blob/master/random.md

10https://github.com/peteroupc/peteroupc.github.io/issues
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3 Definitions
In this document:

• Random number generator (RNG) means software, hardware, or a combination of both that seeks
to generate integers in a bounded range that behave as if each possible outcome occurs with the same
chance as any other without influence by anything else11. (In this document, the term RNG includes
pseudorandom number generators, defined next.)

• Pseudorandom number generator (PRNG) means a random number generator that produces
numbers by an algorithm that mathematically expands its input.

• Seed means arbitrary data serving as a PRNG’s input.
• Information security means keeping information safe from attacks that could access, use, delay, or

manipulate that information.12

4 Summary
• Does the application use random-behaving numbers for information security purposes (for example,

as passwords or other secrets)?
– Yes: Use a cryptographic RNG.

• No: Does the application require reproducible “random” numbers?
– Yes: Use a manually-seeded high-quality PRNG. If a seed is known, use it. Otherwise, generate

a fresh seed using a cryptographic RNG.
∗ Does the application run multiple independent processes that use pseudorandom num-
bers?
· No: Seed one PRNG with the seed determined above.
· Yes: Pass the seed determined above to each process as described in “Seed Generation

for Noncryptographic PRNGs”.
• No: Is a cryptographic RNG too slow for the application?

– Yes: Use a high-quality PRNG with a seed generated using a cryptographic RNG.
– No: Use a cryptographic RNG.

5 Cryptographic RNGs
Cryptographic RNGs (also known as “cryptographically strong” or “cryptographically secure” RNGs) seek
to generate numbers that not only “look random”, but are cost-prohibitive to guess. An application should
use a cryptographic RNG whenever the application—

11Items that produce numbers or signals that follow a non-uniform distribution are not considered RNGs in this document.
(For example, Gaussian and similar noise generators are not considered RNGs.) Many of these items, however, typically serve
as sources from which uniform random-behaving integers can be derived through randomness extraction techniques (see “Seed
Generation”).Likewise, items that produce floating-point numbers are not considered RNGs here, even if they sample from a
uniform distribution. An example is the dSFMT algorithm, which ultimately uses a generator of pseudorandom integers.

12See also the FIPS 200 definition (“The protection of information and information systems from unauthorized access, use,
disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and availability”) and ISO/IEC
27000.
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• generates random-behaving numbers for information security purposes, or
• generates random-behaving numbers so infrequently that the RNG’s speed is not a concern.

See “Cryptographic RNGs: Requirements” for requirements. See “Existing RNG APIs in Pro-
gramming Languages” for existing APIs. For cryptographic RNGs, an application should use only one
thread-safe instance of the RNG for the entire application to use.

Examples: A cryptographic RNG is recommended—

• when generating security parameters (including encryption keys, random passwords, nonces,
session identifiers, “salts”, and secret values),

• for the purposes of sending or receiving messages or other data securely between computers,
or

• whenever predicting future random outcomes would give a player or user a significant and
unfair advantage (such as in multiplayer networked games).

6 Noncryptographic PRNGs
Noncryptographic PRNGs vary widely in the quality of randomness of the numbers they generate. For this
reason, a noncryptographic PRNG should not be used—

• for information security purposes (for example, to generate random passwords, encryption keys, or
other secrets),

• if cryptographic RNGs are fast enough for the application, or
• if the PRNG is not high quality (see “High-Quality RNGs: Requirements”).

Noncryptographic PRNGs can be automatically seeded (a new seed is generated upon PRNG creation) or
manually seeded (the PRNG uses a predetermined seed).

• See “When to Use a Manually-Seeded PRNG” to learn which kind of seeding to use.
• See “Seed Generation for Noncryptographic PRNGs” for advice on how to seed.
• See “Existing RNG APIs in Programming Languages” for existing APIs.
• For automatically-seeded PRNGs, an application should use only one instance of the generator and

pass it around to parts of the application that need it.

7 Manually-Seeded PRNGs
A given pseudorandom number generator (PRNG) generates the same sequence of “random” numbers for
the same “seed”. Some applications care about reproducible “randomness” and thus could set a PRNG’s
seed manually for reproducible “random” numbers.

7.1 When to Use a Manually-Seeded PRNG
By seeding a PRNG manually for reproducible “randomness”, an application will be tied to that PRNG or
its implementation. For this reason, an application should not use a manually-seeded PRNG (rather than a
cryptographic or automatically-seeded RNG) unless—

1. the application might need to generate the same “random” result multiple times,
2. the application either—

• makes the seed (or a “code” or “password” based on the seed) accessible to the user, or
• finds it impractical to store or distribute the “random” numbers or “random” content, rather than

the seed, for later use (for example, to store those numbers to “replay” later, to store that content
in a “save file”, or to distribute that content rather than a seed to networked users), and

3. any feature that uses such a PRNG to generate that “random” result is reproducible, in that it produces
the same “random” result for the same seed for as long as the feature is still in use by the application.
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7.2 Manually-Seeded PRNG Recommendations
If an application chooses to use a manually-seeded PRNG for reproducible “randomness”, the application—

• should choose a high-quality PRNG,
• should choose a PRNG implementation with consistent behavior that will not change in the future,
• ought to document the chosen PRNG being used as well as all the parameters for that PRNG, and
• should not seed the PRNG with floating-point numbers or generate floating-point numbers with that

PRNG.

For advice on generating seeds for the PRNG, see “Seed Generation for Noncryptographic PRNGs”).

Example: An application could implement a manually-seeded PRNG using a third-party library
that specifically says it implements a high-quality PRNG algorithm, and could initialize that
PRNG using a bit sequence from a cryptographic RNG. The developers could also mention the
use of the specific PRNG chosen on any code that uses it, to alert other developers that the
PRNG needs to remain unchanged.

7.3 Manually-Seeded PRNG Use Cases
Use cases for manually-seeded PRNGs include the following:

• Simulations and machine learning. This includes physics simulations and artificial intelligence (AI) in
games, as well as simulations to reproduce published research data.

• Monte Carlo estimations.
• Procedural noise generation.
• Games that generate “random” content that is impractical to store.
• Unit tests in which “randomness” ought not to influence whether they pass or fail. Here, a manually-

seeded PRNG with a fixed seed is used in place of another kind of RNG for the purpose of the test, to
help ensure consistent results across the computers under test.

7.4 Manually-Seeded PRNGs in Games
Many kinds of game software generate seemingly “random” game content that might need to be repeatedly
regenerated, such as—

• procedurally generated maps for a role-playing game,
• shuffling a virtual deck of cards for a solitaire game, or
• a randomly chosen configuration of a game board or puzzle board.

In general, the bigger that “random” content is, the greater the justification to use a manually-seeded PRNG
and a custom seed to generate that content. The following are special cases:

1. If the game needs reproducible “random” content only at the start of the game session (for example,
a “random” game board or a “random” order of virtual cards) and that content is small (say, no more
than a hundred numbers):
• The game should not use a manually-seeded PRNG unless the seed is based on a “code” or

“password” entered by the user. This is a good sign that the game ought to store the “random”
content instead of a seed.

2. In a networked game where multiple computers (for example, multiple players, or a client and server)
have a shared view of the game state and numbers from an RNG or PRNG are used to update that
game state:
• The game should not use a manually-seeded PRNG where predicting a random outcome could

give a player a significant and unfair advantage (for example, the random outcome is the result
of a die roll, or the top card of the draw pile, for a board or card game). The game may use
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such a PRNG in other cases to ensure the game state is consistent among computers, including
in physics simulations and AI.

Examples:

1. Suppose a game generates a map with random terrain (which uses an RNG to produce lots
of numbers) and shows the player a “code” to generate that map (such as a barcode or a
string of letters and digits). In this case, the game—

• may change the algorithm it uses to generate random maps, but
• should use, in connection with the new algorithm, “codes” that can’t be confused with

“codes” it used for previous algorithms, and
• should continue to generate the same random map using an old “code” when the player

enters it, even after the change to a new algorithm.

2. Suppose a game implements a chapter that involves navigating a randomly generated dun-
geon with randomly scattered monsters and items. If the layout of the dungeon, monsters,
and items has to be the same for a given week and for all players, the game can seed a
PRNG with a hash code generated from the current week, the current month, the current
year, and, optionally, a constant sequence of bits.

7.5 Single Random Value
If an application requires only one pseudorandom value, with a fixed number of bits, then the application
can pass the seed to a hash function rather than a PRNG. Examples of this include the following:

• Generating a color pseudorandomly, by passing the seed to the MD5 hash function, which outputs a
128-bit hash code, and taking the first 24 bits of the hash code as the pseudorandom color.

• Generating a pseudorandom number in a GLSL (OpenGL Shading Language) fragment shader by
passing the fragment coordinates (which vary for each fragment, or “pixel”) as well as a seed (which is
the same for all fragments) to the Wang hash, which outputs a 32-bit integer.13

7.6 Ensuring Reproducibility
To ensure that a manually-seeded PRNG delivers reproducible “random” numbers across computers, across
runs, and across application versions, an application needs to take special care. Reproducibility is often not
achievable if the application relies on features or behavior outside the application’s control, including any of
the following:

• Floating-point numbers are a major source of varying results. Different implementations of the
same floating-point operation might have subtle differences even if they’re given the same input.14 It
is nontrivial to control for all of these differences, and they include:

– Differences in accuracy, as with Java’s Math vs. StrictMath, or the x87 FSIN instruction vs. a
software implementation of sine.

13However, some versions of GLSL (notably GLSL ES 1.0, as used by WebGL 1.0) might support integers with a restricted
range (as low as -1024 to 1024) rather than 32-bit or bigger integers as are otherwise common, making it difficult to write
hash functions for generating pseudorandom numbers. An application ought to choose hash functions that deliver acceptable
“random” numbers regardless of the kinds of numbers supported.An alternative for GLSL and other fragment or pixel shaders to
support “randomness” is to have the shader sample a “noise texture” with randomly generated data in each pixel; for example,
C. Peters, “Free blue noise textures”, Moments in Graphics, Dec. 22, 2016, discusses how so-called “blue noise” can be
sampled this way.See also N. Reed, “Quick And Easy GPU Random Numbers In D3D11”, Nathan Reed’s coding blog, Jan. 12,
2013.

14For more information, see “Floating-Point Determinism” by Bruce Dawson, the white paper “Floating Point and
IEEE 754 Compliance for NVIDIA GPUs”, and an Intel webinar. https://randomascii.wordpress.com/2013/07/16/flo
ating-point-determinism/ https://docs.nvidia.com/cuda/floating-point/ https://techdecoded.intel.io/essentials/under-what-
conditions-will-my-application-give-reproducible-results
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– Differences in rounding. Results can vary if the application can’t control how floating-point
numbers are rounded.15

– Differences in operation order. Unlike with integers or fixed-point numbers16, adding or multi-
plying floating-point numbers in a different order can change the result. This can happen, for
example, with parallel reductions (such as parallel sums and dot products), which split a calcu-
lation across several parallel tasks and combine their results in the end. Results can vary, even
across runs, if a program automatically chooses whether and how to use parallel reduction.

• Multithreading and dynamic task scheduling can cause pseudorandom numbers to be generated in
a different order or by different threads from one run to the next, causing inconsistent results; this
can happen even if each thread by itself produces the same pseudorandom numbers for the same input
(Leierson et al., 2012)17. Dealing with this issue requires either using a single thread, or assigning
PRNGs to individual tasks rather than threads or the whole application.

• Nondeterministic sources (where the output can vary even if input and state are the same), such
as the file system or the system clock.

• Undocumented, undefined, or implementation-dependent behavior or features, including a
particular hash table traversal order or a particular size for C/C++’s int or long.

Thus, an application ought to use manually-seeded PRNGs only when necessary, to minimize the need for
reproducible “randomness”. Where reproducibility is required, the application ought to avoid floating-point
numbers, nondeterministic features, and other behavior outside its control, and ought to stick to the same
versions of algorithms it uses.

As for reproducible PRNGs, java.util.Random18 is one example of a PRNG with consistent behavior, but
none of the following is such a PRNG:

• The C rand method, as well as C++’s distribution classes from <random>, such as std::uniform_int_distribution,
use implementation-defined algorithms for pseudorandom number generation.

• .NET’s System.Random19 has pseudorandom number generation behavior that could change in the
future.

8 Nondeterministic Sources and Seed Generation
RNGs ultimately rely on so-called nondeterministic sources; without such sources, no computer can produce
numbers at random.

8.1 What Is a Nondeterministic Source?
A nondeterministic source is a source that doesn’t give the same output for the same input each time (for
example, a clock that doesn’t always give the same time). There are many kinds of them, but sources useful
for generating numbers at random have hard-to-guess output (that is, they have high entropy; see the next
section). They include—

• timings of interrupts and disk accesses,
• timings of keystrokes, of other input device interactions, or of both,
• thermal noise,

15For integers, this problem also occurs, but is generally limited to the question of rounding after an integer division or
remainder, which different programming languages answer differently.

16Fixed-point numbers are integers that store multiples of 1/n, where n is an integer greater than 0 (for example, 1/10000,
1/256, or 1/65536). Their resolution doesn’t vary depending on the number, unlike with floating-point numbers. “The
Butterfly Effect - Deterministic Physics in The Incredible Machine and Contraption Maker” is one use case
showing how fixed-point numbers aid reproducibility. https://www.moddb.com/members/kevryan/blogs/the-butterfly-effect-
deterministic-physics-in-the-incredible-machine-and-contraption-maker

17Leierson, C.E., et al., “Deterministic Parallel Random-Number Generation for Dynamic Multithreading Platforms”, 2012.
18https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
19https://docs.microsoft.com/dotnet/api/system.random
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• the output generated with A. Seznec’s technique called hardware volatile entropy gathering and expan-
sion (HAVEGE), provided a high-resolution counter is available, and

• differences between two high-resolution counter values taken in quick succession (such as in “Jitter
RNG”; see (Müller)20).

RFC 4086, “Randomness Requirements for Security”, section 3, contains a survey of nondeterministic sources.

Note: Online services that make randomly generated numbers available to applications, as
well as the noise registered by microphone and camera recordings (see RFC 4086 sec. 3.2.1,
(Liebow-Feeser 2017a)21, and (Liebow-Feeser 2017b)22), are additional nondeterministic sources.
However, online services require Internet or other network access, and some of them require
access credentials. Also, many mobile operating systems require applications to declare network,
camera, and microphone access to users upon installation. For these reasons, these kinds of
sources are not recommended if other approaches are adequate.

Example: A program could ask users to flip coins or roll dice and type in their results. If users
do so, the results typed this way will have come from nondeterministic sources (here, coins or
dice).

8.2 What Is Entropy?
Entropy is a value that describes how hard it is to guess a nondeterministic source’s output, compared to
an ideal process of generating independent uniform random bits. Entropy is generally the number of bits
produced by that ideal process. (For example, a 64-bit output with 32 bits of entropy is as hard to guess as
32 independent uniform random bits.) NIST SP 800-90B recommends min-entropy as the entropy measure.
Characterizing a nondeterministic source’s entropy is nontrivial and beyond the scope of this document. See
also RFC 4086 section 2.

8.3 Seed Generation
In general, there are two steps to generate an N-bit seed for a PRNG23:

1. Gather enough data from independent nondeterministic sources to reach N bits of entropy or more.
2. Then, condense the data into an N-bit number, a process called randomness extraction.

See my Note on Randomness Extraction24. It should be mentioned, though, that in information security
applications, unkeyed hash functions should not be used by themselves in randomness extraction.

8.4 Seed Generation for Noncryptographic PRNGs
In general, to generate a seed allowed by a noncryptographic PRNG, an application ought to use a crypto-
graphic RNG or a method described in the previous section.

It is not recommended to seed PRNGs with timestamps, since they can carry the risk of generating the same
“random” number sequence accidentally.25

20Müller, S. “CPU Time Jitter Based Non-Physical True Random Number Generator”.
21Liebow-Feeser, J., “Randomness 101: LavaRand in Production”, blog.cloudflare.com, Nov. 6, 2017.
22Liebow-Feeser, J., “LavaRand in Production: The Nitty-Gritty Technical Details”, blog.cloudflare.com, Nov. 6, 2017.
23Rather than generating a seed, these steps could be a way to simulate a source of numbers chosen independently and

uniformly at random. However, this is generally slower than using PRNGs to simulate that source.
24https://peteroupc.github.io/randextract.html
25For example, many questions on Stack Overflow highlight the pitfalls of creating a new instance of the .NET Framework’s

System.Random each time pseudorandom numbers are needed, rather than only once in the application. See also Johansen, R.
S., “A Primer on Repeatable Random Numbers”, Unity Blog, Jan. 7, 2015. https://blogs.unity3d.com/2015/01/07/a-
primer-on-repeatable-random-numbers/

8

https://peteroupc.github.io/randextract.html
https://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/
https://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/


8.4.1 Seeding Multiple Processes

Some applications require multiple processes (including threads, tasks, or subtasks) to use reproducible
“random” numbers for the same purpose. An example is multiple instances of a simulation with ran-
dom starting conditions. However, noncryptographic PRNGs tend to produce number sequences that are
correlated to each other, which is undesirable for simulations in particular.

To reduce this correlation risk, the application can choose a high-quality PRNG that supports
streams26 of uncorrelated sequences (nonoverlapping sequences that behave like sequences of numbers
chosen uniformly and independently at random) and has an efficient way to assign a different stream to
each process. For example, in some PRNGs, these streams can be formed—

• by initializing PRNGs with consecutive seeds (as in “counter-based” PRNGs (Salmon et al. 2011)27),
or

• by discarding a fixed but huge number of PRNG outputs in an efficient way (“jump-ahead28”).

Multiple processes can be seeded for pseudorandom number generation as follows.29

1. Stream case. If the PRNG supports streams as described above: Generate a seed (or use a predeter-
mined seed), then:

1. Create a PRNG instance for each process.
2. Hash the seed and a fixed identifier to generate a new seed allowed by the PRNG.
3. For each process, advance the PRNG to the next stream (unless it’s the first process), then give

that process a copy of the PRNG’s current internal state.

2. General case. For other PRNGs, or if each process uses a different PRNG design, the following
is a way to seed multiple processes for pseudorandom number generation, but it carries the risk of
generating seeds that lead to overlapping, correlated, or even identical number sequences, especially if
the processes use the same PRNG.30 Generate a seed (or use a predetermined seed), then:

1. Create a PRNG instance for each process. The instances need not all use the same PRNG design
or the same parameters; for example, some can be SFC64 and others xoroshiro128**.

2. For each process, hash the seed, a unique number for that process, and a fixed identifier to generate
a new seed allowed by the process’s PRNG, and initialize that PRNG with the new seed.

3. Leapfrogging (Bauke and Mertens 2007)31. The following is an alternative way to initialize a PRNG
for each process if the number of processes (N) is small. Generate a seed (or use a predetermined seed),
then:

1. Create one PRNG instance. Hash the seed and a fixed identifier to generate a new seed allowed
by the PRNG.

2. Give each process a copy of the PRNG’s state. Then, for the second process, discard 1 output
from its PRNG; for the third process, discard 2 outputs from its PRNG; and so on.

26https://peteroupc.github.io/hqprng.html#prngs-with-stream-support
27Salmon, John K., Mark A. Moraes, Ron O. Dror, and David E. Shaw. “Parallel random numbers: as easy as 1, 2, 3.” In

Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12.
2011.

28https://peteroupc.github.io/jump.html
29P. L’Ecuyer, D. Munger, et al. “Random Numbers for Parallel Computers: Requirements and Methods, With Emphasis on

GPUs”, April 17, 2015, section 4, goes in greater detail on ways to initialize PRNGs for generating pseudorandom numbers in
parallel, including how to ensure reproducible “randomness” this way if that is desired.

30For single-cycle PRNGs, the probability of overlap for N processes each generating L numbers with a PRNG whose cycle
length is P is at most N*N*L/P (S. Vigna, “On the probability of overlap of random subsequences of pseudorandom number
generators”, Information Processing Letters 158 (2020)). Using two or more PRNG designs can reduce correlation risks due
to a particular PRNG’s design. For further discussion and an example of a PRNG combining two different PRNG designs, see
Agner Fog, “Pseudo-Random Number Generators for Vector Processors and Multicore Processors”, Journal of
Modern Applied Statistical Methods 14(1), article 23 (2015).

31Bauke and Mertens, “Random numbers for large-scale distributed Monte Carlo simulations”, 2007.
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3. Now, whenever a PRNG created this way produces an output, it then discards the next N minus
1 outputs before finishing.

Note: The steps above include hashing several things to generate a new seed. This has to be
done with either a hash function of N or more bits (where N is the PRNG’s maximum seed
size), or a so-called “seed sequence generator” like C++’s std::seed_seq.32

Examples:

1. Philox4×64-7 is a counter-based PRNG that supports one stream per seed. To seed two
processes based on the seed “seed” and this PRNG, an application can—
• take the SHA2-256 hash of “seed-mysimulation” as a new seed,
• initialize the first process’s PRNG with the new seed and a counter of 0, and
• initialize the second process’s PRNG with 1 plus the new seed and a counter of 0.

2. Some dynamic threading (task-parallel) platforms employ task schedulers where tasks or
subtasks (sometimes called strands or fibers) are not assigned to a particular operating system
process or thread. To ensure reproducible “randomness” in these platforms, PRNGs have to
be assigned to tasks (rather than system processes or threads) and are not shared between
tasks, and each task’s PRNG can be initialized as given in the “general case” steps above
(where the task’s unique number is also known as a pedigree) (Leierson et al., 2012)33.

9 Existing RNG APIs in Programming Languages
As much as possible, applications should use existing libraries and techniques for cryptographic and
high-quality RNGs and PRNGs. The following table lists application programming interfaces (APIs) for
such generators for popular programming languages.

• The list is not comprehensive and does not include all possible RNGs (including PRNGs) for each
programming language that are appropriate.

• PRNGs mentioned in the “High-quality” column need to be initialized with a seed (see “Seed Gen-
eration for Noncryptographic PRNGs”).

• The mention of a third-party library in this section does not imply that the library is the best one
available for any particular purpose.

• See also Paragon’s blog post34 on existing cryptographic RNGs.

32Besides the seed, other things are hashed that together serve as a domain separation tag (see, for example, the work-in-
progress document “draft-irtf-cfrg-hash-to-curve”). Note the following: - In general, hash functions carry the risk that two
processes will end up with the same PRNG seed (a collision risk) or that a seed not allowed by the PRNG is produced
(a “rejection risk”), but this risk decreases the more seeds the PRNG admits (see “Birthday problem”). - M. O’Neill
(in “Developing a seed_seq Alternative”, Apr. 30, 2015) developed hash functions (seed_seq_fe) that are designed to avoid
collisions if possible, and otherwise to reduce collision bias. For example, seed_seq_fe128 hashes 128-bit seeds to 128-bit or
longer unique values. - An application can handle a rejected seed by hashing with a different value or by using a backup
seed instead, depending on how tolerant the application is to bias. - See also Matsumoto, M., et al., “Common defects in
initialization of pseudorandom number generators”, ACM Transactions on Modeling and Computer Simulation 17(4), Sep. 2007.
https://en.wikipedia.org/wiki/Birthday_problem

33Leierson, C.E., et al., “Deterministic Parallel Random-Number Generation for Dynamic Multithreading Platforms”, 2012.
34https://paragonie.com/blog/2016/05/how-generate-secure-random-numbers-in-various-programming-languages
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Language Cryptographic
High-quality (noncryptographic, not
for information security)

.NET (incl. C# and
VB.NET) (H)

RandomNumberGenerator.Create() in
System.Security.Cryptography
namespace

XoshiroPRNG.Net package
(XoRoShiRo128starstar,
XoShiRo256plus, XoShiRo256starstar);
Data.HashFunction.MurmurHash or
Data.HashFunction.CityHash
package (hash the string seed + "_"
+ counter)

C/C++ (G) (C) xoroshiro128plusplus.c;
xoshiro256starstar.c

Python (A) secrets.SystemRandom (since Python
3.6); os.urandom()

numpy.random.Generator35 with
Philox or SFC64 (since ver. 1.7);
hashlib36: hashlib.md5(b"%d_%d" %
(seed, counter)).digest(),
hashlib.sha1(b"%d_%d" % (seed,
counter)).digest()

Java (A) (D) (C); java.security.SecureRandom
(F)

it.unimi.dsi/dsiutils artifact
(XoRoShiRo128PlusPlusRandom,
XoRoShiRo128StarStarRandom,
XoShiRo256StarStarRandom,
XorShift1024StarPhiRandom);
org.apache.commons/commons-rng-simple37

artifact (RandomSource of SFC_64,
XO_RO_SHI_RO_128_PP,
XO_RO_SHI_RO_128_SS,
XO_SHI_RO_256_PP, or
XO_SHI_RO_256_SS)

JavaScript (B) crypto.randomBytes(byteCount)
(node.js only); random-number-csprng
package (node.js only);
crypto.getRandomValues() (Web)

xoroshiro128starstar package; md5
package (md5(seed+"_"+counter,
{asBytes: true})); murmurhash3js
package
(murmurhash3js.x86.hash32(seed+"_"+counter));
crypto.createHash("sha1") (node.js
only)

Ruby (A) (E) (C); SecureRandom.rand() (0 or
greater and less than 1) (E);
SecureRandom.rand(N) (integer) (E)
(for both, require 'securerandom');
sysrandom gem

Digest::MD5.digest("#{seed}_#{counter}"),
Digest::SHA1.digest("#{seed}_#{counter}")
(for both, require 'digest')

PHP (A) random_int(), random_bytes() (both
since PHP 7)

md5($seed.'_'.$counter, true);
sha1($seed.'_'.$counter, true)

Go crypto/rand package md5.Sum in crypto/md5 package or
sha1.Sum in crypto/sha1 package (for
both, hash the byte array seed + "_"
+ counter)

Rust (C) rand_xoshiro crate
(Xoroshiro128PlusPlus,
Xoshiro256PlusPlus,
Xoshiro256StarStar,
Xoshiro512StarStar)
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https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/


Language Cryptographic
High-quality (noncryptographic, not
for information security)

Perl Crypt::URandom module Crypt::Digest::MD5 module
(md5($seed.'_'.$counter));
Digest::SHA module
(sha1($seed.'_'.$counter));
Digest::MurmurHash3 module
(murmurhash3($seed.'_'.$counter))

Other Languages (C) Hash the string seed + "_" +
counter with MurmurHash3,
xxHash64, CityHash, MD5, or SHA-1

• (A) The general RNGs of recent versions of Python and Ruby implement Mersenne Twister38, which
is not preferred for a high-quality RNG. PHP’s mt_rand() implements or implemented a flawed version
of Mersenne Twister.

• (B) JavaScript’s Math.random() (which ranges 0 or greater and less than 1) is implemented using
xorshift128+ (or a variant) in the V8 engine, Firefox, and certain other modern browsers as of
late 2017; Math.random() uses an “implementation-dependent algorithm or strategy”, though (see
ECMAScript sec. 20.2.2.27).

• (C) A cryptographic RNG implementation can—
– read from the /dev/urandom device in Linux-based systems (using the open and read system

calls where available)39,
– call the arc4random or arc4random_buf method on FreeBSD or macOS,
– call the getentropy method on OpenBSD, or
– call the BCryptGenRandom API in Windows 10 and later,

and only use other techniques if the existing ones are inadequate for the application. But unfortunately,
resource-constrained devices (“embedded” devices) are much less likely to have a cryptographic RNG
available compared to general-purpose computing devices such as desktop computers and smartphones
(Wetzels 2017)40, although methods exist for implementing a cryptographic RNG on the Arduino (Peng
2017)41.

• (D) Java’s java.util.Random class uses a 48-bit seed, so is not considered a high-quality RNG. How-
ever, a subclass of java.util.Random might be implemented as a high-quality RNG.

• (E) Ruby’s SecureRandom.rand method presents a beautiful and simple API for generating numbers
at random, in my opinion. For example, rand(N) returns an integer 0 or greater and less than N.

• (F) In Java 8 and later, use SecureRandom.getInstanceStrong(). For Android, especially versions
4.3 and earlier, see (Klyubin 2013)42. Using the SecureRandom implementation "SHA1PRNG" is not
recommended for information security applications, because of weaknesses in seeding and RNG quality
in implementations as of 2013 (Michaelis et al., 2013)43.

• (G) std::random_device was introduced in C++11, but its specification leaves considerably much
to be desired. For example, std::random_device can fall back to a PRNG of unspecified quality

35https://docs.scipy.org/doc/numpy/reference/random/index.html
36https://docs.python.org/3/library/hashlib.html
37https://commons.apache.org/proper/commons-rng/commons-rng-simple/apidocs/
38https://en.wikipedia.org/wiki/Mersenne_Twister
39Some implementations of the similar /dev/random, such as the one traditionally used by the Linux operating system, can

block for seconds at a time, especially if not enough randomness is available. See also “Myths about /dev/urandom”.
https://www.2uo.de/myths-about-urandom

40Wetzels, J., “33C3: Analyzing Embedded Operating System Random Number Generators”, samvartaka.github.io, Jan. 3,
2017.

41B. Peng, “Two Fast Methods of Generating True Random Numbers on the Arduino”, GitHub Gist, December 2017.
42A. Klyubin, “Some SecureRandom Thoughts”, Android Developers Blog, Aug. 14, 2013.
43Michaelis, K., Meyer, C., and Schwenk, J. “Randomly Failed! The State of Randomness in Current Java Implementations”,

2013.
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without much warning. At best, std::random_device should not be used except to supplement other
techniques for generating random-behaving numbers.

• (H) The .NET Framework’s System.Random class uses a seed of at most 32 bits, so is not considered
a high-quality RNG. However, a subclass of System.Random might be implemented as a high-quality
RNG. However, as of .NET 6, the algorithm for System.Random44 was changed to xoshiro128** or
xoshiro256** (both high-quality PRNGs) when System.Random is called without a seed (that is, when
it’s automatically seeded).

10 Hash Functions
A hash function is a function that takes an arbitrary input of any size (such as an array of 8-bit bytes or a
sequence of characters) and returns an output with a fixed number of bits. That output is also known as a
hash code.

For pseudorandom number generation purposes:

• If the individual bits of a hash code behave like independent uniform random bits, the code can serve
as the seed for a PRNG or those bits can serve as pseudorandom numbers.

• Good hash functions include cryptographic hash functions (for example, SHA2-256, BLAKE2) and
other hash functions that tend to produce wildly dispersed hash codes for nearby inputs.

• Poor hash functions include linear PRNGs such as LCGs and the Xorshift family.

The use of hash functions for other purposes (such as data lookup and data integrity) is beyond the scope
of this document. See my note on hash functions45.

10.1 Procedural Noise Functions
Noise is a randomized variation in images, sound, and other data.46

A noise function is similar to a hash function; it takes an n-dimensional point and, optionally, additional
data, and outputs a pseudorandom number.47 Noise functions generate procedural noise such as cellular
noise48, value noise49, and gradient noise50 (including Perlin noise51). If the noise function takes
additional data, that data—

• should include randomly generated or pseudorandom numbers, and
• should not vary from one run to the next while the noise function is used for a given purpose (for

example, to generate terrain for a given map).

10.2 Pseudorandom Functions
A pseudorandom function is a kind of hash function that takes—

• a secret (such as a password or a long-term key), and
44https://github.com/dotnet/runtime/pull/47085
45https://peteroupc.github.io/hash.html
46There are many kinds of noise, such as procedural noise (including Perlin noise, cellular noise, and value noise), colored

noise (including white noise and pink noise), periodic noise, and noise following a Gaussian or other probability distribution.
See also two articles by Red Blob Games: “Noise Functions and Map Generation” and “Making maps from noise
functions”. https://en.wikipedia.org/wiki/Colors_of_noise https://peteroupc.github.io/randomfunc.html#Specific_Non_U
niform_Distributions https://www.redblobgames.com/maps/terrain-from-noise/

47Noise functions include functions that combine several outputs of a noise function, including by fractional Brownian
motion. By definition, noise functions deliver the same output for the same input. https://en.wikipedia.org/wiki/Fractional
_Brownian_motion

48https://en.wikipedia.org/wiki/Cellular_noise
49https://en.wikipedia.org/wiki/Value_noise
50https://en.wikipedia.org/wiki/Gradient_noise
51https://en.wikipedia.org/wiki/Perlin_noise
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• additional data such as a salt (which is designed to mitigate precomputation attacks) or a nonce,

and outputs a pseudorandom number whose bits behave like independent uniform random bits. (If the
output is encryption keys, the function is also called a key derivation function; see NIST SP 800-108.) Some
pseudorandom functions deliberately take time to compute their output; these are designed above all for
cases in which the secret is a password or is otherwise easy to guess — examples of such functions include
PBKDF2 (RFC 2898), scrypt (RFC 7914), and Ethash. Pseudorandom functions are also used in proofs of
work such as the one described in RFC 8019 sec. 4.4.

11 RNG Topics
This section discusses several important points on the use and selection of RNGs, including things to consider
when shuffling or generating “unique” random identifiers.

11.1 Shuffling
In a list with N different items, there are N factorial (that is, 1 * 2 * ... * N, or N!) ways to arrange the
items in that list. These ways are called permutations52.

In practice, an application can shuffle a list by doing a Fisher–Yates shuffle53, which is unfortunately
easy to mess up — see (Atwood 2007)54 — and is implemented correctly in another document of mine55.

However, if a PRNG admits fewer seeds (and thus can produce fewer number sequences) than the number
of permutations, then there are some permutations that that PRNG can’t choose when it shuffles
that list. (This is not the same as generating all permutations of a list, which, for a list big enough, can’t be
done by any computer in a reasonable time.)

On the other hand, for a list big enough, it’s generally more important to have shuffles act random
than to choose from among all permutations.

An application that shuffles a list can do the shuffling—

1. using a cryptographic RNG, preferably one with a security strength of b bits or greater, or
2. if a noncryptographic RNG is otherwise appropriate, using a high-quality PRNG that—

• has a b-bit or bigger state, and
• is initialized with a seed derived from data with at least b bits of entropy, or “randomness”.

For shuffling purposes, b can usually be calculated by taking n factorial minus 1 (where n is the list’s size)
and calculating its bit length. A Python example is b = (math.factorial(n)-1).bit_length(). See also
(van Staveren 2000, “Lack of randomness”)56. For shuffling purposes, an application may limit b to 256 or
greater, in cases when variety of permutations is not important. For other sampling tasks, the following
Python examples show how to calculate b:

• Choosing k out of n different items at random, in random order: b = ((math.factorial(n)/math.factorial(n-k))-1).bit_length().
• Choosing k out of n different items at random, without caring about order (RFC 3797, sec. 3.3): b =

((math.factorial(n)/(math.factorial(k) * math.factorial(n-k)))-1).bit_length().
• Shuffling d identical lists of c items: b = ((math.factorial(d*c)/ (math.factorial(d)**c))-1).bit_length().

52More generally, a list has N! / (W_1! * W_2! * ... * W_K!) permutations (a multinomial coefficient), where N is the
list’s size, K is the number of different items in the list, and W_i is the number of times the item identified by i appears in the
list. However, this number is never more than N! and suggests using less randomness, so an application need not use this more
complicated formula and may assume that a list has N! permutations even if some of its items occur more than once.

53https://en.wikipedia.org/wiki/Fisher-Yates_shuffle
54Atwood, Jeff. “The danger of naïveté”, Dec. 7, 2007. https://blog.codinghorror.com/the-danger-of-naivete/
55https://peteroupc.github.io/randomfunc.html
56van Staveren, Hans. “Big Deal: A new program for dealing bridge hands”, Sep. 8, 2000 https://sater.home.xs4all.

nl/doc.html
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11.2 Unique Random Identifiers
Some applications require generating unique identifiers, especially to identify database records or other shared
resources. Examples of unique values include auto-incremented numbers, sequentially assigned numbers,
primary keys of a database table, and combinations of these. Applications have also generated unique values
at random.

The following are some questions to consider when generating unique identifiers:

1. Can the application easily check identifiers for uniqueness within the desired scope and range (for
example, check whether a file or database record with that identifier already exists)57?

2. Can the application tolerate the risk of generating the same identifier for different resources58?
3. Do identifiers have to be hard to guess, be simply “random-looking”, or be neither?
4. Do identifiers have to be typed in or otherwise relayed by end users59?
5. Is the resource an identifier identifies available to anyone who knows that identifier (even without being

logged in or authorized in some way)?60

6. Do identifiers have to be memorable?

Some applications may also care about “unique random” values. Generally, however, values that are both
unique and random are impossible. Thus, applications that want “unique random” values have to either
settle for numbers that merely “look random”; or check for or tolerate possible duplicates; or pair randomly
generated numbers with unique ones.

If the application can settle for “random-looking” unique integers:

• The application can produce a unique N-bit integer and pass that integer to a function that maps N-bit
integers to N-bit integers in a reversible way (also called a mixing function with reversible operations;
see “Hash functions61” by B. Mulvey). This includes using the unique integer as the seed for a
“full-period” linear PRNG, that is, a linear PRNG that goes through all N-bit integers exactly once
before repeating62.

• The application can generate unique integers greater than 0 and less than K as follows:
1. Set U to 0, and choose F, an N-bit function described earlier, where N is the number of bits

needed to store the number K-minus-1.
2. Calculate F(U) then add 1 to U. If the result of F is less than K, output that result; otherwise,

repeat this step.
3. Repeat the previous step as needed to generate additional unique integers.

57For applications distributed across multiple computers (for example, servers), this check is made easier if each computer is
assigned a unique value from a central database, because then the computer can use that unique value as part of unique identifiers
it generates and ensure that the identifiers are unique across the application without further contacting other computers or the
central database. An example is Twitter’s Snowflake service. https://blog.twitter.com/engineering/en_us/a/2010/announ
cing-snowflake.html

58In theory, generating two or more random integers of the same size runs the risk of producing a duplicate number this way.
However, this risk decreases as that size increases (see “Birthday problem”). For example, in theory, an application has a
50% chance for duplicate numbers after generating— - about 2.7 billion billion random 122-bit integers (including those found
in version-4 UUIDs, or universally unique identifiers), - about 1.4 million billion billion random 160-bit integers, or - about 93
billion billion billion random 192-bit integers. https://en.wikipedia.org/wiki/Birthday_problem

59If an application expects end users to type in a unique identifier, it could find that very long unique identifiers are unsuitable
for it (for example, 128-bit numbers take up 32 base-16 characters). There are ways to deal with these and other long identifiers,
including (1) separating memorable chunks of the identifier with a hyphen, space, or another character (for example, “ABCDEF”
becomes “ABC-DEF”); (2) generating the identifier from a sequence of memorable words (as in Electrum or in Bitcoin’s BIP39);
or (3) adding a so-called “checksum digit” at the end of the identifier to guard against typing mistakes. The application ought
to consider trying (1) or (2) before deciding to use shorter identifiers than what this document recommends.

60Note that the insecure direct object references problem can occur if an application enables access to a sensitive resource via
an easy-to-guess identifier, but without any access control checks.

61https://papa.bretmulvey.com/post/124027987928
62“Full-period” linear PRNGs include so-called linear congruential generators with a power-of-two modulus. For exam-

ples of those, see tables 3, 5, 7, and 8 of Steele and Vigna, “Computationally easy, spectrally good multipliers for
congruential pseudorandom number generators”, arXiv:2001.05304 [cs.DS]. https://en.wikipedia.org/wiki/Linear_con
gruential_generator https://arxiv.org/abs/2001.05304
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An application that generates unique identifiers should do so as follows:

• If the application can answer yes to question 1 or 2 above:
– And yes to question 5: Generate a 128-bit-long or longer random integer using a cryptographic

RNG.
– And no to question 5: Generate a 32-bit-long or longer random integer using a cryptographic

RNG.
• Otherwise:

– If identifiers don’t have to be hard to guess: Use a unique integer (either one that’s naturally
unique, or a randomly generated number that was checked for uniqueness).

– If they do have to be hard to guess: Use a unique integer which is followed by a random integer
generated using a cryptographic RNG (the random integer’s length depends on the answer to
question 5, as above).

This section doesn’t discuss how to format a unique value into a text string (such as a hexadecimal or
alphanumeric string), because ultimately, doing so is the same as mapping unique values one-to-one with
formatted strings (which will likewise be unique).

11.3 Verifiable Random Numbers
Verifiable random numbers are randomly generated numbers (such as seeds for PRNGs) that are disclosed
along with all the information necessary to verify their generation. Usually, such information includes
randomly generated values, or uncertain data, or both, to be determined and publicly disclosed in the
future. Techniques to generate verifiable random numbers (as opposed to cryptographic RNGs alone) are
used whenever one party alone can’t be trusted to produce a number at random. Verifiable random numbers
that are disclosed publicly should not be used as encryption keys or other secret parameters.

Examples:

1. Generating verifiable randomness has been described in RFC 379763, which describes the
selection process for the Nominations Committee (NomCom) of the Internet Engineering
Task Force.

2. Verifiable delay functions calculate an output as well as a proof that the output was cor-
rectly calculated; these functions deliberately take much more time to calculate the output
(for example, to generate a random-behaving number from public data) than to verify its
correctness.64 In many cases, such a function deliberately takes much more time than the
time allowed to contribute randomness to that function.65

3. In a so-called commitment scheme66, one computer generates data to be committed (for
example, a randomly generated number or a chess move), then reveals its hash code or
digital signature (commitment), and only later reveals to all participants the committed
data (along with other information needed, if any, to verify that the data wasn’t changed
in between). Examples of commitment schemes are hash-based commitments.67

4. So-called mental card game (mental poker) schemes can be used in networked games where
a deck of cards has to be shuffled and dealt to players, so that the identity of some cards is

63https://www.rfc-editor.org/rfc/rfc3797.txt
64Verifiable delay functions are different from proofs of work, in which there can be multiple correct answers. These functions

were first formally defined in Boneh, D., Bonneau, J., et al., “Verifiable Delay Functions”, 2018, but such functions appeared
earlier in Lenstra, A.K., Wesolowski, B., “A random zoo: sloth, unicorn, and trx”, 2015.

65It is outside the scope of this page to explain how to build a protocol using verifiable delay functions, commitment schemes,
or mental card game schemes, especially because such protocols are not yet standardized for general use and few implementations
of them are used in production.

66https://en.wikipedia.org/wiki/Commitment_scheme
67It is outside the scope of this page to explain how to build a protocol using verifiable delay functions, commitment schemes,

or mental card game schemes, especially because such protocols are not yet standardized for general use and few implementations
of them are used in production.
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known to some but not all players.68

12 Guidelines for New RNG APIs
This section contains guidelines for those seeking to implement RNGs designed for wide reuse (such as in a
programming language’s standard library). As mentioned earlier, an application should use existing RNG
implementations whenever possible.

This section contains suggested requirements on cryptographic and high-quality RNGs that a new program-
ming language can choose to adopt.

12.1 Cryptographic RNGs: Requirements
A cryptographic RNG generates bits that behave like independent uniform random bits, such that an outside
party has no more than negligible advantage in correctly guessing prior or future unseen output bits of that
RNG even after knowing how the RNG works or knowing extremely many outputs of the RNG, or correctly
guessing prior unseen output bits of that RNG after compromising its security, such as reading its internal
state.69

If a cryptographic RNG implementation uses a PRNG:

• Let S be the security strength of the RNG. S is at least 128 bits and should be at least 256 bits.
• Before the RNG generates a pseudorandom number, the RNG has to have been initialized to a state

that ultimately derives from data that, as a whole, is at least as hard to guess as an ideal process of
generating S many independent uniform random bits70.

A cryptographic RNG is not required to reseed itself.

Examples: The following are examples of cryptographic RNGs:

• Randomness extractors or cryptographic hash functions that take very hard-to-predict
signals from two or more nondeterministic sources as input.

• A “fast-key-erasure” generator described by D.J. Bernstein in his blog (Bernstein 2017)71.
• The Hash_DRBG and HMAC_DRBG generators specified in NIST SP 800-90A. The SP 800-90

series goes into further detail on how RNGs appropriate for information security can be
constructed, and inspired much of this section.

68It is outside the scope of this page to explain how to build a protocol using verifiable delay functions, commitment schemes,
or mental card game schemes, especially because such protocols are not yet standardized for general use and few implementations
of them are used in production.

69Implementing a cryptographic RNG involves many security considerations, including these: 1. If an application runs code
from untrusted sources in the same operating system process in which a cryptographic RNG’s state is stored, it’s possible for
malicious code to read out that state via side-channel attacks. A cryptographic RNG should not be implemented in such a
process. See (A) and see also (B). 2. A cryptographic RNG’s state could be reused due to process forking or virtual machine
snapshot resets. See (C) and (D), for example. 3. If a cryptographic RNG is not “constant-time” (the RNG is data-dependent),
its timing differences could be exploited in a security attack.
(A) “Post-Spectre Threat Model Re-Think” in the Chromium source code repository (May 29, 2018).(B) Bernstein, D.J.

“Entropy Attacks!”, Feb. 5, 2014.(C) Everspaugh, A., Zhai, Y., et al. “Not-So-Random Numbers in Virtualized Linux
and the Whirlwind RNG”, 2014.(D) Ristenpart, T., Yilek, S. “When Good Randomness Goes Bad: Virtual Machine
Reset Vulnerabilities and Hedging Deployed Cryptography”, 2010.For a detailed notion of a secure RNG, see Coretti,
Dodis, et al., “Seedless Fruit is the Sweetest: Random Number Generation, Revisited”, 2019.

70This data can come from nondeterministic sources, and also include any combination of process identifiers, time stamps,
environment variables, pseudorandom numbers, virtual machine guest identifiers, and other data specific to the session or to
the instance of the RNG. See also NIST SP 800-90A and the previous note.

71Bernstein, D.J. “Fast-key-erasure random number generators”, Jun. 23, 2017.
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• An RNG made up of two or more independently initialized cryptographic RNGs of different
designs.72

• RFC 8937 describes an RNG that hashes another cryptographic RNG’s output with a secret
value derived from a long-term key.

12.2 High-Quality RNGs: Requirements
A PRNG is a high-quality RNG if—

• it generates bits that behave like independent uniform random bits (at least for nearly all practical
purposes outside of information security),

• the number of different seeds the PRNG admits without shortening or compressing those seeds is 263

or more (that is, the PRNG can produce any of at least 263 different number sequences, which it can
generally do only if the PRNG has at least 63 bits of state), and

• it either—
– provides multiple sequences that are different for each seed, have at least 264 numbers each, do

not overlap, and behave like independent sequences of numbers (at least for nearly all practical
purposes outside of information security),

– has a maximum “random” number cycle length equal to the number of different seeds the PRNG
admits, or

– has a minimum “random” number cycle length of 2127 or greater.

Every cryptographic RNG is also a high-quality RNG.

Where a noncryptographic PRNG is appropriate, an application should use, if possible, a high-quality PRNG
that admits any of 2127 or more seeds. (This is a recommendation, since as stated above, high-quality PRNGs
are required to admit only 263 or more seeds.)

Examples: Examples of high-quality PRNGs include xoshiro256**, xoroshiro128**,
xoroshiro128++, Philox4×64-7, and SFC64. I give additional examples in a separate
page73.

12.3 Designs for PRNGs
The following are some ways a PRNG can be implemented:

• As a stateful object that stores an internal state and transforms it each time a “random” number is
generated. This kind of PRNG is initialized by converting a seed to an internal state.

• As a (stateless) function that transforms an internal state and outputs “random” numbers and the
transformed state. This design is often seen in Haskell and other functional programming languages.

• As a (stateless) “splittable PRNG”, further described in my document on testing PRNGs74.

12.4 Implementing New RNG APIs
A programming language API designed for reuse by applications could implement RNGs using the
following guidelines:

1. The RNG API can include a method that fills one or more memory units (such as 8-bit bytes) completely
with independent uniform random-behaving bits. See example 1.

72An example is the “shrinking generator” technique to combine two RNGs; see J. D. Cook, “Using one RNG to sample
another”, June 4, 2019, for more.

73https://peteroupc.github.io/hqprng.html
74https://peteroupc.github.io/randomtest.html
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2. If the API implements an automatically-seeded RNG, it should not allow applications to initialize that
same RNG with a seed for reproducible “randomness”75 (it may provide a separate PRNG to accept
such a seed). See example 2.

3. If the API provides a PRNG that an application can seed for reproducible “randomness”, it should
document that PRNG and any methods the API provides that use that PRNG (such as shuffling and
Gaussian number generation), and should not change that PRNG or those methods in a way that
would change the “random” numbers they deliver for a given seed. See example 2.

4. A new programming language’s standard library ought to include the following methods for gen-
erating numbers that behave like independent uniformly distributed numbers (see my document on
randomization and sampling methods76 for details).
• Four methods for integers: 0 to n including n, 0 to n excluding n, a to b including b, and a to b

excluding b.
• A method to sample real numbers from the open interval (a, b).

Examples:

1. A C language RNG method for filling memory could look like the following: int
random(uint8_t[] bytes, size_t size);, where bytes is a pointer to an array of 8-bit
bytes, and size is the number of random 8-bit bytes to generate, and where 0 is returned
if the method succeeds and nonzero otherwise.

2. A Java API that follows these guidelines can contain two classes: a RandomGen class that
implements an unspecified but general-purpose RNG, and a RandomStable class that imple-
ments an SFC64 PRNG that is documented and will not change in the future. RandomStable
includes a constructor that takes a seed for reproducible “randomness”, while RandomGen
does not. Both classes include methods described in point 4, but RandomStable specifies
the exact algorithms to those methods and RandomGen does not. At any time in the future,
RandomGen can change its implementation to use a different RNG while remaining back-
ward compatible, while RandomStable has to use the same algorithms for all time to remain
backward compatible, especially because it takes a seed for reproducible “randomness”.
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75Allowing applications to do so would hamper forward compatibility — the API would then be less free to change how the
RNG is implemented in the future (for example, to use a cryptographic or otherwise “better” RNG), or to make improvements
or bug fixes in methods that use that RNG (such as shuffling and Gaussian number generation). (As a notable example, the
V8 JavaScript engine recently changed its Math.random() implementation to use a variant of xorshift128+, which is backward
compatible because nothing in JavaScript allows Math.random() to be seeded.) Nevertheless, APIs can still allow applications
to provide additional input (“entropy”) to the RNG in order to increase its randomness rather than to ensure repeatability.

76https://peteroupc.github.io/randomfunc.html
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14 Notes

15 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero77.

77https://creativecommons.org/publicdomain/zero/1.0/
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