
Examples of High-Quality PRNGs

Peter Occil

This version of the document is dated 2024-12-24.

Besides cryptographic random number generators (RNGs), the following are examples of high-quality
pseudorandom number generators (PRNGs)1. The “Fails PractRand Starting At” column in this
and other tables in this page means the number of bytes (rounded up to the nearest power of two) at
which PractRand detects a failure in the PRNG. (Note that high-quality PRNGs, as I define them, are not
necessarily appropriate for information security.)

PRNG Seeds Allowed Cycle Length

Fails
PractRand
Starting At Notes

xoshiro256** 2^256 - 1 2^256 - 1 ??? TiB
xoshiro256+ 2^256 - 1 2^256 - 1 ??? TiB Lowest bits have low

linear complexity (see
(Blackman and Vigna
2019)2 and see also
“Testing low bits in
isolation”); if the
application or library
cares, it can discard those
bits before using this
PRNG’s output.

xoshiro256++ 2^256 - 1 2^256 - 1 ??? TiB
xoshiro512** 2^512 - 1 2^512 - 1 ??? TiB
xoshiro512+ 2^512 - 1 2^512 - 1 ??? TiB Lowest bits have low

linear complexity
xoshiro512++ 2^512 - 1 2^512 - 1 ??? TiB
xoroshiro128++ 2^128 - 1 2^128 - 1 ??? TiB
xoroshiro128** 2^128 - 1 2^128 - 1 ??? TiB
SFC64 (C.
Doty-Humphrey)

2^192 At least 2^64
per seed

??? TiB 256-bit state

Philox4×64-7 2^128 At least 2^256
per seed

??? TiB 384-bit state

Velox3b 2^64 At least 2^128
per seed

??? TiB 256-bit state

gjrand named after
Geronimo Jones

2^128 At least 2^64
per seed

??? TiB 256-bit state

1https://peteroupc.github.io/random.html#High_Quality_RNGs_Requirements
2Blackman, D., Vigna, S. “Scrambled Linear Pseudorandom Number Generators”, 2019 (xoroshiro and xoshiro families);

S. Vigna, “An experimental exploration of Marsaglia’s xorshift generators, scrambled”, 2016 (scrambled xorshift
family).

1

https://peteroupc.github.io/random.html#High_Quality_RNGs_Requirements
https://peteroupc.github.io/random.html#High_Quality_RNGs_Requirements
http://xoshiro.di.unimi.it/lowcomp.php
http://xoshiro.di.unimi.it/lowcomp.php
http://vigna.di.unimi.it/ftp/papers/xorshift.pdf

PRNG Seeds Allowed Cycle Length

Fails
PractRand
Starting At Notes

MRG32k3a
(L’Ecuyer 1999;
L’Ecuyer et
al. 2002)3

Near 2^192 2 cycles with
length near
2^191

??? TiB 192-bit state

MRG31k3p
(L’Ecuyer and
Touzin 2000)4

Near 2^186 2 cycles with
length near
2^185

??? TiB 192-bit state

JLKISS (Jones
2007/2010)5

2^64 * (2^64 -
1)^2

At least (2^128
- 2^64)

??? TiB 192-bit state

JLKISS64 (Jones
2007/2010)6

2^64 * (2^64 -
1)^3

At least (2^128
- 2^64)

??? TiB 256-bit state

A multiplicative
linear congruential
generator7 (LCG)
with prime modulus
greater than 263

described in Table 2
of (L’Ecuyer 1999)8

Modulus - 1 Modulus - 1 ??? TiB Memory used depends on
modulus size

XorShift* 128/64 2^128 - 1 2^128 - 1 ??? TiB 128-bit state. Described
by M. O’Neill in “You
don’t have to use PCG!”,
2017.9

XorShift* 64/32 2^64 - 1 2^64 - 1 ??? TiB 64-bit state. Described by
M. O’Neill in “You don’t
have to use PCG!”, 2017.

0.1 PRNGs with Stream Support
Some PRNGs support multiple “streams” that behave like independent uniform random bit sequences. The
test for independence involves interleaving two “streams”’ outputs and sending the interleaved outputs to
the PractRand tests.

The following lists high-quality PRNGs that support streams and their PractRand results for different
strategies of forming pseudorandom number “streams”.

3L’Ecuyer, P., “Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators”,
Operations Research 47(1), 1999; L’Ecuyer, P., Simard, R., et al., “An Object-Oriented Random Number Package with Many
Long Streams and Substreams”, Operations Research 50(6), 2002.

4L’Ecuyer, P., Touzin, R., “Fast Combined Multiple Recursive Generators with Multipliers of the Form a = ±2 𝑞 ± 2 𝑟”,
Proceedings of the 2000 Winter Simulation Conference, 2000.

5Jones, D., “Good Practice in (Pseudo) Random Number Generation for Bioinformatics Applications”, 2007/2010.
6Jones, D., “Good Practice in (Pseudo) Random Number Generation for Bioinformatics Applications”, 2007/2010.
7https://en.wikipedia.org/wiki/Linear_congruential_generator
8P. L’Ecuyer, “Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure”, Mathematics of

Computation 68(225), January 1999, with errata.
9This XorShift* generator is not to be confused with S. Vigna’s *-scrambled PRNGs, which multiply the PRNG state

differently than this one does.

2

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/latrules99Errata.pdf

PRNG Fails PractRand Starting At Notes
xoshiro256** Jump-ahead by 2^64: ???

TiBJump-ahead by 2^128: ???
TiBJump-ahead by 2^256/ 𝜑 : ???
TiBConsecutive seeds: ??? TiB

xoshiro256++ Jump-ahead by 2^64: ???
TiBJump-ahead by 2^128: ???
TiBJump-ahead by 2^256/ 𝜑 : ???
TiBConsecutive seeds: ??? TiB

xoroshiro128** Jump-ahead by 2^64: ???
TiBJump-ahead by 2^128/ 𝜑 : ???
TiBConsecutive seeds: ??? TiB

xoroshiro128++ Jump-ahead by 2^64: ???
TiBJump-ahead by 2^128/ 𝜑 : ???
TiBConsecutive seeds: ??? TiB

SFC64 Consecutive seeds: ??? TiBSeed
increment by 2^64: ??? TiB

Philox4×64-7 Consecutive seeds: ??? TiBSeed
increment by 2^64: ??? TiB

PCG64 Jump-ahead by period/ 𝜑 : ??? TiB What PCG calls “streams” does not
produce independent sequences.

??? Jump-ahead by period/ 𝜑 : ??? TiB

0.2 Counter-Based PRNGs
Constructions for counter-based PRNGs (using the definition from (Salmon et al. 2011, section 2)10 include:

1. A PRNG that outputs hash codes of a counter and the seed.
2. A PRNG that uses a block cipher with the seed as a key to give out encrypted counters.

More specifically, let C and S each be 64 or greater and divisible by 8. Then:

1. A C-bit counter is set to 0 and an S-bit seed is chosen. In each iteration, the PRNG outputs H(seed
|| 0x5F || counter) (where H is a hash function, || means concatenation, 0x5F is the 8-bit block
0x5F, and seed and counter are little-endian encodings of the seed or counter, respectively), and adds
1 to the counter by wraparound addition. Or…

2. A C-bit counter is set to 0 and an S-bit seed is chosen. In each iteration, the PRNG gives out a block
generated by a C-bit block cipher where the key is a little-endian encoding of the seed, and where the
cleartext is a little-endian encoding of the counter, and adds 1 to the counter by wraparound addition.

The following lists hash functions and block ciphers that form high-quality counter-based PRNGs. It’s
possible that reduced-round versions of these and other functions will also produce high-quality counter-
based PRNGs.

10Salmon, John K., Mark A. Moraes, Ron O. Dror, and David E. Shaw. “Parallel random numbers: as easy as 1, 2, 3.” In
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12.
2011.

3

Function
Fails PractRand
Starting At Notes

Hash Functions: BEBB4185;
BLAKE2S-256; BLAKE3; CityHash64;
Falkhash; FarmHash128; FarmHash32;
FarmHash64; Farsh32; Farsh64;
Floppsyhash; GoodOAAT;
Half-SipHash; Hasshe2; MD5 (low 32
bits); Metrohash128; Mirhash;
Mirhashstrict (low 32 bits); MUM;
MurmurHash64A for x64;
MurmurHash3 (128-bit) for x64;
Seahash; Seahash (low 32 bits);
SHA-256; SHA-256 (low 64 bits);
SHA3-256; SipHash; Spooky64; Fast
Positive Hash (32-bit big-endian);
TSip; xxHash v3 64-bit (both full and
low 32 bits)

> 1 TiB S = 64, C = 128. Failure figure applies
to regular sequence; 2, 4, and 11
interleaved streams from consecutive
seeds; 2, 4, and 11 interleaved streams
from counters incremented by 264; 2, 4,
and 11 interleaved streams from
counters incremented by 296.

??? ??? TiB (Consecutive
seeds: ??? TiB)

??? ??? TiB (Consecutive
seeds: ??? TiB)

??? ??? TiB (Consecutive
seeds: ??? TiB)

0.3 Combined PRNGs
The following lists high-quality combined PRNGs. See “Testing PRNGs for High-Quality Random-
ness11” for more information on combining PRNGs.

Function Fails PractRand Starting At Notes
??? combined with Weyl sequence ??? TiB
??? combined with 128-bit LCG ??? TiB
JSF64 combined with ??? ??? TiB
JSF64 combined with ??? ??? TiB
Tyche combined with ??? ??? TiB
Tyche-i combined with ??? ??? TiB
??? combined with ??? ??? TiB

0.4 Splittable PRNGs
The following lists high-quality splittable PRNGs. See “Testing PRNGs for High-Quality Random-
ness12” for more information on testing splittable PRNGs, and see the appendix for splittable PRNG
constructions.

11https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md
12https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md

4

https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/randomtest.md

Function Fails PractRand Starting At Notes
??? ??? TiB
??? ??? TiB
??? ??? TiB

0.5 PRNGs Not Preferred
Although the following are technically high-quality PRNGs, they are not preferred:

PRNG Notes
C++’s std::ranlux48 engine Usually takes about 192 8-bit bytes of memory.

Admits up to 2^577 - 2 seeds; seed’s bits cannot be
all zeros or all ones (Lüscher 1994)13. The
maximum cycle length for ranlux48’s underlying
generator is very close to 2^576.

A high-quality PRNG that is an LCG with
nonprime modulus (or a PRNG based on one, such
as PCG)

If the modulus is a power of 2, this PRNG can
produce highly correlated pseudorandom number
sequences from seeds that differ only in their high
bits (see S. Vigna, “The wrap-up on PCG
generators”) and lowest bits have short cycles.
(What PCG calls “streams” does not produce
independent sequences.)

0.6 Not High-Quality PRNGs
The following are not considered high-quality PRNGs:

Algorithm Notes
Sequential counter Doesn’t behave like independent random sequence
A linear congruential generator with modulus less
than 263 (such as java.util.Random and C++’s
std::minstd_rand and std::minstd_rand0
engines)

Admits fewer than 263 seeds

Mersenne Twister (MT19937) Shows a systematic failure in BigCrush’s
LinearComp test (part of L’Ecuyer and Simard’s
“TestU01”). (See also (Vigna 2019)14.) Moreover, it
usually takes about 2500 8-bit bytes of memory.

Marsaglia’s xorshift family (“Xorshift RNGs”,
2003)

Shows systematic failures in SmallCrush’s
MatrixRank test (Vigna 2016)15

System.Random, as implemented in the .NET
Framework 4.7

Admits fewer than 263 seeds

Ran2 (Numerical Recipes) Minimum cycle length less than 263

13Lüscher, M., “A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations”, arXiv:hep-
lat/9309020 (1994). See also Conrads, C., “Faster RANLUX Pseudo-Random Number Generators”. https://christoph-
conrads.name/faster-ranlux-pseudo-random-number-generators/

14S. Vigna, “It Is High Time We Let Go of the Mersenne Twister”, arXiv:1910.06437 [cs.DS], 2019. https://arxiv.or
g/abs/1910.06437

15S. Vigna, “An experimental exploration of Marsaglia’s xorshift generators, scrambled”, 2016.

5

http://www.cplusplus.com/reference/random/ranlux48/
http://pcg.di.unimi.it/pcg.php
http://pcg.di.unimi.it/pcg.php
http://xoroshiro.di.unimi.it/#quality
https://christoph-conrads.name/faster-ranlux-pseudo-random-number-generators/
https://christoph-conrads.name/faster-ranlux-pseudo-random-number-generators/
https://arxiv.org/abs/1910.06437
https://arxiv.org/abs/1910.06437
http://vigna.di.unimi.it/ftp/papers/xorshift.pdf

Algorithm Notes
msws (Widynski 2017)16 Admits fewer than 263 seeds (about 2 54.1 valid

seeds)
JSF32 (B. Jenkins’s “A small noncryptographic
PRNG”)

Admits fewer than 263 seeds; proven minimum cycle
length is only 220 or more

JSF64 (B. Jenkins’s “A small noncryptographic
PRNG”)

No proven minimum cycle of at least 263 values

Middle square No proven minimum cycle of at least 263 values
Many cellular-automaton PRNGs (especially if they
are neither reversible nor maximal-length17)

No proven minimum cycle of at least 263 values

Tyche/Tyche-i (Neves and Araujo 2011)18 No proven minimum cycle of at least 263 values
ISAAC (“ISAAC and RC4” by B. Jenkins) Proven minimum cycle length is only 240 or more

1 Notes

2 Appendix
2.1 Implementation Notes: Splittable PRNGs
Here are implementation notes on splittable PRNGs. The pseudocode conventions19 apply to this section.
In addition, the following notation is used:

• The || symbol means concatenation.
• TOBYTES(x, n) converts an integer to a sequence of n 8-bit bytes, in “little-endian” encoding: the first

byte is the 8 least significant bits, the second byte is the next 8 bits, and so on. No more than n times
8 bits are encoded, and unused bytes become zeros.

• BLOCKLEN is the hash function’s block size in bits. For noncryptographic hash functions, this can be
the function’s output size in bits instead. BLOCKLEN is rounded up to the closest multiple of 8.

• TOBLOCK(x) is the same as TOBYTES(x, BLOCKLEN / 8).

The splittable PRNG designs described here use keyed hash functions, which hash a message with a given
key and give out a hash code. An unkeyed hash function can become a keyed hash function by hashing the
following data: key || TOBYTES(0x5F, 1) || message.

The Claessen–Pałka splittable PRNG (Claessen and Pałka 2013)20 can be described as follows:

• A PRNG state has two components: a seed and a path (a vector of bits). A new state’s seed is
TOBLOCK(seed) and its path is an empty bit vector.

• split creates two new states from the old one; the first (or second) is a copy of the old state, except
a 0 (or 1, respectively) is appended to the path. If a new state’s path reaches BLOCKLEN bits this way,
the state’s seed is set to the result of hashing BitsToBytes(path) with the seed as the key, and the
state’s path is set to an empty bit vector.

• generate creates a random number by hashing BitsToBytes(path) with the seed as the key.
16Widynski, B., “Middle Square Weyl Sequence RNG”, arXiv:1704.00358 [cs.CR], 2017. https://arxiv.org/abs/1704.0

0358
17Bhattacharjee, K., “Cellular Automata: Reversibility, Semi-reversibility and Randomness”, arXiv:1911.03609

[cs.FL], 2019. https://arxiv.org/abs/1911.03609
18Neves, S., and Araujo, F., “Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation”, 2011.
19https://peteroupc.github.io/pseudocode.html
20Claessen, K, Pałka, M., “Splittable Pseudorandom Number Generators using Cryptographic Hashing”, ACM SIGPLAN

Notices 48(12), December 2013.

6

https://peteroupc.github.io/pseudocode.html
https://arxiv.org/abs/1704.00358
https://arxiv.org/abs/1704.00358
https://arxiv.org/abs/1911.03609

(The Claessen paper, section 5, also shows how a sequence of numbers can be generated from a state,
essentially by hashing the path with the seed as the key, and in turn hashing a counter with that hash code
as the key, but uses a rather complicated encoding to achieve this.)

The following helper method, in pseudocode, is used in the description above:

METHOD BitsToBytes(bits)
// Unfortunately, the Claessen paper sec. 3.3 pads
// blocks with zeros, creating a risk that different paths
// encode to the same byte sequence (for example, <1100> vs.
// <11000> or <0011> vs. <00011>). Even without this padding,
// this risk exists unless the underlying hash function hashes
// bit sequences (not just byte sequences), which is rare.
// Therefore, encode the bits to a sequence of bytes
// rather than using the encoding given in sec. 3.3.
v = []
for i in 0...size(bits): v = v || TOBYTES(bits[i], 1)
return v

END METHOD

The splittable PRNG described in “JAX PRNG Design21” can be described as follows:

• A PRNG state is generated from a seed with TOBLOCK(seed).
• split creates two new states from the old one; the first (or second) is a hash of TOBLOCK(0) (or

TOBLOCK(1), respectively) with the old state as the key.
• generate creates one or more random numbers by hashing TOBLOCK(n) with the state as the key,

where n starts at 1 and increases by 1 for each new random number.

21https://github.com/google/jax/blob/master/design_notes/prng.md

7

https://github.com/google/jax/blob/master/design_notes/prng.md

	PRNGs with Stream Support
	Counter-Based PRNGs
	Combined PRNGs
	Splittable PRNGs
	PRNGs Not Preferred
	Not High-Quality PRNGs
	Notes
	Appendix
	Implementation Notes: Splittable PRNGs

