
A Note on Randomness Extraction

Peter Occil

This version of the document is dated 2025-01-28.

Peter Occil

Randomness extraction (also known as unbiasing, debiasing, deskewing, whitening, or entropy extraction) is
a set of techniques for turning data sources into random bits that each equal 1 or 0 with equal probability.
This note covers some useful extraction techniques.

1 In Information Security
In information security, randomness extraction serves to generate a seed, password, encryption key, or other
secret value from hard-to-predict nondeterministic sources.

Randomness extraction for information security is discussed in NIST SP 800-90B sec. 3.1.5.1, and RFC
4086 sec. 4.2 and 5.2. Possible choices of such extractors include keyed cryptographic hash functions (see,
for example, (Cliff et al., 2009)1; (Coretti et al., 2019)2) and two-universal hash functions with a fixed but
randomly chosen seed (Frauchiger et al., 2013)3. In information security applications:

• Unkeyed hash functions and other unkeyed extraction functions should not be used by themselves in
randomness extraction.

• Lossless compression should not be used as a randomness extractor.
• Where possible, there should be two or more independent nondeterministic sources from which to apply

randomness extraction (McInnes and Pinkas 1990)4.

Some papers also refer to two-source extractors and resilient functions (especially the works by E. Chat-
topadhyay and D. Zuckerman), but there are few if any real implementations of these extraction techniques.

Example: The Cliff reference reviewed the use of HMAC (hash-based message authentication
code) algorithms, and implies that one way to generate a seed is as follows:

1. Gather data with at least 512 bits of entropy.
2. Run HMAC-SHA-512 with that data to generate a 512-bit HMAC.
3. Take the first 170 (or fewer) bits as the seed (512 divided by 3, rounded down).

2 Outside of Information Security
Outside of information security, randomness extraction serves the purpose of recycling randomly generated
numbers or, more generally, to transform those numbers from one form to another while preserving their

1Cliff, Y., Boyd, C., Gonzalez Nieto, J. “How to Extract and Expand Randomness: A Summary and Explanation of Existing
Results”, 2009.

2Coretti, S., Dodis, Y., et al., “Seedless Fruit is the Sweetest: Random Number Generation, Revisited”, 2019.
3Frauchiger, D., Renner, R., Troyer, M., “True randomness from realistic quantum devices”, 2013.
4McInnes, J. L., & Pinkas, B. (1990, August). On the impossibility of private key cryptography with weakly random keys.

In Conference on the Theory and Application of Cryptography (pp. 421-435).

1

mailto:poccil14@gmail.com


randomness. This can be done, for example, to reduce calls to a pseudorandom number generator (PRNG)
or to generate a new seed for such a PRNG.

Perhaps the most familiar example of randomness extraction is the one by von Neumann (1951)5, which
works if “independence of successive [coin] tosses is assumed”6:

1. Flip a coin twice (whose probability of heads is unknown).
2. If the coin lands heads then tails, return heads. If it lands tails then heads, return tails. If neither is

the case, go to step 1.

An algorithm found in (Morina et al. 2022)7 (called Algorithm M in this note) extends this to loaded
dice. According to personal communication with K. Łatuszyński, the key “is to find two non overlapping
events of the same probability” via “symmetric events {X_1 < X_2} and {X_2 < X_1} that have the same
probability”.

1. Throw a (loaded) die, call the result X. Throw the die again, call the result Y.
2. If X is less than Y, return 0. If X is greater than Y, return 1. If neither is the case, go to step 1.

Algorithm M in fact works in a surprisingly broad range of cases; for more, see the appendix.

Pae (2005)8 and (Pae and Loui 2006)9 characterize extracting functions. Informally, an extracting function is
a function that maps a fixed number of digits to a variable number of bits such that, whenever the input has
a given number of ones, twos, etc., every output bit-string of a given length occurs with the same probability
as every other output bit-string of that length, regardless of the input’s probability of zero or one.10 Among
others, von Neumann’s extractor and the one by Peres (1992)11 are extracting functions. The Peres extractor
takes a list of bits (zeros and ones generated from a “coin” with a given probability of heads) as input and
is described as follows:

1. Create two empty lists named U and V. Then, while two or more bits remain in the input:
1. If the next two bits are 0/0, append 0 to U and 0 to V.
2. Otherwise, if those bits are 0/1, append 1 to U, then write a 0.
3. Otherwise, if those bits are 1/0, append 1 to U, then write a 1.
4. Otherwise, if those bits are 1/1, append 0 to U and 1 to V.

2. If U is not empty, do a separate (recursive) run of this algorithm, reading from the bits placed in U.
3. If V is not empty, do a separate (recursive) run of this algorithm, reading from the bits placed in V.

A streaming algorithm, which builds something like an “extractor tree”, is another example of a randomness
extractor (Zhou and Bruck 2012)12.

I maintain source code of this extractor and the Peres extractor13, which also includes additional
notes on randomness extraction.

5von Neumann, J., “Various techniques used in connection with random digits”, 1951.
6Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise via

perfect sampling of Markov chains.” Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679

7Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise via
perfect sampling of Markov chains.” Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679

8Pae, S., “Random number generation using a biased source”, dissertation, University of Illinois at Urbana-Champaign, 2005.
9Pae, S., Loui, M.C., “Randomizing functions: Simulation of discrete probability distribution using a source of unknown

distribution”, IEEE Transactions on Information Theory 52(11), November 2006.
10It follows from this definition that an extracting function must map an all-X string (such as an all-zeros string) to the empty

string, since there is only one empty string but more than one string of any other length. Thus, no reversible function can be
extracting, and a function that never returns an empty string (including nearly all hash functions) can’t be extracting, either.

11Peres, Y., “Iterating von Neumann’s procedure for extracting random bits”, Annals of Statistics 1992,20,1, p. 590-
597. https://projecteuclid.org/euclid.aos/1176348543

12Zhou, H. and Bruck, J., “Streaming algorithms for optimal generation of random bits”, arXiv:1209.0730 [cs.IT],
2012. https://arxiv.org/abs/1209.0730

13https://github.com/peteroupc/peteroupc.github.io/blob/master/rextract.rb

2

https://github.com/peteroupc/peteroupc.github.io/blob/master/rextract.rb
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679
https://projecteuclid.org/euclid.aos/1176348543
https://arxiv.org/abs/1209.0730


Pae’s “entropy-preserving” binarization (Pae 2018)14, given later, is meant to be used in other extractor
algorithms such as the ones mentioned earlier. It assumes the number of possible values, n, is known.
However, it is obviously not efficient if n is a large number.

1. Let f be a number in the interval [0, n) that was previously randomly generated. If f is greater than
0, write a 1 (and go to step 2).

2. If f is less than n − 1, write a 0 x times, where x is (n − 1) − f.

Some additional notes:

1. Different kinds of random numbers should not be mixed in the same extractor stream. For example,
if one source outputs random 6-sided die results, another source outputs random sums of rolling 2
six-sided dice, and a third source outputs coin flips with a probability of heads of 0.75, there should
be three extractor streams (for instance, three extractor trees that implement the Zhou and Bruck
algorithm).

2. Hash functions, such as those mentioned in my examples of high-quality PRNGs15, also serve to
produce random-behaving numbers from a variable number of bits. In general, they can’t be extracting
functions; however, as long as their output has more bits than used to produce it, that output can
serve as input to an extraction algorithm.

3. Peres (1992)16 warns that if a program takes enough input bits (such as flips of a coin with unknown
probability of heads) so that the extracting function outputs m bits with them, those m bits will not
be uniformly distributed. Instead, the extracting function should be passed blocks of input bits, one
block at a time (where each block should have a fixed length of at least 2 bits), until m bits or more
are generated by the extractor this way.

4. Extractors that maintain state, such as the Zhou and Bruck extractor tree, should be used only on
sources whose distribution does not change significantly over time. Dividing the source into blocks, as
in the previous note, and assigning one extractor instance to each block, can improve robustness for
sources whose distribution can change over time.

5. The lower bound on the average number of coin flips needed to sample a new probability given a coin
that shows heads with an unknown probability is as follows (and is a special case of the entropy bound;
see, for example, (Pae 2005)17, (Peres 1992)18): ln(2) / ((𝜆 − 1) * ln(1 − 𝜆) − 𝜆 * ln(𝜆)), where 𝜆
is the probability of heads of the input coin and ranges from 0 for always tails to 1 for always heads.
According to this formula, a growing number of coin flips is needed if the input coin strongly leans
towards heads or tails. (For certain values of 𝜆 , Kozen (2014)19 showed a tighter lower bound of this
kind, but this bound is nontrivial and assumes 𝜆 is known.)

Devroye and Gravel (2020)20 suggest a special randomness extractor to reduce the number of random bits
needed to produce a batch of samples by a sampling algorithm. The extractor works based on the prob-
ability that the algorithm consumes X random bits to produce a specific output Y. Since the algorithm
seems not to be well developed, I discuss this extractor in detail elsewhere, in “Miscellaneous Notes on
Randomization21”.

14S. Pae, “Binarization Trees and Random Number Generation”, arXiv:1602.06058v2 [cs.DS], 2018. https://arxiv.or
g/abs/1602.06058v2

15https://peteroupc.github.io/hqrand.html#Counter_Based_PRNGs
16Peres, Y., “Iterating von Neumann’s procedure for extracting random bits”, Annals of Statistics 1992,20,1, p. 590-

597. https://projecteuclid.org/euclid.aos/1176348543
17Pae, S., “Random number generation using a biased source”, dissertation, University of Illinois at Urbana-Champaign, 2005.
18Peres, Y., “Iterating von Neumann’s procedure for extracting random bits”, Annals of Statistics 1992,20,1, p. 590-

597. https://projecteuclid.org/euclid.aos/1176348543
19Kozen, D., “Optimal Coin Flipping”, 2014.
20Devroye, L., Gravel, C., “Random variate generation using only finitely many unbiased, independently and

identically distributed random bits”, arXiv:1502.02539v6 [cs.IT], 2020. https://arxiv.org/abs/1502.02539v6
21https://peteroupc.github.io/randmisc.html

3

https://peteroupc.github.io/hqrand.html#Counter_Based_PRNGs
https://peteroupc.github.io/randmisc.html
https://peteroupc.github.io/randmisc.html
https://arxiv.org/abs/1602.06058v2
https://arxiv.org/abs/1602.06058v2
https://projecteuclid.org/euclid.aos/1176348543
https://projecteuclid.org/euclid.aos/1176348543
http://www.cs.cornell.edu/~kozen/Papers/Coinflip.pdf
https://arxiv.org/abs/1502.02539v6


3 Notes

4 Appendix

4.1 On Algorithm M
Algorithm M works regardless of what numbers X and Y can take on and with what probability, and even
if the “dice” for X and Y are loaded differently, as long as—

• each pair of throws is independent of each other,
• each “die” has a chance of showing different outcomes, and
• the chance that the first “die” shows a number less than the second “die” is the same as the chance

that the first “die” shows a greater number.

More formally, P(X < Y ) must be equal to P(X > Y ). This relationship is equivalent to statistical indifference
(Montes Gutiérrez 2014)22, (De Schuymer et al. 2003)23. This relationship works even if X and Y are
dependent on each other but independent of everything else; this is easy to see if we treat X and Y as a
single random “vector” [X, Y ]. This is shown by the following two propositions. In the propositions below,
a random variable is nondegenerate if it does not take on a single value with probability 1.

Proposition 1. Let X and Y be real-valued nondegenerate random variables. Then Algorithm M outputs 1
or 0 with equal probability if and only if X and Y are statistically indifferent.

Proof. For every X and every Y there are only three mutually exclusive possibilities, X>Y, Y>X, and X=Y.
Because both random variables are nondegenerate, P(X>Y ) or P(Y>X) or both are nonzero, and P(X=Y )
< 1. For the algorithm to return 0, X must be less than Y, and for it to return 1, X must be greater than Y.

For the “only if” part: For the algorithm to return 1 or 0 with equal probability, it must be that P(X>Y )
= P(Y>X). But this necessarily means that P(X>Y ) and P(Y>X) are both 1/2 or less. And if we assign
half of the remainder (the remainder being P(X=Y )) to each probability, we get—

• P(X>Y ) + P(X=Y )/2 = 1/2, and
• P(Y>X) + P(X=Y )/2 = 1/2,

and thus, X and Y must be statistically indifferent by definition (see later).

For the “if” part: If X and Y are statistically indifferent, this means that 𝛼 = P(X>Y ) + P(X=Y )/2 and 𝛽
= P(Y>X) + P(X=Y )/2 are equal and 𝛼 = 𝛽 = 1/2. Since both 𝛼 and 𝛽 are equal and P(X=Y ) in 𝛼 and
𝛽 are also equal, this must mean that P(X>Y ) = P(Y>X). It thus follows that for X and Y, the algorithm
will return 1 or 0 with equal probability. �

Proposition 2. Let X and Y be real-valued nondegenerate random variables that are independent, identically
distributed, and defined on the same probability space. Then X and Y are statistically indifferent.

Proof. By definition, X and Y are statistically indifferent if and only if X is statistically preferred to Y
and vice versa (that is, P(X>Y ) + P(X=Y )/2 >= P(Y>X) + P(Y=X)/2) (De Schuymer et al. 2003)24.
Because both random variables are nondegenerate, P(X>Y ) or P(Y>X) or both are nonzero, and P(X=Y )
< 1. Moreover, because both random variables are identically distributed, their distribution functions F𝑋
and F𝑌 are the same, and therefore their values and expectations for any particular z (for example, F𝑋(z)
and E[F𝑋(z)], respectively) are the same.

22Montes Gutiérrez, I., “Comparison of alternatives under uncertainty and imprecision”, doctoral thesis, Universidad de
Oviedo, 2014.

23De Schuymer, Bart, Hans De Meyer, and Bernard De Baets. “A fuzzy approach to stochastic dominance of random
variables”, in International Fuzzy Systems Association World Congress 2003.

24De Schuymer, Bart, Hans De Meyer, and Bernard De Baets. “A fuzzy approach to stochastic dominance of random
variables”, in International Fuzzy Systems Association World Congress 2003.

4



If we look at Theorem 3.12 in (Montes Gutiérrez 2014)25, we see that we can replace—

• the left hand side of Equation 3.5 with 0 − 0, since it’s a difference of expectations of the same
distribution function and random variable, and

• the right hand side with (1/2) * 0, since the difference of P(X =Y ) and P(X = X ′ ) is taken and
P(X =Y ) is equivalent to P(X = X ′ ), which is equivalent because X, X ′ and Y are identically
distributed by the hypotheses of this proposition and Theorem 3.12.

As a result, Equation 3.5 becomes 0 >= 0, which is true and thus establishes that X is statistically preferred
to Y (by Theorem 3.12). It thus trivially follows that Y is likewise statistically preferred to X once we
replace the roles of both variables, since both variables are identically distributed. As a result, X and Y are
found to be statistically indifferent and the proposition is proved. �

Here are some of the many examples where this algorithm works:

• Set X and Y to two independent Gaussian random numbers with a mean of 0 but a different standard
deviation. Or…

• Set X and Y to two independent uniform(0, 1) random numbers. Or…
• Set X and Y to two independent uniform(0, 1) random numbers, then set Y to (X+Y )/2.

See also a procedure given as a remark near the end of a paper by Camion (1974)26.

5 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero27.

25Montes Gutiérrez, I., “Comparison of alternatives under uncertainty and imprecision”, doctoral thesis, Universidad de
Oviedo, 2014.

26Camion, Paul, “Unbiased die rolling with a biased die”, North Carolina State University. Dept. of Statistics, 1974.
27https://creativecommons.org/publicdomain/zero/1.0/

5

https://creativecommons.org/publicdomain/zero/1.0/

	In Information Security
	Outside of Information Security
	Notes
	Appendix
	On Algorithm M

	License

