
Notes on Jumping PRNGs Ahead

Peter Occil

This version of the document is dated 2025-02-20.

Peter Occil

Some pseudorandom number generators (PRNGs) have an efficient way to advance their state as though
a huge number of PRNG outputs were discarded. Notes on how they work are described in the following
sections.

0.1 F2-linear PRNGs
For some PRNGs, each bit of the PRNG’s state can be described as a linear recurrence on its entire state.
These PRNGs are called F2-linear PRNGs, and they include the following:

• Linear congruential generators (LCGs) with a power-of-two modulus.
• Xorshift PRNGs.
• PRNGs in the xoroshiro and xoshiro families.
• Linear or generalized feedback shift register generators, including Mersenne Twister.

For an F2-linear PRNG, there is an efficient way to discard a given (and arbitrary) number of its outputs
(to “jump the PRNG ahead”). This jump-ahead strategy is further described in (Haramoto et al., 2008)1.
See also (Vigna 2017)2. To calculate the jump-ahead parameters needed to advance the PRNG N steps:

1. Build M, an S×S matrix of zeros and ones that describes the linear transformation of the PRNG’s state,
where S is the size of that state in bits. For an example, see sections 3.1 and 3.2 of (Blackman and
Vigna 2019)3, where it should be noted that the additions inside the matrix are actually XORs.

2. Find the characteristic polynomial of M. This has to be done in the two-element field F2, so that each
coefficient of the polynomial is either 0 or 1.

For example, SymPy’s charpoly() method alone is inadequate for this purpose, since it doesn’t operate
on the correct field. However, it’s easy to adapt that method’s output for the field F2: even coefficients
become zeros and odd coefficients become ones.

Note that for a linear feedback shift register (LFSR) generator, the characteristic polynomial’s coeffi-
cients are 1 for each of its “taps” (and “tap” 0), and 0 elsewhere. For example, an LFSR generator
with taps 6 and 8 has the characteristic polynomial x8 + x6 + 1.

The section “Jump Parameters for Some PRNGs” shows characteristic polynomials for some PRNGs
and one way their coefficients can be represented.

3. Calculate powmodf2(2, N, CP), where powmodf2 is a modular power function that calculates 2^N mod
CP in the field F2, and CP is the characteristic polynomial. (N is the number of PRNG outputs to

1Haramoto, Matsumoto, Nishimura, Panneton, L’Ecuyer, “Efficient Jump Ahead for F2-Linear Random Number Generators”,
INFORMS Journal on Computing 20(3), Summer 2008.

2Vigna, S., “Further scramblings of Marsaglia’s xorshift generators”, Journal of Computational and Applied Mathematics
315 (2017).

3Blackman, Vigna, “Scrambled Linear Pseudorandom Number Generators”, 2019.

1

mailto:poccil14@gmail.com

discard.) Ordinary modular power functions, such as BigInteger’s modPow method, won’t work here,
even if the polynomial is represented in the manner described in “Jump Parameters for Some PRNGs”.

4. The result is a jump polynomial for jumping the PRNG ahead N steps, that is, for discarding N outputs
of the PRNG.

An example of its use is found in the jump and long_jump functions in the xoroshiro128plus source
code, which are identical except for the jump polynomial. In both functions, the jump polynomial’s
coefficients are packed into a 128-bit integer (as described in “Jump Parameters for Some PRNGs”),
which is then split into the lower 64 bits and the upper 64 bits, in that order.

0.2 Counter-Based PRNGs
Counter-based PRNGs, in which their state is updated simply by incrementing a counter, can be trivially
jumped ahead just by changing the seed, the counter, or both (Salmon et al. 2011)4.

0.3 Multiple Recursive Generators
A multiple recursive generator (MRG) generates numbers by transforming its state using the following for-
mula: x(k) = (x(k-1)*A(1) + x(k-2)*A(2) + ... + x(k-n)*A(n)) mod modulus, where A(i) are the
multipliers and modulus is the modulus.

For an MRG, the following matrix (M) describes the state transition [x(k-n), ..., x(k-1)] to [x(k-n+1),
..., x(k)] (mod modulus):

| 0 1 0 ... 0 |
| 0 0 1 ... 0 |
| |
| 0 0 0 ... 1 |
|A(n)A(n A(n ... A(1)|
| -1) -2) |

To calculate the parameter needed to jump the MRG ahead N steps, calculate M 𝑁 mod modulus; the result
is a jump matrix J.

Then, to jump the MRG ahead N steps, calculate J * S mod modulus, where J is the jump matrix and S is
the state in the form of a column vector; the result is a new state for the MRG.

This technique was mentioned (but for binary matrices) in Haramoto, in sections 1 and 3.1. They point out,
though, that it isn’t efficient if the transition matrix is large. See also (L’Ecuyer et al., 2002)5.

0.3.1 Example

A multiple recursive generator with a modulus of 1449 has the following transition matrix:

| 0 1 0 |
| 0 0 1 |
| 444 342 499 |

To calculate the 3 × 3 jump matrix to jump 100 steps from this MRG, raise this matrix to the power of
100 then take the result’s elements mod 1449. One way to do this is the “square-and-multiply” method,
described by D. Knuth in The Art of Computer Programming: Set J to the identity matrix, N to 100, and
M to a copy of the transition matrix, then while N is greater than 0:

4Salmon, John K., Mark A. Moraes, Ron O. Dror, and David E. Shaw. “Parallel random numbers: as easy as 1, 2, 3.” In
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12.
2011.

5L’Ecuyer, Simard, Chen, Kelton, “An Object-Oriented Random-Number Package with Many Long Streams and Sub-
streams”, Operations Research 50(6), 2002.

2

http://xoshiro.di.unimi.it/xoroshiro128plus.c
http://xoshiro.di.unimi.it/xoroshiro128plus.c

1. If N is odd6, multiply J by M then take J’s elements mod 1449.
2. Divide N by 2 and round down, then multiply M by M then take M’s elements mod 1449.

The resulting J is a jump matrix as follows:

| 156 93 1240 |
| 1389 1128 130 |
| 1209 930 793 |

Transforming the MRG’s state with J (and taking its elements mod 1449) will transform the state as though
100 outputs were discarded from the MRG.

0.4 Linear Congruential Generators
A linear congruential generator (LCG) generates numbers by transforming its state using the following
formula: x(k) = (x(k-1)*a + c) mod modulus, where a is the multiplier, c is the additive constant, and
modulus is the modulus.

An efficient way to jump an LCG ahead is described in (Brown 1994)7. This also applies to LCGs that
transform each x(k) before giving out it, such as M.O’Neill’s PCG32 and PCG64.

An MRG with only one multiplier expresses the special case of an LCG with c = 0 (also known as a
multiplicative LCG). For c other than 0, the following matrix describes the state transition [x(k-1), 1] to
[x(k), 1] (mod modulus):

| a c |
| 0 1 |

Jumping the LCG ahead can then be done using this matrix as described in the previous section.

0.5 Multiply-with-Carry, Add-with-Carry, Subtract-with-Borrow
There are implementations for jumping a multiply-with-carry (MWC) PRNG ahead, but only in source-
code form8. I am not aware of an article or paper that describes how jumping an MWC PRNG ahead
works.

I am not aware of any efficient ways to jump an add-with-carry or subtract-with-borrow PRNG ahead an
arbitrary number of steps.

0.6 Combined PRNGs
A combined PRNG can be jumped ahead N steps by jumping each of its components ahead N steps.

0.7 Jump Parameters for Some PRNGs
The following table shows the characteristic polynomial and jump polynomials for some PRNG families. In
the table:

• Each number before the colon in the jump polynomial column is the number of PRNG outputs discarded
when the corresponding jump polynomial is used.

• Each polynomial’s coefficients are zeros and ones, so the table shows them as a base-16 integer that
stores the coefficients as individual bits: the least significant bit is the degree-0 coefficient, the next

6“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.

7Brown, F., “Random Number Generation with Arbitrary Strides”, Transactions of the American Nuclear Society Nov. 1994.
8https://github.com/rsaucier/Random/blob/3a7981bd6a8ac6d4507e9630393303b18e8967ca/kiss.h

3

https://github.com/rsaucier/Random/blob/3a7981bd6a8ac6d4507e9630393303b18e8967ca/kiss.h
https://github.com/rsaucier/Random/blob/3a7981bd6a8ac6d4507e9630393303b18e8967ca/kiss.h

bit is the degree-1 coefficient, and so on. For example, the integer 0x23 stores the coefficients of the
polynomial x5 + x + 1.

• Each characteristic polynomial’s highest coefficient is x 𝑛 , where n is the PRNG’s state size. Thus,
the table shows it as a base-16 integer with n plus one bits.

• “ ‘Period’/ 𝜑” means the PRNG’s maximum cycle length divided by the golden ratio, and rounded to
the closest odd integer; this jump parameter is chosen to avoid overlapping number sequences as much
as possible (see also NumPy documentation9).

PRNG Characteristic Polynomial Jump Polynomials
xoroshiro64 0x1053be9da6e2286c1 232: 0x4cbf99bd77fcd1a0248:

0xb4e7e4633f1f8b95“Period”/ 𝜑 :
0x751f355609af0e3b

xoshiro128 0x100fc65a2006254b11b489db6de18fc01232:
0xf8aed94730b948df3be07b8f7afe108248:
0xdeaa4ca2dec5bb9a87a4583dcb56667c264:
0x77f2db5b6fa035c3f542d2d38764000b296:
0x1c580662ccf5a0ef0b6f099fb523952e“Period”/
𝜑 :
0x338b58d0590169928fda8fd5d1cf96b6

xoroshiro128 (except ++) 0x10008828e513b43d5095b8f76579aa001232:
0xd4e95eef9edbdbc6fad843622b252c78248:
0x9b19ba6b3752065ad769cfc9028deb78264:
0x170865df4b3201fcdf900294d8f554a5296:
0xd-
ddf9b1090aa7ac1d2a98b26625eee7b“Period”/
𝜑 :
0xc1c620fd7bf598c34a2828365a7df3e0

xoroshiro128++ 0x10031bcf2f855d6e58dae70779760b081232:
0x2e1bcf52f1051044fcceec21d5c306d9248:
0xc8462a08ab3d7f9b99030a888c867939264:
0x992ccaf6a6fca052bd7a6a6e99c2ddc296:
0x9c6e6877736c46e3360fd5f2cf8d5d99“Period”/
𝜑 :
0x1b4c7a8989405b16d3e4e127a6a11513

xoshiro256 0x10003c03c3f3ecb1904b4edcf26259f85-
0280002bcefd1a5e9d116f2bb0f0f001

232:
0xe055d3520fdb9d7214fafc0fbdbc2087d8d0632bd08e6ac58120d583c112f69248:
0x5f728be2c97e9066474579292f705634f825539dee5e4763f11fb4faea62c7f1264:
0x12e4a2fbfc19bff934faff184785c20ab60d6c5b8c78f106b13c16e8096f0754296:
0x31eebb6c82a9615fb27c05962ea56a13cdb45d7def42c317148c356c3114b7a92128:
0x39abdc4529b1661ca9582618e03fc9aad5a61266f0c9392c180ec6d33cfd0aba2160:
0xf567382197055bf04823b45b89dc689c69e6e6e431a2d40bc04b4f9c5d26c2002192:
0x39109bb02acbe63577710069854ee241c5004e441c522fb376e15d3efefdcbbf2224:
0xa2b5d83a373c7ac2f31d2e03157bc387d317530723ab526a0c7840cbc3b121ad“Period”/
𝜑 :
0x294e2bac089b06c7d4ce5d1a031b6cf8787f49127b37f506ac1c9e5f5f53046c

9https://docs.scipy.org/doc/numpy/reference/random/parallel.html

4

https://docs.scipy.org/doc/numpy/reference/random/parallel.html

0.8 Acknowledgments
Sebastiano Vigna reviewed this page and gave comments.

1 Notes

5

	F_{2}-linear PRNGs
	Counter-Based PRNGs
	Multiple Recursive Generators
	Example

	Linear Congruential Generators
	Multiply-with-Carry, Add-with-Carry, Subtract-with-Borrow
	Combined PRNGs
	Jump Parameters for Some PRNGs
	Acknowledgments
	Notes

