
Color Topics for Programmers

Peter Occil

This version of the document is dated 2025-04-01.

Peter Occil

1 Introduction
This document presents an overview of many common color topics that are of general interest to programmers
and that can be implemented in many different programming languages. Sample Python code1 that
implements many of the methods in this document is available. Supplemental topics2 are listed
in another open-source page.

Topics this document covers include:

• Red-green-blue (RGB) and other color models of practical interest.
• How to generate colors with certain properties.
• Color differences, color maps, and color mixing.
• Dominant colors of an image.
• Colors as spectral curves.

This document does not cover:

• How to change or set colors used—
– in text, foregrounds, or backgrounds of user-interface elements (such as buttons, text boxes, and

windows),
– in text or backgrounds of documents (such as HTML documents), or
– when generating graphics (such as plots and charts).

• Determining which colors are used, or used by default, in user-interface elements, documents, plots, or
charts.

• Color pickers, including how to choose colors with them.
• Specifics on setting and getting pixel, palette, and other colors in images (including screenshots) with

the exception of finding dominant colors.
• Colorization of command line outputs, or terminal or shell outputs. “ANSI” graphic codes3 are

discussed elsewhere.
• In general, topics that are specific to a programming language or application programming interface.

2 Contents
• Introduction
• Contents
• Notation and Definitions

1https://peteroupc.github.io/colorutil.zip
2https://peteroupc.github.io/suppcolor.html
3https://peteroupc.github.io/suppcolor.html#Terminal_Graphics

1

mailto:poccil14@gmail.com
https://peteroupc.github.io/colorutil.zip
https://peteroupc.github.io/suppcolor.html
https://peteroupc.github.io/suppcolor.html#Terminal_Graphics

• Overview of Color Vision
– Human Color Vision
– Defective and Animal Color Vision

• Specifying Colors
• RGB Color Model

– RGB Color Spaces
– sRGB
– Representing RGB Colors

∗ Binary Formats
∗ HTML Format and Other Text Formats

• Transformations of RGB Colors
– HSV
– HSL
– HWB
– Y ′ C𝐵C𝑅 and Other Video Color Formats

• Other Color Models
– CIE XYZ

∗ Encoding XYZ Through RGB
∗ Conversion Matrices Between XYZ and RGB
∗ Chromaticity Coordinates

– CIELAB
– CIELUV
– CMYK and Other Ink-Mixture Color Models

• Color Operations
– Luminance Factor (Grayscale)
– Alpha Blending
– Binarization
– Color Schemes and Harmonies
– Contrast Between Two Colors
– Porter–Duff Formulas
– Raster Operations
– Blend Modes
– Color Matrices
– Lighten/Darken
– Saturate/Desaturate
– Miscellaneous

• Color Differences
– Nearest Colors

• Dominant Colors of an Image
• Color Maps

– Kinds of Color Maps
– Color Collections
– Visually Distinct Colors
– Linear Gradients
– Pseudocode

• Generating a Random Color
• Spectral Color Functions

– Color Temperature
– Color Mixture

• Conclusion
• Notes
• License

2

3 Notation and Definitions
• The pseudocode conventions4 apply to this document.
• bpc. Bits per color component, also known as bits per color channel.
• CIE. French initials for the International Commission on Illumination.
• Color model. Describes, in general terms, the relationship of colors in a theoretical space.
• Color space. A mapping from colors to numbers that follows a particular color model.
• D50 illuminant, D65 illuminant. CIE models of daylight at a correlated color temperature of

about 5000 or 6500 kelvins respectively.5
• D50/2 white point. The white point determined by the D50 illuminant and the CIE 1931 standard

observer.
• D65/2 white point. The white point determined by the D65 illuminant and the CIE 1931 standard

observer.
• Image color list. Means either—

– a list of colors (which can have duplicates), all of the same color space, or
– the colors (which can have duplicates) used in a raster image’s pixels, a vector image, a three-

dimensional image, a digital video, or a digital document.
• ISO. International Organization for Standardization.
• Light source. Means a primary light source or an illuminant, as defined by the CIE. Roughly

means an emitter of light, or radiation describing an emitter of light.
• RGB. Red-green-blue.

4 Overview of Color Vision
Color6 is possible only if three things exist, namely—

• light,
• an object receiving that light (a surface, for example), and
• an observer viewing that object and interpreting the light received from it.

Because of this, color does not exist in light, in objects receiving light, in light sources, or even in the signals
generated by the eyes when they see things.7 In the Opticks, I. Newton said, “the Rays to speak properly
are not coloured.”

Color appearance is subjective — since interpreting the light is required — and varies with the light source
(sunlight, daylight, incandescent light, etc.), object (material), observer, viewing situation, or a combination
of these.8

Note: The three things that together make color possible — light, object, and observer — can
be modeled by curves that span the visible spectrum (the part of the electromagnetic spectrum

4https://peteroupc.github.io/pseudocode.html
5The CIE publishes tabulated data for the D65 illuminant and the CIE 1931 and 1964 standard observers at its Web

site. In some cases, the CIE 1931 standard observer can be approximated using the methods given in Wyman, Sloan, and
Shirley, “Simple analytic approximations to the CIE XYZ color matching functions”, Journal of Computer Graphics
Techniques 2(2), 2013, pp. 1-11.

6This overview has none of the heavy baggage from color teachings involving “red, yellow, and blue”, “pri-
mary/secondary/tertiary” colors, or using a “color wheel” to “predict” color mixtures. Also deliberately missing are discussions
on color psychology, “color forecasting”, or color in natural language, all topics that are generally irrelevant in programming.

7It’s not accurate to speak of “red light”, “green light”, “blue light”, “white light”, and so on.
8Color perception is influenced by the three things that make color possible: Light. For example, natural daylight and

sunlight change how they render colors depending on time of day and year, place, and weather. Objects. A material’s surface
properties such as gloss, transparency, haze, and more affect color perception. Observers. Different observers “see” colors
differently due to aging, culture, defective color vision, personal experience, kind of observer (human, camera, lens, animal,
etc.), and more. B. MacEvoy documents the wide observer variation even among humans with normal color vision. For a
detailed overview on phenomena involving human color vision, see section 9 of Kirk, R., “Standard Colour Spaces”, FilmLight
Technical Note, version 4.0, 2004-2018. https://www.filmlight.ltd.uk/support/documents/other/legacy_tl.php

3

https://peteroupc.github.io/pseudocode.html
http://eilv.cie.co.at/term/982
http://eilv.cie.co.at/term/554
http://www.cie.co.at/technical-work/technical-resources
http://jcgt.org/published/0002/02/01/
http://www.handprint.com/HP/WCL/color2.html#individualdiffs
https://www.filmlight.ltd.uk/support/documents/other/legacy_tl.php

in which light is “seen”), as described in the section “Spectral Color Functions”.

4.1 Human Color Vision
When a person views an object, the light it reflects reaches that person’s eyes.

The human eye has an inner back lining (called the retina) filled with three kinds of cones, and each kind of
cone is differently sensitive to light.

The human visual system compares the responses it receives from the cones and converts them to three kinds
of signals, namely a light–dark signal and the two opponent signals red/green and blue/yellow. It’s these
signals, and not the cone responses, that are passed to the brain.9

The human brain interprets the signals from the eyes to judge color appearance, taking into account the
visual situation. One process involved in this is called adaptation, in which the human visual system, roughly
speaking, treats the brightest thing in the scene as “white” and mentally adjusts the rest of the colors it
sees accordingly, to account for differences in lighting. Adaptation is thus similar to a digital camera’s “auto
white balance”.

Notes:

1. The cone responses can be described by three overlapping “curves” that peak at different
places in the visible spectrum — in fact, two of these curves span the entire visible spectrum.
As a result, at least two of the three kinds of cones will react to light, not just one by itself.

2. Because there are three kinds of cones, three numbers are enough to uniquely identify a color
humans can see — which is why many color spaces10 are 3-dimensional, such as RGB or
CIE XYZ spaces.

4.2 Defective and Animal Color Vision
Defective color vision, including so-called “colorblindness”11, can make certain kinds of light harder to
distinguish than is the case with normal color vision.12

In addition to humans, many other animals possess color vision to a greater or lesser extent. As an extreme
example, the mantis shrimp13 has at least twelve different cone types, making its color vision considerably
sharper than humans’.

5 Specifying Colors
A color can be specified in one of two ways:

• As a point in space, that is, as a small set of numbers (usually three numbers) showing where the
color lies in a color space. This is the usual practice. Some color spaces include the following:

– RGB color spaces describe proportions of “red”, “green”, and “blue” dots of light.
– HSV, HSL, and HWB color spaces transform RGB colors to make their presentation more

intuitive, but are not perception-based.
– XYZ, CIELAB, and CIELUV color spaces are based on human color perception.
– CMYK color spaces are especially used to describe proportions of four specific kinds of ink.
– Y ′ C𝐵C𝑅 is especially used in video encoding.

9For example, the light–dark signal is roughly the sum of the three cone responses. The theory of opponent colors is largely
due to E. Hering’s work and was reconciled with the three-cone theory around the mid-20th century (for example, through work
by Hurvich and Jameson).

10https://peteroupc.github.io/suppcolor.html#Kinds_of_Color_Spaces
11https://en.wikipedia.org/wiki/Color_blindness
12For information on how defective color vision can be simulated, see “Color Blindness Simulation Research”, by “Jim”.
13https://en.wikipedia.org/wiki/Mantis_shrimp

4

https://peteroupc.github.io/suppcolor.html#Kinds_of_Color_Spaces
http://eilv.cie.co.at/term/287
https://en.wikipedia.org/wiki/Color_blindness
https://en.wikipedia.org/wiki/Mantis_shrimp
http://ixora.io/projects/colorblindness/color-blindness-simulation-research/

• As a spectral curve, which gives the behavior of light across the electromagnetic spectrum (see
“Spectral Color Functions”). Colors given as spectral curves, unlike colors in RGB or other color
spaces, have the advantage that they are not specific to a lighting condition, whereas colors in a given
color space assume a specific lighting, viewing, or printing condition.

6 RGB Color Model
The red–green–blue (RGB) color model is the most commonly seen color model in mainstream computer
programming. The RGB model is ideally based on the intensity that “red”, “green”, and “blue” dots of light
should have in order to reproduce certain colors on display devices.14 The RGB model is a cube with one
vertex set to “black”, the opposite vertex set to “white”, and the remaining vertices set to “red”, “green”,
“blue”, “cyan”, “yellow”, and “magenta”.

RGB colors. An RGB color consists of three components in the following order: “red”, “green”, “blue”.

RGBA colors. Some RGB colors also contain a fourth component, called the alpha component, which
ranges from fully transparent to fully opaque. Such RGB colors are called RGBA colors in this document.
RGB colors without an alpha component are generally considered fully opaque.

0-1 format. In this document, an RGB or RGBA color is in the 0-1 format if all its components are 0
or greater and 1 or less. This document understands all RGB and RGBA colors to be in this format unless
noted otherwise.

6.1 RGB Color Spaces
There are many RGB color spaces, not just one, and they generally differ in their red, green, blue, and
white points and in their color component transfer functions (“transfer functions”):

• Red, green, blue, and white points. These are what a given RGB color space considers “red”,
“green”, “blue”, and “white”, that is, what that space associates with the RGB colors (1, 0, 0), (0, 1,
0), (0, 0, 1), and (1, 1, 1), respectively. (The first three points are commonly called “primaries”.) Each
of these points need not be an actual color (this is illustrated by the ACES2065-1 color space, for
example). Examples of “primaries” are Rec. 601 (NTSC), Rec. 709, and DCI-P3. Examples of white
points are the D50/2 and D65/2 white points.

• “Transfer function”. This is a function used to convert, component by component, a so-called linear
RGB color to an encoded RGB (R ′ G ′ B ′) color in the same color space. Examples include the
sRGB transfer function given later; power-law or gamma functions such as c 1/𝛾 , where c is the red,
green, or blue component and 𝛾 is a positive number; and the PQ and HLG functions.

In general, the same three numbers, such as (1, 0.5, 0.3), identify a different-appearing RGB color in different
RGB color spaces. In this document, the only RGB color space described in detail is sRGB. (Lindbloom)15

contains further information on many RGB color spaces.

Notes:

1. In this document, all techniques involving RGB colors apply to such colors in linear or
encoded form, unless noted otherwise.

14Although most color display devices in the past used three dots per pixel (“red”, “green”, and “blue”), this may hardly be
the case today. Nowadays, recent display devices and luminaires are likely to use more than three dots per pixel — such as
“red”, “green”, “blue”, and “white”, or RGBW — and ideally, color spaces following the RGBW color model, or similar color
models, describe the intensity those dots should have in order to reproduce certain colors. Such color spaces, though, are not
yet of practical interest to most programmers outside the development of solid-state lighting, luminaires, or display devices, or
of software to control them.

15B. Lindbloom, “RGB Working Space Information”.

5

http://www.oscars.org/science-technology/sci-tech-projects/aces
http://www.brucelindbloom.com/index.html?WorkingSpaceInfo.html

2. In the TV and film industries, some RGB color spaces, including sRGB, belong in the
category of so-called standard dynamic range (SDR) color spaces, while others cover a wider
range of colors (wide color gamut or WCG), a wider “brightness” range (high dynamic range
or HDR), or both. (Mano 2018)16 contains an introduction to WCG/HDR images. See also
Rep. 2390-4, a more advanced overview, from the International Telecommunication Union.

3. RGB colors encoded in images and video or specified in documents are usually 8-bpc or
10-bpc encoded RGB colors.

6.2 sRGB
Among RGB color spaces, one of the most popular is the sRGB color space. In sRGB—

• the red, green, and blue points were chosen to cover the range of colors displayed by typical cathode-
ray-tube displays (as in the high-definition standard Rec. 70917),

• the white point was chosen as the D65/2 white point, and
• the color component transfer function (implemented as SRGBFromLinear below) was based on the

power-law (gamma) encoding used for cathode-ray-tube monitors.

For background, see the sRGB proposal18, which recommends RGB image data in an unidentified RGB
color space to be treated as sRGB.

The following methods convert colors between linear and encoded sRGB. (Note that the thresholds
0.0031308 and 0.4045 are those of IEC 61966-2-1, the official sRGB standard published by the
International Electrotechnical Commission; the sRGB proposal has a different value for these thresholds.)

// Convert a color component from encoded to linear sRGB
// NOTE: This is not gamma decoding; it's similar to, but
// not exactly, c^2.2. This function was designed "to
// allow for invertability in integer math", according to
// the sRGB proposal.
METHOD SRGBToLinear(c)
// NOTE: Threshold here would more properly be
// 12.92 * 0.0031308 = 0.040449936, but 0.04045
// is what the IEC standard uses
if c <= 0.04045: return c / 12.92
return pow((0.055 + c) / 1.055, 2.4)

END METHOD

// Convert a color component from linear to encoded sRGB
// NOTE: This is not gamma encoding; it's similar to, but
// not exactly, c^(1/2.2).
METHOD SRGBFromLinear(c)
if c <= 0.0031308: return 12.92 * c
return pow(c, 1.0 / 2.4) * 1.055 - 0.055

END METHOD

// Convert a color from encoded to linear sRGB
METHOD SRGBToLinear3(c)

return [SRGBToLinear(c[0]), SRGBToLinear(c[1]), SRGBToLinear(c[2])]
END METHOD

16Mano, Y., et al. “Enhancing the Netflix UI Experience with HDR”, Netflix Technology Blog, Medium.com, Sep. 24, 2018.
17https://en.wikipedia.org/wiki/Rec._709
18https://www.w3.org/Graphics/Color/sRGB

6

https://en.wikipedia.org/wiki/Rec._709
https://www.w3.org/Graphics/Color/sRGB

// Convert a color from linear to encoded sRGB
METHOD SRGBFromLinear3(c)

return [SRGBFromLinear(c[0]), SRGBFromLinear(c[1]), SRGBFromLinear(c[2])]
END METHOD

Note: IEC 61966-2-1 defines a reference display where, among other things, encoded sRGB
colors’ components (c) are decoded using a power law of 2.2, that is, the decoding is c 2.2 .
Indeed, this power law, and not an inverse of the sRGB color component transfer function, is
what is employed in practice19 by most computer displays today that can show, more or less,
the range of colors supported by sRGB.

6.3 Representing RGB Colors
The following shows how linear or encoded RGB colors can be represented as integers or as text.

6.3.1 Binary Formats

RGB and RGBA colors are often expressed by packing their components as binary integers, as follows:

• RGB colors: With an RN-bit red component, a GN-bit green, and a BN-bit blue, resulting in an
integer that’s (RN + GN + BN) bits long.

• RGBA colors: With an RN-bit red component, a GN-bit green, a BN-bit blue, and an AN-bit alpha,
resulting in an integer that’s (RN + GN + BN + AN) bits long.

For both kinds of colors, the lowest value of each component is 0, and its highest value is 2 𝐵 - 1, where B
is that component’s size in bits.

The following are examples of these formats:

• 5/6/5 RGB colors: As 16-bit integers (5 bits each for red and blue, and 6 bits for green).
• 5-bpc: As 15-bit integers (5 bpc [bits per color channel] RGB).
• 8-bpc: As 24-bit integers (8 bpc RGB), or as 32-bit integers with an alpha component.
• 10-bpc: As 30-bit integers (10 bpc RGB), or as 40-bit integers with an alpha component.
• 16-bpc: As 48-bit integers (16 bpc RGB), or as 64-bit integers with an alpha component.

There are many ways to store RGB and RGBA colors in these formats as integers or as a sequence of 8-bit
bytes. For example, the RGB color’s components can be in “little-endian” or “big-endian” 8-bit byte order,
or the order in which the color’s components are packed into an integer can vary. This document does not
seek to survey the RGB binary storage formats available.

The following pseudocode presents methods to convert RGB colors to and from different binary color formats
(where RGB color integers are packed red/green/blue, in that order from lowest to highest bits):

METHOD round(x):
if floor(x)<0.5: return floor(x)
else: return ceil(b)

END METHOD

// Converts 0-1 format to N/N/N format as an integer.
METHOD ToNNN(rgb, scale)

sm1 = scale - 1
return round(rgb[2]*sm1) * scale * scale + round(rgb[1]*sm1) * scale +

round(rgb[0]*sm1)
END METHOD

19https://github.com/dylanraga/win11hdr-srgb-to-gamma2.2-icm

7

https://github.com/dylanraga/win11hdr-srgb-to-gamma2.2-icm

// Converts N/N/N integer format to 0-1 format
METHOD FromNNN(rgb, scale)

sm1 = scale - 1
r = rem(rgb, scale)
g = rem(floor(rgb / scale), scale)
b = rem(floor(rgb / (scale * scale)), scale)
return [r / sm1, g / sm1, b / sm1]

END METHOD

METHOD To444(rgb): return ToNNN(rgb, 16)
METHOD To555(rgb): return ToNNN(rgb, 32)
METHOD To888(rgb): return ToNNN(rgb, 256)
METHOD To161616(rgb): return ToNNN(rgb, 65536)
METHOD From444(rgb): return FromNNN(rgb, 16)
METHOD From555(rgb): return FromNNN(rgb, 32)
METHOD From888(rgb): return FromNNN(rgb, 256)
METHOD From161616(rgb): return FromNNN(rgb, 65536)

METHOD To565(rgb)
return round(rgb[2] * 31) * 32 * 64 + round(rgb[1] * 63) * 32 +

round(rgb[0] * 31)
END METHOD

METHOD From565(rgb)
r = rem(rgb, 32)
g = rem(floor(rgb / 32.0), 64)
b = rem(floor(rgb / (32.0 * 64.0)), 32)
return [r / 31.0, g / 63.0, b / 31.0]

END METHOD

6.3.2 HTML Format and Other Text Formats

A color string in the HTML color format (also known as “hex” format), which expresses 8-bpc RGB colors
as text strings, consists of the character “#”, two base-16 (hexadecimal) digits20 for the red component, two
for the green, and two for the blue, in that order.

For example, #003F86 expresses the 8-bpc RGB color (0, 63, 134).

The following pseudocode presents methods to convert RGB colors to and from the HTML color format or
the 3-digit variant described in note 1 to this section.

METHOD NumToHex(x)
if hex < 0 or hex >= 16: return error
hexlist=["0", "1", "2", "3", "4", "5", "6",

"7", "8", "9", "A", "B", "C", "D", "E", "F"]
return hexlist[x]

END METHOD

METHOD HexToNum(x)
hexlist=["0", "1", "2", "3", "4", "5", "6",

"7", "8", "9", "A", "B", "C", "D", "E", "F"]
hexdown=["a", "b", "c", "d", "e", "f"]

20The base-16 digits, in order, are 0 through 9, followed by A through F. The digits A through F can be uppercase or lowercase.

8

i = 0
while i < 16

if hexlist[i] == x: return i
i = i + 1

end
i = 0
while i < 6

if hexdown[i] == x: return 10 + i
i = i + 1

end
return -1

END METHOD

METHOD ColorToHtml(rgb)
r = (rgb[0] * 255)
g = (rgb[1] * 255)
b = (rgb[2] * 255)
if floor(r)<0.5: r=floor(r)
else: r=ceil(r)
if floor(g)<0.5: g=floor(g)
else: g=ceil(g)
if floor(b)<0.5: b=floor(b)
else: b=ceil(b)
return ["#",
NumToHex(rem(floor(r/16),16)), NumToHex(rem(r, 16)),
NumToHex(rem(floor(g/16),16)), NumToHex(rem(g, 16)),
NumToHex(rem(floor(b/16),16)), NumToHex(rem(b, 16)),

]
END METHOD

METHOD HtmlToColor(colorString)
if string[0]!="#": return error
if size(colorString)==7

r1=HexToNum(colorString[1])
r2=HexToNum(colorString[2])
g1=HexToNum(colorString[3])
g2=HexToNum(colorString[4])
b1=HexToNum(colorString[5])
b2=HexToNum(colorString[6])
if r1<0 or r2<0 or g1<0 or g2<0 or

b1<0 or b2<0: return error
return [(r1*16+r2)/255.0,

(g1*16+g2)/255.0,
(b1*16+b2)/255.0]

end
if size(colorString)==4

r=HexToNum(colorString[1])
g=HexToNum(colorString[2])
b=HexToNum(colorString[3])
if r<0 or g<0 or b<0: return error
return [(r*16+r)/255.0,

(g*16+g)/255.0,

9

(b*16+b)/255.0]
end
return error

END METHOD

Other text-based color formats include the following21:

• The CSS Color Module Level 322, which specifies this format, also mentions a 3-digit variant,
consisting of “#” followed by three base-16 digits, one each for the red, green, and blue components, in
that order. Conversion to the 6-digit format involves replicating each base-16 component (for example,
“#345” is the same as “#334455” in the 6-digit format).

• An 8-digit variant used in the Android operating system consists of “#” followed by eight base-16
digits, two each for the alpha, red, green, and blue components, in that order. This variant thus
describes 8-bpc RGBA colors.

• Additional formats are given in the supplemental color topics23.

Note: As used in the CSS Color Module Level 3, for example, colors in the HTML color
format or its 3-digit variant are in the sRGB color space (as encoded RGB colors).

7 Transformations of RGB Colors
The following sections discuss popular color models for transforming RGB colors. The exact appearance of
colors in these models varies by RGB color space.

7.1 HSV
HSV24 (also known as HSB) is a color model that transforms RGB colors to make them easier to manipulate
and reason with. An HSV color consists of three components, in the following order:

• Hue is an angle from red at 0 to yellow to green to cyan to blue to magenta to red.25

• A component called “saturation”, the distance of the color from gray and white (but not necessarily
from black), is 0 or greater and 1 or less.

• A component variously called “value” or “brightness” is the distance of the color from black and is 0
or greater and 1 or less.

The following pseudocode converts colors between RGB and HSV. The transformation is independent of
RGB color space, but should be done using linear RGB colors.

METHOD RgbToHsv(rgb)
mx = max(max(rgb[0], rgb[1]), rgb[2])
mn = min(min(rgb[0], rgb[1]), rgb[2])
// NOTE: "Value" is the highest of the
// three components
if mx==mn: return [0,0,mx]
s=(mx-mn)/mx
h=0
if rgb[0]==mx

21The hue angle is in radians, and the angle is 0 or greater and less than 2 𝜋 . Radians can be converted to degrees by
multiplying by 180 / pi. Degrees can be converted to radians by multiplying by pi / 180.

22https://www.w3.org/TR/css3-color/#rgb-color
23https://peteroupc.github.io/suppcolor.html#Additional_Color_Formats
24https://en.wikipedia.org/wiki/HSL_and_HSV
25The hue angle is in radians, and the angle is 0 or greater and less than 2 𝜋 . Radians can be converted to degrees by

multiplying by 180 / pi. Degrees can be converted to radians by multiplying by pi / 180.

10

https://www.w3.org/TR/css3-color/#rgb-color
https://peteroupc.github.io/suppcolor.html#Additional_Color_Formats
http://www.w3.org/TR/css3-color/
https://en.wikipedia.org/wiki/HSL_and_HSV

h=(rgb[1]-rgb[2])/(mx-mn)
else if rgb[1]==mx

h=2+(rgb[2]-rgb[0])/(mx-mn)
else

h=4+(rgb[0]-rgb[1])/(mx-mn)
end
if h < 0: h = 6 - rem(-h, 6)
if h >= 6: h = rem(h, 6)
return [h * (pi / 3), s, mx]

END METHOD

METHOD HsvToRgb(hsv)
hue=hsv[0]
sat=hsv[1]
val=hsv[2]
if hue < 0: hue = pi * 2 - rem(-hue, pi * 2)
if hue >= pi * 2: hue = rem(hue, pi * 2)
hue60 = hue * 3 / pi
hi = floor(hue60)
f = hue60 - hi
c = val * (1 - sat)
a = val * (1 - sat * f)
e = val * (1 - sat * (1 - f))
if hi == 0: return [val, e, c]
if hi == 1: return [a, val, c]
if hi == 2: return [c, val, e]
if hi == 3: return [c, a, val]
if hi == 4: return [e, c, val]
return [val, c, a]

END METHOD

Note: The HSV color model is not perception-based, as the HWB article acknowledges26.

7.2 HSL
HSL27 (also known as HLS), like HSV, is a color model that transforms RGB colors to ease intuition. An
HSL color consists of three components, in the following order:

• Hue is the same for a given RGB color as in HSV.
• A component called “saturation” is the distance of the color from gray (but not necessarily from black

or white), which is 0 or greater and 1 or less.
• A component variously called “lightness”, “luminance”, or “luminosity”, is roughly the amount of black

or white mixed with the color and is 0 or greater and 1 or less, where 0 is black, 1 is white, closer to 0
means closer to black, and closer to 1 means closer to white.

The following pseudocode converts colors between RGB and HSL. The transformation is independent of
RGB color space, but should be done using linear RGB colors.

METHOD RgbToHsl(rgb)
vmax = max(max(rgb[0], rgb[1]), rgb[2])
vmin = min(min(rgb[0], rgb[1]), rgb[2])

26Smith, A.R. and Lyons, E.R., 1996. HWB—A more intuitive hue-based color model. Journal of graphics tools, 1(1),
pp. 3-17.

27https://en.wikipedia.org/wiki/HSL_and_HSV

11

https://en.wikipedia.org/wiki/HSL_and_HSV

vadd = vmax + vmin
// NOTE: "Lightness" is the midpoint between
// the greatest and least RGB component
lt = vadd / 2.0
if vmax==vmin: return [0, 0, lt]
vd = vmax - vmin
divisor = vadd
if lt > 0.5: divisor = 2.0 - vadd
s = vd / divisor
h = 0
hvd = vd / 2.0
deg60 = pi / 3
if rgb[0]==vmax

h=((vmax-rgb[2])*deg60 + hvd) / vd
h = h - ((vmax-rgb[1])*deg60+hvd) / vd

else if rgb[2]==vmax
h=pi * 4 / 3 + ((vmax-rgb[1])*deg60 + hvd) / vd
h = h - ((vmax-rgb[0])*deg60+hvd) / vd

else
h=pi * 2 / 3 + ((vmax-rgb[0])*deg60 + hvd) / vd
h = h - ((vmax-rgb[2])*deg60+hvd) / vd

end
if h < 0: h = pi * 2 - rem(-h, pi * 2)
if h >= pi * 2: h = rem(h, pi * 2)
return [h, s, lt]

END METHOD

METHOD HslToRgb(hsl)
if hsl[1]==0: return [hsl[2],hsl[2],hsl[2]]
lum = hsl[2]
sat = hsl[1]
bb = 0
if lum <= 0.5: bb = lum * (1.0 + sat)
if lum > 0.5: bb= lum + sat - (lum * sat)
a = lum * 2 - bb
hueval = hsl[0]
if hueval < 0: hueval = pi * 2 - rem(-hueval, pi * 2)
if hueval >= pi * 2: hueval = rem(hueval, pi * 2)
deg60 = pi / 3
deg240 = pi * 4 / 3
hue = hueval + pi * 2 / 3
hue2 = hueval - pi * 2 / 3
if hue >= pi * 2: hue = hue - pi * 2
if hue2 < 0: hue2 = hue2 + pi * 2
rgb = [a, a, a]
hues = [hue, hueval, hue2]
i = 0
while i < 3

if hues[i] < deg60: rgb[i] = a + (bb - a) * hues[i] / deg60
else if hues[i] < pi: rgb[i] = bb
else if hues[i] < deg240

rgb[i] = a + (bb - a) * (deg240 - hues[i]) / deg60

12

end
i = i + 1

end
return rgb

END METHOD

Notes:

• In some applications and specifications, especially where this color model is called HLS, the
HSL color’s “lightness” component comes before “saturation”. This is not the case in this
document, though.

• The HSL color model is not perception-based, as the HWB article acknowledges28.

7.3 HWB
In 1996, the HWB model, which seeks to be more intuitive than HSV or HSL, was published29. An HWB
color consists of three components in the following order:

• Hue is the same for a given RGB color as in HSV.
• Whiteness, the amount of white mixed to the color, is 0 or greater and 1 or less.
• Blackness, the amount of black mixed to the color, is 0 or greater and 1 or less.

The conversions given below are independent of RGB color space, but should be done using linear RGB
colors.

• To convert an RGB color color to HWB, generate [RgbToHsv(color)[0], min(min(color[0],
color[1]), color[2]), 1 - max(max(color[0], color[1]), color[2])].

• To convert an HWB color hwb to RGB, generate HsvToRgb([hwb[0], 1 - hwb[1]/(1-hwb[2]), 1 -
hwb[2]]) if hwb[2] < 1, or [hwb[0], 0, 0] otherwise.

Note: The HWB color model is not perception-based, as the HWB article acknowledges30.

7.4 Y ′ C𝐵C𝑅 and Other Video Color Formats
An RGB color can be transformed to a specialized form to improve image and video encoding.

Y ′ C𝐵C𝑅
31 (also known as YCbCr, YCrCb, or Y ′ CrCb) is a family of color formats designed for this

purpose. A Y ′ C𝐵C𝑅 color consists of three components in the following order:

• Y ′ , or luma, expresses an approximate “brightness”.32

• C𝐵, or blue chroma, is based on the difference between blue and luma.
• C𝑅, or red chroma, is, based on the difference between red and luma.

The following pseudocode is an approximate conversion between RGB and Y ′ C𝐵C𝑅 (an approximation
because the factors in the pseudocode are rounded off to a limited number of decimal places). There are
three variants shown here, namely—

• the Rec. 601 variant (for standard-definition digital video), as the YCbCrToRgb601 and RgbToYCbCr601
methods,

28Smith, A.R. and Lyons, E.R., 1996. HWB—A more intuitive hue-based color model. Journal of graphics tools, 1(1),
pp. 3-17.

29Smith, A.R. and Lyons, E.R., 1996. HWB—A more intuitive hue-based color model. Journal of graphics tools, 1(1),
pp. 3-17.

30Smith, A.R. and Lyons, E.R., 1996. HWB—A more intuitive hue-based color model. Journal of graphics tools, 1(1),
pp. 3-17.

31https://en.wikipedia.org/wiki/YCbCr
32The prime symbol appears near Y because the conversion from RGB usually involves encoded RGB colors, so that Y ′

(luma) is not the same as luminance (Y). (See C. Poynton, “YUV and luminance considered harmful”.) However, that
symbol is left out in function names and other names in the pseudocode for convenience only.

13

https://en.wikipedia.org/wiki/YCbCr
http://poynton.ca/PDFs/YUV_and_luminance_harmful.pdf

• the Rec. 709 variant (for high-definition video), as the YCbCrToRgb709 and RgbToYCbCr709 methods,
and

• the JPEG File Interchange Format33 variant, as the YCbCrToRgbJpeg and RgbToYCbCrJpeg meth-
ods.

The Y ′ C𝐵C𝑅 transformation is independent of RGB color space, but the three variants given earlier should
use encoded RGB colors rather than linear RGB colors.

// NOTE: Derived from scaled YPbPr using red/green/blue luminance factors
// in the NTSC color space
METHOD RgbToYCbCr601(rgb)

y = (16.0/255.0+rgb[0]*0.25678824+rgb[1]*0.50412941+rgb[2]*0.097905882)
cb = (128.0/255.0-rgb[0]*0.1482229-rgb[1]*0.29099279+rgb[2]*0.43921569)
cr = (128.0/255.0+rgb[0]*0.43921569-rgb[1]*0.36778831-rgb[2]*0.071427373)
return [y, cb, cr]

END METHOD

// NOTE: Derived from scaled YPbPr using red/green/blue Rec. 709 luminance factors
METHOD RgbToYCbCr709(rgb)

y = (0.06200706*rgb[2] + 0.6142306*rgb[1] + 0.1825859*rgb[0] + 16.0/255.0)
cb = (0.4392157*rgb[2] - 0.338572*rgb[1] - 0.1006437*rgb[0] + 128.0/255.0)
cr = (-0.04027352*rgb[2] - 0.3989422*rgb[1] + 0.4392157*rgb[0] + 128.0/255.0)
return [y, cb, cr]

END METHOD

// NOTE: Derived from unscaled YPbPr using red/green/blue luminance factors
// in the NTSC color space
METHOD RgbToYCbCrJpeg(rgb)

y = (0.299*rgb[0] + 0.587*rgb[1] + 0.114*rgb[2])
cb = (-0.1687359*rgb[0] - 0.3312641*rgb[1] + 0.5*rgb[2] + 128.0/255.0)
cr = (0.5*rgb[0] - 0.4186876*rgb[1] - 0.08131241*rgb[2] + 128.0/255.0)
return [y, cb, cr]

END METHOD

METHOD YCbCrToRgb601(yCbCr)
cb = yCbCr[1] - 128/255.0
cr = yCbCr[2] - 128/255.0
yp = 1.1643836 * (yCbCr[0] - 16/255.0)
r = yp + 1.5960268 * cr
g = yp - 0.39176229 * cb - 0.81296765 * cr
b = yp + 2.0172321 * cb
return [min(max(r,0),1),min(max(g,0),1),min(max(b,0),1)]

END METHOD

METHOD YCbCrToRgb709(yCbCr)
cb = yCbCr[1] - 128/255.0
cr = yCbCr[2] - 128/255.0
yp = 1.1643836 * (yCbCr[0] - 16/255.0)
r = yp + 1.7927411 * cr
g = yp - 0.21324861 * cb - 0.53290933 * cr
b = yp + 2.1124018 * cb
return [min(max(r,0),1),min(max(g,0),1),min(max(b,0),1)]

33https://www.w3.org/Graphics/JPEG/jfif3.pdf

14

https://www.w3.org/Graphics/JPEG/jfif3.pdf

END METHOD

METHOD YCbCrToRgbJpeg(yCbCr)
cb = yCbCr[1] - 128/255.0
cr = yCbCr[2] - 128/255.0
yp = yCbCr[0]
r = yp + 1.402 * cr
g = yp - 0.34413629 * cb - 0.71413629 * cr
b = yp + 1.772 * cb
return [min(max(r,0),1),min(max(g,0),1),min(max(b,0),1)]

END METHOD

Notes:

1. This document does not seek to survey the various ways in which Y ′ C𝐵C𝑅 and similar
colors are built up into pixels in images and video. In general, such ways take into account
the human eye’s normally greater spatial sensitivity to luminance (Y, as approximated, for
example, by Y ′ , luma) than chromatic sensitivity (for example, C𝐵, C𝑅).

2. Other video color formats include “BT.2020 constant luminance”, in Rec. 202034, and
IC𝑇C𝑃 , mentioned in Rep. 2390-4 and detailed in a Dolby white paper35.

8 Other Color Models
The following sections discuss other color models of practical interest.

8.1 CIE XYZ
The CIE 1931 standard colorimetric system36 (called the XYZ color model in this document) describes
a transformation of a spectral curve into a point in three-dimensional space, as further explained in “Spectral
Color Functions”. An XYZ color consists of three components, in the following order:

• X is a component without special meaning.
• Y is related to the color’s luminance.
• Z is a component without special meaning.

Conventions for XYZ colors include the following:

• Absolute XYZ. In this convention, the Y component represents an absolute luminance in candelas
per square meter (cd/m2).

• Relative XYZ. In this convention, the three components are divided by the luminance of a given
white point. In this case, the Y component represents a luminance factor; the white point has a
luminance factor of 1.37 (In sRGB, the white point’s luminance is 80 cd/m2.)

The conversion between RGB and XYZ varies by RGB color space. For example, the pseudocode below
shows two methods that convert a color between encoded sRGB (rgb) and relative XYZ:

• For XYZFromsRGB(rgb) and XYZTosRGB(xyz), the white point is the D65/2 white point.
• For XYZFromsRGBD50(rgb) and XYZTosRGBD50(xyz), the white point is the D50/2 white point38.

34https://en.wikipedia.org/wiki/Rec._2020
35https://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf
36https://en.wikipedia.org/wiki/CIE_1931_color_space
37In interior and architectural design, the luminance factor multiplied by 100 is also known as light reflectance value (LRV).
38Although the D65/2 white point is the usual one for sRGB, another white point may be more convenient in the following

cases, among others: - Using the white point [0.9642, 1, 0.8249] can improve interoperability with applications color-managed
with International Color Consortium (ICC) version 2 or 4 profiles (this corresponds to the D50/2 white point given in CIE
Publication 15 before it was corrected). - The printing industry uses the D50 illuminant for historical reasons (see A.

15

https://en.wikipedia.org/wiki/Rec._2020
https://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf
https://en.wikipedia.org/wiki/CIE_1931_color_space
http://6degreesoffreedom.co/luminance-vs-illuminance/

Both methods are approximate conversions because the factors in the pseudocode are rounded off to a limited
number of decimal places.

// Applies a 3 × 3 matrix transformation
METHOD Apply3x3Matrix(xyz, xyzmatrix)

r=xyz[0]*xyzmatrix[0]+xyz[1]*xyzmatrix[1]+xyz[2]*xyzmatrix[2]
g=xyz[0]*xyzmatrix[3]+xyz[1]*xyzmatrix[4]+xyz[2]*xyzmatrix[5]
b=xyz[0]*xyzmatrix[6]+xyz[1]*xyzmatrix[7]+xyz[2]*xyzmatrix[8]
return [r,g,b]

END METHOD

METHOD XYZFromsRGBD50(rgb)
lin=SRGBToLinear3(rgb)
// D65/2 sRGB matrix adapted to D50/2
return Apply3x3Matrix(lin, [

0.436027535573195, 0.385097932872408, 0.143074531554397,
0.222478677613186, 0.716902127457834, 0.0606191949289806,
0.0139242392790820, 0.0970836931437703, 0.714092067577148])

END METHOD

METHOD XYZTosRGBD50(xyz)
// D65/2 sRGB matrix adapted to D50/2
rgb=Apply3x3Matrix(xyz, [

3.13424933163426, -1.61717292521282, -0.490692377104512,
-0.978746070339639, 1.91611436125945, 0.0334415219513205,
0.0719490494816283, -0.228969853236611, 1.40540126012171])

return SRGBFromLinear3(rgb)
END METHOD

METHOD XYZFromsRGB(rgb)
lin=SRGBToLinear3(rgb)
// D65/2 sRGB matrix
return Apply3x3Matrix(lin, [
0.4123907992659591, 0.35758433938387796, 0.18048078840183424
0.21263900587151016, 0.7151686787677559, 0.0721923153607337
0.01933081871559181, 0.11919477979462596, 0.9505321522496605])

END METHOD

METHOD XYZTosRGB(xyz)
// D65/2 sRGB matrix
rgb=Apply3x3Matrix(xyz, [

3.2409699419045235, -1.5373831775700944, -0.49861076029300355,
-0.9692436362808797, 1.8759675015077204, 0.0415550574071756,
0.05563007969699365, -0.20397695888897652, 1.0569715142428786])

return SRGBFromLinear3(rgb)
END METHOD

Notes:
Kraushaar, “Why the printing industry is not using D65?”, 2009). https://lists.w3.org/Archives/Public/public-
colorweb/2018Apr/0003.html https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&m
v_id=10&extern_meta=x&mv_content_id=140332&getlang=en

16

https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en

1. In the pseudocode just given, 3 × 3 matrices are used to transform a linear RGB color to
or from XYZ form (see “Conversion Matrices Between XYZ and RGB”).

2. XYZTosRGB and XYZTosRGBD50 can return sRGB colors with components less than 0 or
greater than 1, to make out-of-range XYZ colors easier to identify. If that is not desired,
then the sRGB color can be converted to an in-range one. There are many such gamut
mapping conversions; for example, one such conversion involves clamping each component
of the sRGB color using the idiom min(max(compo,0), 1), where compo is that component.

3. XYZ colors that have undergone black point compensation (see also ISO 18619) can be
expressed as Lerp3(wpoint, xyz, (1.0 - blackDest) / (1.0 - blackSrc)), where—

• wpoint is the white point as an absolute or relative XYZ color,
• xyz is a relative XYZ color (relative to wpoint), and
• blackSrc and blackDest are the luminance factors of the source and destination black

points.

8.1.1 Encoding XYZ Through RGB

The following summarizes the transformations needed to convert a color from (relative) XYZ through RGB
to an encoding form suitable for images or video.

1. An XYZ-to-linear-RGB transform. This is usually a matrix generated using the RGB color space’s
red, green, blue, and white points, but can also include a chromatic adaptation transform39 if the
XYZ and RGB color spaces use different white points (see the XYZFromsRGBD50 and XYZTosRGBD50
methods above)40.

2. A linear-to-encoded-RGB transform. This is the RGB color space’s “transfer function”. This can be
left out if linear RGB colors are desired.

3. A pixel encoding transform. This transforms the RGB color into Y ′ C𝐵C𝑅 or another form. This
can be left out.

4. The final color form is serialized into a binary, text, or other representation (see also “Representing
RGB Colors”).

The corresponding conversions to XYZ are then the inverse of the conversions just given.

8.1.2 Conversion Matrices Between XYZ and RGB

The following methods calculate a 3 × 3 matrix to convert from a linear RGB color to XYZ form
(RGBToXYZMatrix) and back (XYZToRGBMatrix), given the RGB color space’s red, green, blue, and white
points. Each point is expressed as a relative XYZ color with arbitrary X and Z components and a Y
component of 1. For example, xr and zr are the red point’s X and Z components, respectively. See
brucelindbloom.com for more information.

METHOD RGBToXYZMatrix(xr,zr,xg,zg,xb,zb,xw,zw)
s1=(xb*zg - xb*zw - xg*zb + xg*zw + xw*zb - xw*zg)
s2=(xb*zg - xb*zr - xg*zb + xg*zr + xr*zb - xr*zg)
s3=(-xb*zr + xb*zw + xr*zb - xr*zw - xw*zb + xw*zr)
sz=(-xr*(zg - zr) + xw*(zg - zr) + zr*(xg - xr) -

zw*(xg - xr)) /
((xb - xr)*(zg - zr) - (xg - xr)*(zb - zr))

sx=s1/s2
sy=s3/s2
39https://en.wikipedia.org/wiki/Chromatic_adaptation
40Chromatic adaptation transforms include linear Bradford transformations, but are not further detailed in this document.

(See also E. Stone, “The Luminance of an sRGB Color”, 2013.) https://ninedegreesbelow.com/photography/srgb-
luminance.html

17

https://en.wikipedia.org/wiki/Chromatic_adaptation
http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
https://ninedegreesbelow.com/photography/srgb-luminance.html
https://ninedegreesbelow.com/photography/srgb-luminance.html

return [xr*sx,xg*sy,xb*sz,sx,sy,sz,zr*sx,zg*sy,zb*sz]
END METHOD

METHOD XYZToRGBMatrix(xr,zr,xg,zg,xb,zb,xw,zw)
// NOTE: Inverse of RGBToXYZMatrix
d1=(xb*zg - xb*zw - xg*zb + xg*zw + xw*zb - xw*zg)
d2=(xb*zr - xb*zw - xr*zb + xr*zw + xw*zb - xw*zr)
d3=(xg*zr - xg*zw - xr*zg + xr*zw + xw*zg - xw*zr)
return [(zb - zg)/d1,(xb*zg - xg*zb)/d1,
(-xb + xg)/d1, (zb - zr)/d2,
(xb*zr - xr*zb)/d2,(-xb + xr)/d2,
(zg - zr)/d3,(xg*zr - xr*zg)/d3,
(-xg + xr)/d3]

END METHOD

8.1.3 Chromaticity Coordinates

The chromaticity coordinates x, y, and z are each the ratios of the corresponding component of an XYZ
color to the sum of those components; therefore, those three coordinates sum to 1.41 “xyY” form consists of
x then y then the Y component of an XYZ color. “Yxy” form consists of the Y component then x then y of
an XYZ color.

The CIE 1976 uniform chromaticity scale diagram is drawn using coordinates u ′ and v ′ .42 “u ′ v ′ Y”
form consists of u ′ then v ′ then the Y component of an XYZ color. “Yu ′ v ′” form consists of the Y
component then u ′ then v ′ of an XYZ color.

In the following pseudocode, XYZToxyY and XYZFromxyY convert XYZ colors to and from their “xyY” form,
respectively, and XYZTouvY and XYZFromuvY convert XYZ colors to and from their “u ′ v ′ Y” form, respec-
tively.

METHOD XYZToxyY(xyz)
sum=xyz[0]+xyz[1]+xyz[2]
if sum==0: return [0,0,0]
return [xyz[0]/sum, xyz[1]/sum, xyz[1]]

END METHOD

METHOD XYZFromxyY(xyy)
// NOTE: Results undefined if xyy[1]==0
return [xyy[0]*xyy[2]/xyy[1], xyy[2], xyy[2]*(1 - xyy[0] - xyy[1])/xyy[1]]

END METHOD

METHOD XYZTouvY(xyz)
sum=xyz[0]+xyz[1]*15.0+xyz[2]*3.0
if sum==0: return [0,0,0]
return [4.0*xyz[0]/sum,9.0*xyz[1]/sum,xyz[1]]

END METHOD

METHOD XYZFromuvY(uvy)
// NOTE: Results undefined if uvy[1]==0

41Chromaticity coordinates can be defined for any three-dimensional Cartesian color space, not just XYZ (for example, (r, g,
b) chromaticity coordinates for RGB). Such coordinates are calculated analogously to (x, y, z) coordinates.

42CIE Technical Note 001:2014 says the chromaticity difference (Δu ′ v ′) should be calculated as the Euclidean
distance between two u ′ v ′ pairs and that a chromaticity difference of 0.0013 is just noticeable “at 50% probability”. (u, v)
coordinates, a former 1960 version of u ′ and v ′ , are found by taking u as u ′ and v as (v ′ * 2.0 / 3).

18

http://www.cie.co.at/publications/technical-notes

su=uvy[2]/(uvy[1]/9.0)
x=u*su/4.0
z=(su/3.0)-(x/3.0)-5.0*uvy[2]
return [x,uvy[2],z]

END METHOD

8.2 CIELAB
CIELAB43 (also known as CIE L*a*b* or CIE 1976 L*a*b*) is a three-dimensional color model designed
for color comparisons.44 In general, CIELAB color spaces differ in their white points.

A color in CIELAB consists of three components, in the following order:

• L*, or lightness of a color (how bright that color appears in comparison to white), is 0 or greater and
100 or less, where 0 is black and 100 is white.

• a* is a coordinate of the red/green axis (positive points to red, negative to green).
• b* is a coordinate of the yellow/blue axis (positive points to yellow, negative to blue).45

L*C*h form expresses CIELAB colors as cylindrical coordinates; the three components have the following
order:

• Lightness (L*) remains unchanged.
• Chroma (C*) is the distance of the color from the “gray” line.46

• Hue (h, an angle)47 ranges from magenta at roughly 0 to red to yellow to green to cyan to blue to
magenta.

In the following pseudocode:

• The following methods convert an encoded sRGB color to and from CIELAB:

– SRGBToLab and SRGBFromLab treat white as the D65/2 white point.
– SRGBToLabD50 and SRGBFromLabD50 treat white as the D50/2 white point.48

Both methods are approximate conversions because the values in the pseudocode are rounded off to a
limited number of decimal places.

• XYZToLab(xyz, wpoint) and LabToXYZ(lab, wpoint) convert an XYZ color to or from CIELAB,
respectively, treating wpoint (an XYZ color) as the white point.

• LabToChroma(lab) and LabToHue(lab) find a CIELAB color’s chroma or hue, respectively.
43https://en.wikipedia.org/wiki/Lab_color_space
44Although the CIELAB color model is also often called “perceptually uniform”— - CIELAB “was not designed to have the

perceptual qualities needed for gamut mapping”, according to B. Lindbloom, and - such a claim “is really only the case for very
low spatial frequencies”, according to P. Kovesi (P. Kovesi, “Good Colour Maps: How to Design Them”, arXiv:1509.03700
[cs.GR], 2015). https://arxiv.org/abs/1509.03700

45The placement of the L*, a*, and b* axes is related to the light–dark signal and the two opponent signals red/green and
blue/yellow. See also endnote 6.

46The terms lightness and chroma are relative to an area appearing white. The corresponding terms brightness and saturation,
respectively, are subjective terms: brightness is the perceived degree of reflected or emitted light, and saturation is the perceived
hue strength (colorfulness) of an area in proportion to its brightness. (See also the CIE’s International Lighting Vocabulary.)
CIELAB has no formal saturation formula, however (see the Wikipedia article on colorfulness). https://en.wikipedia.org/w
iki/Colorfulness

47The hue angle is in radians, and the angle is 0 or greater and less than 2 𝜋 . Radians can be converted to degrees by
multiplying by 180 / pi. Degrees can be converted to radians by multiplying by pi / 180.

48Although the D65/2 white point is the usual one for sRGB, another white point may be more convenient in the following
cases, among others: - Using the white point [0.9642, 1, 0.8249] can improve interoperability with applications color-managed
with International Color Consortium (ICC) version 2 or 4 profiles (this corresponds to the D50/2 white point given in CIE
Publication 15 before it was corrected). - The printing industry uses the D50 illuminant for historical reasons (see A.
Kraushaar, “Why the printing industry is not using D65?”, 2009). https://lists.w3.org/Archives/Public/public-
colorweb/2018Apr/0003.html https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&m
v_id=10&extern_meta=x&mv_content_id=140332&getlang=en

19

https://en.wikipedia.org/wiki/Lab_color_space
http://www.brucelindbloom.com/index.html?UPLab.html
https://arxiv.org/abs/1509.03700
https://en.wikipedia.org/wiki/Colorfulness
https://en.wikipedia.org/wiki/Colorfulness
https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en

• LchToLab(lch) finds a CIELAB color given a 3-item list of lightness, chroma, and hue (L*C*h), in
that order.

• LabHueDifference(lab1, lab2) finds the metric hue difference (ΔH*) between two CIELAB colors.
The return value can be positive or negative, but in some cases, the absolute value of that return value
can be important.

• LabChromaHueDifference(lab1, lab2) finds the chromaticness difference (ΔCh) between two
CIELAB colors, as given, for example, in ISO 13655.

METHOD XYZToLab(xyzval, wpoint)
xyz=[xyzval[0]/wpoint[0],xyzval[1]/wpoint[1],xyzval[2]/wpoint[2]]
i=0
while i < 3

if xyz[i] > 216.0 / 24389 // See BruceLindbloom.com
xyz[i]=pow(xyz[i], 1.0/3.0)

else
kappa=24389.0/27 // See BruceLindbloom.com
xyz[i]=(16.0 + kappa*xyz[i]) / 116

end
i=i+1

end
return [116.0*xyz[1] - 16,

500 * (xyz[0] - xyz[1]),
200 * (xyz[1] - xyz[2])]

END METHOD

METHOD LabToXYZ(lab,wpoint)
fy=(lab[0]+16)/116.0
fx=fy+lab[1]/500.0
fz=fy-lab[2]/200.0
fxcb=fx*fx*fx
fzcb=fz*fz*fz
xyz=[fxcb, 0, fzcb]
eps=216.0/24389 // See BruceLindbloom.com
if fxcb <= eps: xyz[0]=(108.0*fx/841)-432.0/24389
if fzcb <= eps: xyz[2]=(108.0*fz/841)-432.0/24389
if lab[0] > 8 // See BruceLindbloom.com

xyz[1]=pow(((lab[0]+16)/116.0), 3.0)
else

xyz[1]=lab[0]*27.0/24389 // See BruceLindbloom.com
end
xyz[0]=xyz[0]*wpoint[0]
xyz[1]=xyz[1]*wpoint[1]
xyz[2]=xyz[2]*wpoint[2]
return xyz

END METHOD

METHOD SRGBToLab(rgb)
return XYZToLab(XYZFromsRGB(rgb),
[0.9504559270516716, 1, 1.0890577507598784])

END METHOD

20

METHOD SRGBFromLab(lab)
return XYZTosRGB(LabToXYZ(lab,
[0.9504559270516716, 1, 1.0890577507598784]))

END METHOD

METHOD SRGBToLabD50(rgb)
return XYZToLab(XYZFromsRGBD50(rgb), [0.9642, 1, 0.8251])

END METHOD

METHOD SRGBFromLabD50(lab)
return XYZTosRGBD50(LabToXYZ(lab, [0.9642, 1, 0.8251]))

END METHOD

// -- Derived values from CIELAB colors

METHOD LabToChroma(lab)
return sqrt(lab[1]*lab[1] + lab[2]*lab[2])

END METHOD

METHOD LabToHue(lab)
h = atan2(lab[2], lab[1])
if h < 0: h = h + pi * 2
return h

END METHOD

METHOD LchToLab(lch)
return [lch[0], lch[1] * cos(lch[2]), lch[1] * sin(lch[2])]

END METHOD

METHOD LabHueDifference(lab1, lab2)
cmul=LabToChroma(lab1)*LabToChroma(lab2)
h2=LabToHue(lab2)
h1=LabToHue(lab1)
hdiff=h2-h1
if abs(hdiff)>pi

if h2<=h1: hdiff=hdiff+math.pi*2
else: hdiff=hdiff-math.pi*2

end
return sqrt(cmul)*sin(hdiff*0.5)*2

END METHOD

METHOD LabChromaHueDifference(lab1, lab2)
da=lab1[1]-lab2[1]
db=lab1[2]-lab2[2]
return sqrt(da*da+db*db)

END METHOD

Note: The difference in lightness, a*, b*, or chroma (ΔL*, Δa*, Δb*, or ΔC*, respectively)
between two CIELAB colors is simply the difference between the corresponding value of the
second CIELAB color and that of the first.

21

8.3 CIELUV
CIELUV (also known as CIE L*u*v* or CIE 1976 L*u*v*) is a second color model designed for color
comparisons. A CIELUV color has three components, namely, L*, or lightness (which is the same as in
CIELAB), u*, and v*, in that order. As B. MacEvoy explains, “CIELUV represents the additive mixture
of two lights as a straight line”, so that this color model is especially useful for light sources.

In the following pseudocode—

• the SRGBToLuv, SRGBFromLuv, SRGBToLuvD50, SRGBFromLuvD50, XYZToLuv, and LuvToXYZmethods per-
form conversions involving CIELUV colors analogously to the similarly named methods for CIELAB,
and

• the LuvToSaturation method finds the saturation49 (suv) of a CIELUV color.

SRGBToLuv and SRGBFromLuv are approximate conversions because the values in the pseudocode are rounded
off to a limited number of decimal places.

METHOD XYZToLuv(xyz, wpoint)
lab=XYZToLab(xyz, wpoint)
sum=xyz[0]+xyz[1]*15+xyz[2]*3
lt=lab[0]
if sum==0: return [lt, 0, 0]
upr=4*xyz[0]/sum // U-prime
vpr=9*xyz[1]/sum // V-prime
sumwhite=wpoint[0]+15*wpoint[1]+wpoint[2]*3
return [lt,

lt*13*(upr - 4*wpoint[0]/sumwhite),
lt*13*(vpr - 9.0*wpoint[1]/sumwhite)]

END METHOD

METHOD LuvToXYZ(luv, wpoint)
if luv[0]==0: return [0, 0, 0]
xyz=LabToXYZ([luv[0], 1, 1],wpoint)
sumwhite=wpoint[0]+15*wpoint[1]+wpoint[2]*3
u0=4*wpoint[0]/sumwhite
v0=9.0*wpoint[1]/sumwhite
lt=luv[0]
a=(52*lt/(luv[1]+13*u0*lt)-1)/3.0
d=xyz[1]*(39*lt/(luv[2]+13*v0*lt)-5)
x=(d+5*xyz[1])/(a+1.0/3)
z=x*a-5*xyz[1]
return [x,xyz[1],z]

END METHOD

METHOD SRGBToLuv(rgb)
return XYZToLuv(XYZFromsRGB(rgb),
[0.9504559270516716, 1, 1.0890577507598784])

END METHOD

METHOD SRGBFromLuv(lab)
return XYZTosRGB(LuvToXYZ(lab,

49https://en.wikipedia.org/wiki/Colorfulness

22

http://www.handprint.com/HP/WCL/color7.html#CIELUV
https://en.wikipedia.org/wiki/Colorfulness

[0.9504559270516716, 1, 1.0890577507598784]))
END METHOD

METHOD SRGBToLuvD50(rgb)
return XYZToLuv(XYZFromsRGBD50(rgb), [0.9642, 1, 0.8251])

END METHOD

METHOD SRGBFromuvD50(lab)
return XYZTosRGBD50(LuvToXYZ(lab, [0.9642, 1, 0.8251]))

END METHOD

METHOD LuvToSaturation(luv)
if luv[0]==0: return 0
return sqrt(luv[1]*luv[1]+luv[2]*luv[2])/luv[0]

END METHOD

Notes:

• Hue and chroma can be derived from a CIELUV color in a similar way as from a CIELAB
color, with u* and v* used instead of a* and b*, respectively. The LabToHue, LabToChroma,
LabHueDifference, LabChromaHueDifference, and LchToLab methods from the previous
section work with CIELUV colors analogously to CIELAB colors.

• The difference in lightness, u*, v*, chroma, or saturation (ΔL*, Δu*, Δv*, ΔC*uv, or Δsuv,
respectively) between two CIELUV colors is simply the difference between the corresponding
value of the second CIELUV color and that of the first.

8.4 CMYK and Other Ink-Mixture Color Models
The CMYK color model, ideally, describes the proportion of cyan, magenta, yellow, and black (K) inks to
use to reproduce certain colors on a surface.50 However, since color mixture of inks or other colorants is
very complex, the exact color appearance of any recipe of colorants (not just in the CMYK context) depends
on the printing condition (as defined in ISO 12647-1), including what colorants are used, how the colorants
are printed, and what surface (for example, paper) the printed output appears on.

Characterization tables. In printing industry practice, a given printing condition is characterized by
finding out how it forms colors using different mixtures of inks. This is usually done by printing CMYK color
“patches” and using a color measurement device51 to measure their CIELAB colors under standardized
lighting and measurement conditions.

The International Color Consortium maintains a list of standardized conversions of CMYK color
“patches”, usually to CIELAB colors, for different standardized printing conditions. Such conversions are
generally known as characterization data or characterization tables.

Given a CMYK-to-CIELAB characterization table, a CMYK color can be converted to and from a CIELAB
color by multidimensional interpolation of the table’s “patches”.52

Rough conversions. The following pseudocode shows very rough conversions between an RGB color
(color) and a CMYK color (cmyk):

// RGB to CMYK
50This section concerns mostly CMYK because printing systems that involve inks other than cyan, magenta, yellow, and black

(notably “extended gamut” systems of five or more inks, and systems that use custom “spot” color inks) are not yet of general
interest to programmers.

51https://peteroupc.github.io/suppcolor.html#Color_Measurement_Devices
52This page does not detail how multidimensional interpolation works, but an example is SciPy’s griddata method. https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

23

https://peteroupc.github.io/suppcolor.html#Color_Measurement_Devices
http://www.color.org/chardata/drsection1.xalter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

k = min(min(1.0 - color[0], 1.0 - color[1]), 1.0 - color[2])
cmyk=[0, 0, 0, 1]
if k!=1:

cmyk=[((1.0 - color[0]) - k) / (1 - k), ((1.0 - color[1]) - k) /
(1 - k), ((1.0 - color[2]) - k) / (1 - k), k]

end
// CMYK to RGB
ik = 1 - cmyk[3]
color=[(1 - cmyk[0]) * ik, (1 - cmyk[1]) * ik, (1 - cmyk[2]) * ik]

9 Color Operations
This section goes over many of the operations that can be done on colors. Note that for best results, these
operations need to be carried out with linear RGB colors rather than encoded RGB colors, unless noted
otherwise.

9.1 Luminance Factor (Grayscale)
The luminance factor—

• is a single number indicating a color’s luminance relative to “white”, that is, how much light reaches
the eyes when that color is viewed, in comparison to “white”,

• is called Luminance(color) in this document,
• is equivalent to the Y component of a relative XYZ color, and
• ranges from 0 for “black” to 1 for “white”.

Finding a color’s luminance factor depends on that color’s color space.

A linear RGB color’s luminance factor is (color[0] * r + color[1] * g + color[2] * b), where r,
g, and b are the luminance factors (relative Y components) of the RGB color space’s red, green, and blue
points, respectively. (If a different white point than the RGB color space’s usual white point should have
a luminance factor of 1, then r, g, and b are the corresponding values after a chromatic adaptation
transform53 from one white point to another.54)

An encoded RGB color needs to be converted to linear RGB (in the same RGB color space) before finding
its luminance factor. For example, the pseudocode below implements Luminance(color) for encoded sRGB
colors (LuminanceSRGB and LuminanceSRGBD50)55. Both methods are approximate conversions because the
factors in the pseudocode are rounded off to a limited number of decimal places.

// Convert encoded sRGB to luminance factor
METHOD LuminanceSRGB(color)

// Convert to linear sRGB
c = SRGBToLinear(color)
// Find the linear sRGB luminance factor
return c[0] * 0.2126 + c[1] * 0.7152 + c[2] * 0.0722

53https://en.wikipedia.org/wiki/Chromatic_adaptation
54Chromatic adaptation transforms include linear Bradford transformations, but are not further detailed in this document.

(See also E. Stone, “The Luminance of an sRGB Color”, 2013.) https://ninedegreesbelow.com/photography/srgb-
luminance.html

55Although the D65/2 white point is the usual one for sRGB, another white point may be more convenient in the following
cases, among others: - Using the white point [0.9642, 1, 0.8249] can improve interoperability with applications color-managed
with International Color Consortium (ICC) version 2 or 4 profiles (this corresponds to the D50/2 white point given in CIE
Publication 15 before it was corrected). - The printing industry uses the D50 illuminant for historical reasons (see A.
Kraushaar, “Why the printing industry is not using D65?”, 2009). https://lists.w3.org/Archives/Public/public-
colorweb/2018Apr/0003.html https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&m
v_id=10&extern_meta=x&mv_content_id=140332&getlang=en

24

http://eilv.cie.co.at/term/717
https://en.wikipedia.org/wiki/Chromatic_adaptation
https://en.wikipedia.org/wiki/Chromatic_adaptation
https://ninedegreesbelow.com/photography/srgb-luminance.html
https://ninedegreesbelow.com/photography/srgb-luminance.html
https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://lists.w3.org/Archives/Public/public-colorweb/2018Apr/0003.html
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en
https://fogra.org/plugin.php?menuid=125&template=mv/templates/mv_show_front.html&mv_id=10&extern_meta=x&mv_content_id=140332&getlang=en

END METHOD

// Convert encoded sRGB (with D50/2 white point)
// to luminance factor
METHOD LuminanceSRGBD50(color)

c = SRGBToLinear(color)
return c[0] * 0.2225 + c[1] * 0.7169 + c[2] * 0.0606

END METHOD

Examples:

1. Grayscale. A color, color, can be converted to grayscale by calculating [Luminance(color),
Luminance(color), Luminance(color)].

2. An image color list’s average luminance factor is often equivalent to the average
Luminance(color) value among the colors in that image color list.

3. An application can consider a color dark if Luminance(color) is lower than some threshold,
say, 15.

4. An application can consider a color light if Luminance(color) is greater than some thresh-
old, say, 70.

Note: Luminance(color) belongs to a family of functions that give out a single number that
summarizes a color and ranges from 0 for “minimum intensity” through 1 for “maximum intensity”.
The following are other functions in this family.

1. Single channel of a multicomponent color; for example, color[0], color[1], or color[2]
for an RGB color’s red, green, or blue component, respectively. Examples of a color channel
are a red component, a luminance factor, or a point on a spectral reflectance curve.

2. Average of the multicomponent color’s components (see Alpha Blending).
3. Maximum; for example, max(max(color[0], color[1]), color[2]) for three-

component colors.
4. Minimum; for example, min(min(color[0], color[1]), color[2]) for three-

component colors. (For techniques 1-4, see also (Helland)56.)
5. Light/dark factor: A CIELAB or CIELUV color’s lightness (L*) divided by 100 (or

a similar ratio in other color spaces with a light/dark dimension, such as HSL “lightness”
(Cook 2009)57).

9.2 Alpha Blending
An alpha blend is a linear interpolation of two multicomponent colors (such as two RGB colors) that works
component-by-component. For example, the Lerp3 function below58 does an alpha blend of two three-
component colors, where—

• color1 and color2 are the two colors, and
• alpha, the alpha component, is usually 0 or greater and 1 or less (from color1 to color2), but need

not be (Haeberli and Voorhees)59.

56T. Helland, “Seven grayscale conversion algorithms (with pseudocode and VB6 source code)”.
57J. Cook, “Converting color to grayscale”, Aug. 24, 2009. https://www.johndcook.com/blog/2009/08/24/algorithms-

convert-color-grayscale/
58Lerp3 is equivalent to mix in OpenGL Shading Language (GLSL). Making alpha the output of a function (for example,

Lerp3(color1, color2, FUNC(...)), where FUNC is an arbitrary function of one or more variables) can be done to achieve
special nonlinear blends. Such blends (interpolations) are described in further detail in another page. https://peteroupc.gi
thub.io/html3dutil/MathUtil.html#MathUtil.vec3lerp

59P. Haeberli and D. Voorhees, “Image Processing by Interpolation and Extrapolation”.

25

http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
https://peteroupc.github.io/html3dutil/MathUtil.html#MathUtil.vec3lerp
https://peteroupc.github.io/html3dutil/MathUtil.html#MathUtil.vec3lerp
http://www.graficaobscura.com/interp/index.html

METHOD Lerp3(color1, color2, alpha)
return [color1[0]+(color2[0]-color1[0])*alpha, color1[1]+(color2[1]-color1[1])*alpha,

color1[2]+(color2[2]-color1[2])*alpha]
END METHOD

Alpha blends can support the following color operations.

• Shade. Generating a shade of a color (mixing with black) can be done by alpha blending that color
with black (such as [0, 0, 0] in RGB).

• Tint. Generating a tint of a color (mixing with white) can be done by alpha blending that color with
white (such as [1, 1, 1] in RGB).

• Tone. Generating a tone of a color (mixing with gray) can be done by alpha blending that color with
gray (such as [0.5, 0.5, 0.5] in RGB).

• Averaging. Averaging two colors results by alpha blending with alpha set to 0.5.
• Colorize. color1 is black, color2 is the destination color, and alpha is a single number that summa-

rizes the source color and ranges from 0 for “minimum intensity” through 1 for “maximum intensity”.
RGB example: Lerp3([0, 0, 0], destinationColor, Luminance(srcColor)), where Luminance
is as described in “Luminance Factor (Grayscale)”. The destination color is usually the same for
each pixel in an image.

• Converting an RGBA color to an RGB color on white can be done as follows: Lerp3([color[0],
color[1], color[2]], [1, 1, 1], color[3]).

• Converting an RGBA color to an RGB color over color2, another RGB color, can be done as follows:
Lerp3([color[0], color[1], color[2]], color2, color[3]).

9.3 Binarization
Binarization, also known as thresholding, involves classifying pixels or colors into one of two categories
(usually black or white). It involves applying a function to a pixel or color and returning 1 if the result is
greater than a threshold, or 0 otherwise. The following are examples of binarization with RGB colors in 0-1
format.

• Black and white. Generate [1, 1, 1] (white) if a light–dark factor (such as the color’s CIELAB
lightness, _L*_, divided by 100) is greater than 0.5, or [0, 0, 0] (black) otherwise.

• Contrasting color. Generate [1, 1, 1] (white) if a light–dark factor is less than 0.5, or [0, 0, 0]
(black) otherwise.

Other forms of binarization may classify pixels based at least in part on their positions in the image.

9.4 Color Schemes and Harmonies
The following techniques generate new colors that are related to existing colors.

• Color harmonies60 result by generating several colors that differ in hue (hue angle). For each color
harmony given later, the following numbers are added to a hue angle61 to generate the hues for the
colors that make up that harmony:

– Analogous: 0, Y, -Y, where Y is 2 𝜋 /3 or less. In general, analogous colors are two, four, or a
higher even number of colors spaced at equal hue intervals from a central color.

– Complementary: 0, 𝜋 . This is the base hue with its opposite hue.
– Split complementary: 0, 𝜋 - Y, 𝜋 + Y, where Y is greater than 0 and 𝜋 /2 or less. The base

hue and two hues close to the opposite hue.
– Triadic: 0, 2 𝜋 /3, 4 𝜋 /3. Base hue and the two hues at 120 degrees from that hue.

60B. MacEvoy calls these hue harmonies. See also his summary of harmonious color relationships.
61The hue angle is in radians, and the angle is 0 or greater and less than 2 𝜋 . Radians can be converted to degrees by

multiplying by 180 / pi. Degrees can be converted to radians by multiplying by pi / 180.

26

http://www.handprint.com/HP/WCL/tech13.html#harmonies
http://www.handprint.com/HP/WCL/tech13.html#harmonyoverview

– Two-tone: 0, Y, where Y is greater than - 𝜋 /2 and less than 𝜋 /2. This is the base hue and a
close hue.

– Off-complementary: 0, Y, where Y is - 𝜋 /2 or less but greater than - 𝜋 , or Y is 𝜋 /2 or greater
but less than 𝜋 . B. MacEvoy mentions Y = 2 𝜋 /3.

– Double complementary: 0, Y, 𝜋 , 𝜋 + Y, where Y is - 𝜋 /2 or greater and 𝜋 /2 or less. The
base hue and a close hue, as well as their opposite hues.

– Tetradic: Double complementary with Y = 𝜋 /2.
– N-color: 0, 2 𝜋 /N, 4 𝜋 /N, …, (N - 1)2 𝜋 /N.

• Monochrome colors: Colors with the same hue; for example, different shades, tints, or tones of
a given color are monochrome colors.

• Achromatic colors: Colors without hue; that is, black, white, and shades of gray.

9.5 Contrast Between Two Colors
There are several ways to find the contrast between two colors.

Luminance Contrast. Luminance contrast formulas quantify how differently a foreground (text) color
appears over a background color or vice versa, in terms of the luminance of both colors. In general, the
greater the difference, the higher the contrast.

Example: The Web Content Accessibility Guidelines 2.0 (WCAG)62 includes a contrast
ratio formula implemented in the pseudocode below, where RelLum(color)— - is the “relative
luminance” of a color as defined in the WCAG, and - is equivalent to Luminance(color) whenever
WCAG conformity is not important.

METHOD ContrastRatioWCAG(color1, color2)
rl1=RelLum(color1)
rl2=RelLum(color2)
return (max(rl1,rl2)+0.05)/(min(rl1,rl2)+0.05)

END METHOD

For 8-bpc encoded sRGB colors, RelLum(color) is effectively equivalent to LuminanceSRGB(color),
but with the WCAG using a different version of SRGBToLinear, with 0.03928 (the value used in
the sRGB proposal) rather than 0.04045, but this difference doesn’t affect the result for such
8-bpc colors. In general, under the WCAG, a contrasting color is one whose contrast ratio with
another color is 4.5 or greater (or 7 or greater for a stricter conformance level).

Opacity. In certain industries, a material’s contrast ratio or opacity can be found by dividing the Y
component of the material’s XYZ color measured over a black surface by the Y component of the material’s
XYZ color measured over a white surface. Details of the measurement depend on the industry and material.

9.6 Porter–Duff Formulas
Porter and Duff (1984) define twelve formulas for combining (compositing) two RGBA colors63. In the
formulas below, it is assumed that the two colors and the output are in the 0-1 format and have been
premultiplied (that is, their red, green, and blue components have been multiplied beforehand by their alpha
component). Given src, the source RGBA color, and dst, the destination RGBA color, the Porter–Duff
formulas are as follows.

• Source Over: [src[0]-dst[0]*(src[3] - 1), src[1]-dst[1]*(src[3] - 1), src[2]-dst[2]*(src[3]
- 1), src[3]-dst[3]*(src[3] - 1)].

62https://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast
63Porter, T., and Duff. T. “Compositing Digital Images”. Computer Graphics 18(3), p 253 ff., 1984.

27

https://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-contrast

• Source In: [dst[3]*src[0], dst[3]*src[1], dst[3]*src[2], dst[3]*src[3]].
• Source Held Out: [src[0]*(1 - dst[3]), src[1]*(1 - dst[3]), src[2]*(1 - dst[3]),

src[3]*(1 - dst[3])].
• Source Atop: [dst[3]*src[0] - dst[0]*(src[3] - 1), dst[3]*src[1] - dst[1]*(src[3] -

1), dst[3]*src[2] - dst[2]*(src[3] - 1), dst[3]].
• Destination Over: [dst[0] - src[0]*(dst[3] - 1), dst[1] - src[1]*(dst[3] - 1), dst[2]

- src[2]*(dst[3] - 1), dst[3] - src[3]*(dst[3] - 1)].
• Destination In: [dst[0]*src[3], dst[1]*src[3], dst[2]*src[3], dst[3]*src[3]]. Uses the

destination color/alpha with the source alpha as the “mask”.
• Destination Held Out: [dst[0]*(1 - src[3]), dst[1]*(1 - src[3]), dst[2]*(1 - src[3]),

dst[3]*(1 - src[3])].
• Destination Atop: [dst[0]*src[3] - src[0]*(dst[3] - 1), dst[1]*src[3] - src[1]*(dst[3]

- 1), dst[2]*src[3] - src[2]*(dst[3] - 1), src[3]].
• Source: src.
• Destination: dst.
• Clear: [0, 0, 0, 0].
• Xor: [-dst[3]*src[0] - dst[0]*src[3] + dst[0] + src[0], -dst[3]*src[1] - dst[1]*src[3]

+ dst[1] + src[1], -dst[3]*src[2] - dst[2]*src[3] + dst[2] + src[2], -2*dst[3]*src[3]
+ dst[3] + src[3]].

The same paper by Porter and Duff also mentioned a plus operator, which is a simple adding of the source
and destination RGBA colors’ components; however, the resulting color may have components greater than
1, which may lead to less than well-defined behavior.

9.7 Raster Operations
Raster operations define Boolean operations, or bit-by-bit combinations of an input or source color (“in”)
and an output or destination color (“out”). Unlike with most other color operations in this document, the
input and output colors are nonnegative integers, rather than made of components with fractional numbers
from 0 through 1, and, if the colors are RGB colors, they can be linear or encoded.

There are sixteen binary raster operations, each operation taking two bits (where each bit is either 0 or 1):

Code Operation
0 0
1 NOT (in OR out)
2 out AND NOT in
3 NOT in
4 in AND NOT out
5 NOT out
6 in XOR out
7 NOT (in AND out)
8 in AND out
9 NOT (in XOR out)
10 out
11 NOT (in AND NOT out)
12 in
13 NOT (out AND NOT in)
14 in OR out
15 1

In the list of operations above:

28

• “NOT a” means 0 if a is 1, or 1 if a is 0.
• “a AND b” means 1 if a and b are both 1, or 0 otherwise.
• “a OR b” means 1 if a is 1 or b is 1 or both, or 0 otherwise.
• “a XOR b” means 1 if a does not equal b, or 0 otherwise.

The table below illustrates the result of some binary raster operations.

in out 8: in AND out 6: in XOR out 3: NOT in
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 0 0

The result of a binary raster operation rop (where rop is one of the codes given in the table of binary raster
operations), given bits in and out, equals (rop>>((in * 2) + out)) AND 1, where >> is a right-shift bit
operation that involves the left-hand side L and the right-hand side R and is equivalent to floor(L / pow(2,
R)).

There are also 256 ternary raster operations, involving bit-by-bit combinations of the input color (“in”), the
output color (“out”), and a so-called brush pattern color (“pat”). Each operation has a code equal to codeH
* 16 + codeL, and the corresponding operation has the form—

• (opH AND pat) XOR (opL AND NOT pat),

where opH is the binary raster operation for the input and output colors with the code codeH, and opL, with
the code codeL. In other words, if the brush pattern bit is 1, use opH ; if 0, use opL.

For example, code 28 is a ternary raster operation made up of binary raster operations codeH = 1, opH =
NOT (in OR out), codeL = 12, and opL = in. (1 * 16 + 12 = 28.) This ternary operation can be expressed
as ((NOT (in OR out)) AND pat) XOR (in AND NOT pat); that is, if the brush pattern bit is 1, use NOT
(in OR out); if 0, use in.

Binary and ternary raster operations are prevalent in bit block transfers, which copy or transfer parts of
images onto other images.

Note: Raster operations also function, in principle, when the input and output color values are
interpreted as zero-based indices to a color palette (that is, color value 0 refers to the first entry
in a palette of colors; color value 1, the second; and so on), rather than as intensities (such as
RGB colors). But this is a more delicate case than the usual one, and functions best when—

• the number of colors in the color palette is a power of two (for example, 2, 8, 16, 256), and
• for each color index i, the color at index i is the same as (or at least “close” to) the “inversion”

of the color at index n − 1 − i (a less technical but less preferable alternative is: the colors
in the palette are sorted by their intensity, so that, for example, the lowest-intensity color,
the color closest to “black”, appears first and the highest-intensity color, the color closest
to “white”, appears last).

9.8 Blend Modes
Blend modes64 take two multicomponent colors, namely a source color and a destination color, and blend
them to create a new color. The same blend mode, or different blend modes, can be applied to each
component of a given color. In the idioms below, src is one component of the source color, dst is the same
component of the destination color (for example, src and dst can both be two RGB colors’ red components),

64https://en.wikipedia.org/wiki/Blend_modes

29

https://en.wikipedia.org/wiki/Blend_modes

and both components are assumed to be 0 or greater and 1 or less. The following are examples of blend
modes.

• Normal: src.
• Lighten: max(src, dst).
• Darken: min(src, dst).
• Add: min(1.0, src + dst).
• Subtract: max(0.0, src - dst).
• Multiply: (src * dst).
• Screen: 1 - (1 - dst) * (1 - src).
• Average: src + (dst - src) * 0.5.
• Difference: abs(src - dst).
• Exclusion: src - 2 * src * dst + dst.

9.9 Color Matrices
A color matrix is a 9-item (3 × 3) list for transforming a three-component color. The following are examples
of color matrices:

• Sepia. Sepia matrices can have the form [r*sw[0], g*sw[0], b*sw[0], r*sw[1], g*sw[1],
b*sw[1], r*sw[2], g*sw[2], b*sw[2]], where r, g, and b are as defined in the section “Luminance
Factor (Grayscale)”, and sw is the RGB color for “sepia white” (an arbitrary choice). An example
for linear sRGB is: [0.207,0.696,0.07,0.212,0.712,0.072,0.16,0.538,0.054].

• Saturate. [s+(1-s)*r, (1-s)*g, (1-s)*b, (1-s)*r, s+(1-s)*g,(1-s)*b,(1-s)*r,(1-s)*g,s+(1-s)*b],
where s ranges from 0 through 1 (the greater s is, the less saturated), and r, g, and b are as defined
in the section “Luminance Factor (Grayscale)”65.

• Hue rotate. [-0.37124*sr + 0.7874*cr + 0.2126, -0.49629*sr - 0.7152*cr + 0.7152,
0.86753*sr - 0.0722*cr + 0.0722, 0.20611*sr - 0.2126*cr + 0.2126, 0.08106*sr +
0.2848*cr + 0.7152, -0.28717*sr - 0.072199*cr + 0.0722, -0.94859*sr - 0.2126*cr +
0.2126, 0.65841*sr - 0.7152*cr + 0.7152, 0.29018*sr + 0.9278*cr + 0.0722], where sr
= sin(rotation), cr = cos(rotation), and rotation is the hue rotation angle.6667 This is an
approximate hue rotation because the constant factors in the pseudocode are rounded off to a limited
number of decimal places.

In the following pseudocode, TransformColor transforms an RGB color (color) with a color matrix
(matrix).

METHOD TransformColor(color, matrix)
return [

min(max(color[0]*matrix[0]+color[1]*matrix[1]+color[2]*matrix[2],0),1),
min(max(color[0]*matrix[3]+color[1]*matrix[4]+color[2]*matrix[5],0),1),
min(max(color[0]*matrix[6]+color[1]*matrix[7]+color[2]*matrix[8],0),1)]

END METHOD

More generally—
65P. Haeberli, “Matrix Operations for Image Processing”, 1993. The hue rotation matrix given was generated using

the technique in the section “Hue Rotation While Preserving Luminance”, with constants rounded to five significant digits and
with rwgt=0.2126, gwgt=0.7152, and bwgt = 0.0722, the sRGB luminance factors for the red, green, and blue points. For the
saturation and hue rotation matrices, the sRGB luminance factors are used rather than the values recommended by the source.

66P. Haeberli, “Matrix Operations for Image Processing”, 1993. The hue rotation matrix given was generated using
the technique in the section “Hue Rotation While Preserving Luminance”, with constants rounded to five significant digits and
with rwgt=0.2126, gwgt=0.7152, and bwgt = 0.0722, the sRGB luminance factors for the red, green, and blue points. For the
saturation and hue rotation matrices, the sRGB luminance factors are used rather than the values recommended by the source.

67This is often called the “CMY” (“cyan–magenta–yellow”) version of the RGB color (although the resulting color is not
necessarily based on a proportion of cyan, magenta, and yellow inks; see also “CMYK and Other Ink-Mixture Color
Models”). If such an operation is used, the conversions between “CMY” and RGB are exactly the same.

30

http://www.graficaobscura.com/matrix/index.html
http://www.graficaobscura.com/matrix/index.html

• an N×N matrix can be used to transform an N-component color, and
• an (N+1)×(N+1) matrix can be used to transform a color consisting of N components followed by

the number 1; if this is done, the first N components of the transformed color are divided by its last
component.

9.10 Lighten/Darken
The following approaches can generate a lighter or darker version of a color. In the examples, color is an
RGB color in 0-1 format, and value is positive to lighten a color, or negative to darken a color, and -1 or
greater and 1 or less.

• RGB additive. [min(max(color[0]+value,0),1), min(max(color[1]+value,0),1), min(max(color[2]+value,0),1)].
• HSL “lightness” additive. HslToRgb(hsl[0], hsl[1], min(max(hsl[2] + value, 0), 1)),

where hsl = RgbToHsl(color).
• CIELAB lightness additive. Adds a number to the L* component of the color’s CIELAB version.

For example, given a CIELAB color lab, this is: [min(max(lab[0] + (value * 100), 0), 100),
lab[1], lab[2]].

• Tints and shades. A “tint” is a lighter version, and a “shade” is a darker version. See “Alpha
Blending”.

9.11 Saturate/Desaturate
The following approaches can generate a saturated or desaturated version of a color. In the examples, color
is an RGB color in 0-1 format, and value is positive to saturate a color, or negative to desaturate a color,
and -1 or greater and 1 or less.

• HSV “saturation” additive. HsvToRgb(hsv[0], min(max(hsv[1] + color, 0), 1), hsv[2]),
where hsv = RgbToHsv(color). (Note that HSL’s “saturation” is inferior here.)

• Tones, or mixtures of gray. A “tone” is a desaturated version. A color can be desaturated by
alpha blending that color with either its grayscale version or an arbitrary shade of gray.

• Saturate matrix. See “Color Matrices”.

9.12 Miscellaneous
1. An RGB color—

• is white, black, or a shade of gray (achromatic) if it has equal red, green, and blue components,
and

• is in the “safety palette” if its red, green, and blue components are each a multiple of 0.2.68

An image color list is achromatic if all its colors are achromatic.

2. Background removal algorithms, including chroma key69, can replace “background” pixels of a raster
image with other colors. Such algorithms are outside the scope of this document unless they use only a
pixel’s color to determine whether that pixel is a “background” pixel (for example, by checking whether

68The “safety palette”, also known as the “Web safe” colors, consists of 216 colors that are uniformly spaced in
the red–green–blue color cube. Robert Hess’s article “The Safety Palette)”, 1996, described the advantage that im-
ages that use only colors in this palette won’t dither when displayed by Web browsers on displays that can show up
to 256 colors at once. (See also Wikipedia. Dithering is the scattering of colors in a limited set to simulate col-
ors outside that set.) The definition of the “safety palette”, though not the name, dates as early as 1994, when
Microsoft’s WinG API provided a halftone palette to “allo[w] applications to simulate true 24-bit color on 8-bit de-
vices” (WinG Programmer’s Reference, 1994). WinG was an early attempt by Microsoft to bring high-performance
graphics operations to the Windows platform and was superseded by DirectX. [https://learn.microsoft.com/en-us/previous-
versions/ms976419(v=msdn.10](https://learn.microsoft.com/en-us/previous-versions/ms976419(v=msdn.10)

69https://en.wikipedia.org/wiki/Chroma_key

31

https://en.wikipedia.org/wiki/Chroma_key
http://en.wikipedia.org/wiki/Web_colors

the color difference between that color and a predetermined background color is small enough) and,
if so, what color that pixel uses instead.

3. An application can apply a function to each component of an RGB or other multicomponent color,
including a power function (of the form base𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡), an inversion (an example is [1.0 - color[0],
1.0 - color[1], 1.0 - color[2]] for RGB colors in 0-1 format70), or a tone mapping curve. The
function can be one-to-one, but need not be, as long as it maps numbers from 0 through 1 to numbers
from 0 through 1.

4. An application can swap the values of any two components of an RGB or other multicomponent
color to form new colors. The following example swaps the blue and red channels of an RGB color:
[color[2], color[1], color[0]].

5. Raster image processing techniques that process each pixel depending on neighboring pixels or the
image context are largely out of scope of this document. These include pixel neighborhood filters
(including Gaussian blur and other convolutions), morphological processing (including erosion and
dilation), and image segmentation beyond individual pixels (including some clustering and background
removal algorithms).

10 Color Differences
Color difference algorithms are used to determine if two colors are similar.

In this document, COLORDIFF(color1, color2) is a function that calculates a color difference71 (also
known as “color distance”) between two colors in the same color space, where the lower the number, the
closer the two colors are. In general, however, color differences calculated using different color spaces or
formulas cannot be converted to each other. This section gives some ways to implement COLORDIFF.

Euclidean distance. The following pseudocode implements the Euclidean distance of two multicomponent
colors. This color difference formula is independent of color model.

// Euclidean distance for multicomponent colors
METHOD COLORDIFF(color1, color2)

ret = 0
for i in 0...len(color1)

ret=ret+(color2[i]-color1[i])*(color2[i]-color1[i])
end
return sqrt(ret)

END METHOD

Notes:

• For CIELAB or CIELUV, the 1976 ΔE*ab (“delta E a b”) or ΔE*uv color difference
method, respectively72, is the Euclidean distance between two CIELAB or two CIELUV
colors, respectively.

• If Euclidean distances are merely being compared (so that, for example, two distances are
not added or multiplied), then the square root operation can be omitted.

Riemersma’s method. (Riemersma)73 suggests an algorithm for color difference, to be applied to encoded
RGB colors.

70This is often called the “CMY” (“cyan–magenta–yellow”) version of the RGB color (although the resulting color is not
necessarily based on a proportion of cyan, magenta, and yellow inks; see also “CMYK and Other Ink-Mixture Color
Models”). If such an operation is used, the conversions between “CMY” and RGB are exactly the same.

71https://en.wikipedia.org/wiki/Color_difference
72The “E” here stands for the German word Empfindung.
73T. Riemersma, “Colour metric”, section “A low-cost approximation”. https://www.compuphase.com/cmetric.htm

32

https://en.wikipedia.org/wiki/Color_difference
https://www.compuphase.com/cmetric.htm

CMC. The following pseudocode implements the Color Measuring Committee color difference formula pub-
lished in 1984, used above all in the textile industry. Note that in this formula, the order of the two CIELAB
colors is important (the first color is the reference, and the second color is the test). Here, the formula is
referred to as CMC(LPARAM:CPARAM) where—

• LPARAM is a lightness tolerance and is usually either 2 or 1, and
• CPARAM is a chroma tolerance and is usually 1.

METHOD COLORDIFF(lab1, lab2)
c1=LabToChroma(lab1)
c2=LabToChroma(lab2)
h1=LabToHue(lab1)
dl=0.511
if lab1[0]>=16: dl=0.040975*lab1[0]/(1+0.01765*lab1[0])
dc=0.0638+(0.0638*c1/(0.0131*c1+1))
f4=pow(c1,4)
f4=sqrt(f4/(f4+1900))
dt=0
if h1>=41*pi/45 and h1<=23*pi/12

dt=0.56+abs(0.2*cos(h1+14*pi/15))
else

dt=0.36+abs(0.4*cos(h1+7*pi/36))
end
dh=(dt*f4+1-f4)*dc
dl=dl*LPARAM
dc=dc*CPARAM
da=lab2[1]-lab1[1]
db=lab2[2]-lab1[2]
dchr=c2-c1
dhue=sqrt(max(0,da*da+db*db-dchr*dchr))
dl=((lab2[0]-lab1[0])/dl)
dc=(dchr/dc)
dh=(dhue/dh)
return sqrt(dl*dl+dc*dc+dh*dh)

END METHOD

CIE94. This CIELAB-specific formula is detailed on the supplemental color topics74 page.

CIEDE2000. The following pseudocode implements the color difference formula published in 2000 by the
CIE, called CIEDE2000 or ΔE*00, between two CIELAB colors.

METHOD COLORDIFF(lab1, lab2)
dl=lab2[0]-lab1[0]
hl=lab1[0]+dl*0.5
sqb1=lab1[2]*lab1[2]
sqb2=lab2[2]*lab2[2]
c1=sqrt(lab1[1]*lab1[1]+sqb1)
c2=sqrt(lab2[1]*lab2[1]+sqb2)
hc7=pow((c1+c2)*0.5,7)
trc=sqrt(hc7/(hc7+6103515625.0))
t2=1.5-trc*0.5

74https://peteroupc.github.io/suppcolor.html#Additional_Color_Formulas

33

https://peteroupc.github.io/suppcolor.html#Additional_Color_Formulas

ap1=lab1[1]*t2
ap2=lab2[1]*t2
c1=sqrt(ap1*ap1+sqb1)
c2=sqrt(ap2*ap2+sqb2)
dc=c2-c1
hc=c1+dc*0.5
hc7=pow(hc,7)
trc=sqrt(hc7/(hc7+6103515625.0))
h1=atan2(lab1[2],ap1)
if h1<0: h1=h1+pi*2
h2=atan2(lab2[2],ap2)
if h2<0: h2=h2+pi*2
hdiff=h2-h1
hh=h1+h2
if abs(hdiff)>pi
hh=hh+pi*2
if h2<=h1: hdiff=hdiff+pi*2
else: hdiff=hdiff-pi*2

end
hh=hh*0.5
t2=1-0.17*cos(hh-pi/6)+0.24*cos(hh*2)
t2=t2+0.32*cos(hh*3+pi/30)
t2=t2-0.2*cos(hh*4-pi*63/180)
dh=2*sqrt(c1*c2)*sin(hdiff*0.5)
sqhl=(hl-50)*(hl-50)
fl=dl/(1+(0.015*sqhl/sqrt(20+sqhl)))
fc=dc/(hc*0.045+1)
fh=dh/(t2*hc*0.015+1)
dt=30*exp(-pow(36*hh-55*pi,2)/(25*pi*pi))
r=0-2*trc*sin(2*dt*pi/180)
return sqrt(fl*fl+fc*fc+fh*fh+r*fc*fh)

END METHOD

Note: An improvement to CIEDE2000 (Huang et al. 2015)75, recently recommended in CIE
230:2019 for small color differences, is not yet in common use.

Commercial factors. A commercial factor (cf) is an additional parameter to CMC and other color
difference formulas. The COLORDIFF result is divided by cf (which is usually 1) to get the final color
difference.

10.1 Nearest Colors
The nearest color algorithm is used, for example, to categorize colors or to reduce the number of colors
used by an image.

In the pseudocode below, the method NearestColorIndex finds, for a given color (color), the index of the
color nearest it in a given list (list) of colors, all in the same color space as color. NearestColorIndex is
independent of color model.

METHOD NearestColorIndex(color, list)
if size(list) == 0: return error
if size(list) == 1: return 0

75Huang, M., Cui, G., et al. (2015). “Power functions improving the performance of color-difference formulas.” Optical Society
of America, 23(1), 597–610.

34

i = 0
best = -1
bestIndex = 0
while i < size(list)

dist = COLORDIFF(color,list[i])
if i == 0 or dist < best

best = dist
bestIndex = i

end
i = i + 1

end
return bestIndex

END METHOD

Examples:

• To find the nearest color to color in a list of colors (list), generate nearestColor =
list[NearestColorIndex(color, list)].

• Sorting colors into color categories can be done by a so-called “hard clustering” algorithm
such as k-means clustering (see also the Wikipedia article76), which involves—
1. defining a list (repColors) of k color points (which, for example, can be representative

colors for red, blue, black, white, and so on, or can be colors chosen at random), then
2. for each color (color) to be categorized, finding the nearest color to that color among

the k color points (for example, by calling NearestColorIndex(color, repColors)),
then

3. replacing each color point in repColors with its new average color (based on the colors
that point categorizes), then

4. repeating steps 2 and 3 until the changes in all color points are negligible.
If representative colors were used, steps 3 and 4, or step 4 itself, can be omitted. Otherwise,
color points in repColors that end up categorizing no colors should be omitted.

11 Dominant Colors of an Image
There are several methods of finding the kind or kinds of colors that appear most prominently in an image
color list. For best results, these techniques need to be carried out with linear RGB rather than encoded
RGB colors.

1. Color quantization77. In this technique, the image color list’s colors are reduced to a small set
of colors (for example, ten to twenty). Quantization algorithms include k-means clustering (see the
previous section), recursive subdivision, and octrees.

2. Histogram binning. To find the dominant colors using this technique (which is independent of color
model):

• Generate or furnish a list of colors that cover the space of colors well. This is the color palette. A
good example is the “safety palette” 78.

76https://en.wikipedia.org/wiki/K-means_clustering
77https://en.wikipedia.org/wiki/Color_quantization
78The “safety palette”, also known as the “Web safe” colors, consists of 216 colors that are uniformly spaced in

the red–green–blue color cube. Robert Hess’s article “The Safety Palette)”, 1996, described the advantage that im-
ages that use only colors in this palette won’t dither when displayed by Web browsers on displays that can show up
to 256 colors at once. (See also Wikipedia. Dithering is the scattering of colors in a limited set to simulate col-
ors outside that set.) The definition of the “safety palette”, though not the name, dates as early as 1994, when
Microsoft’s WinG API provided a halftone palette to “allo[w] applications to simulate true 24-bit color on 8-bit de-
vices” (WinG Programmer’s Reference, 1994). WinG was an early attempt by Microsoft to bring high-performance

35

http://aishack.in/tutorials/kmeans-clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Color_quantization
http://en.wikipedia.org/wiki/Web_colors

• Create a list with as many zeros as the number of colors in the palette. This is the histogram.
• For each color in the image color list, find its nearest color in the color palette, and add 1 to

the nearest color’s corresponding value in the histogram.
• Find the color or colors in the color palette with the highest histogram values, and return those

colors as the dominant colors.

3. Posterization. This involves rounding each component of a multicomponent color to the nearest
multiple of 1/n, where n is 1 plus the desired number of levels per channel. The rounding can be up,
down, or otherwise.

Notes:

1. Scale down: For all these techniques, in the case of a raster image, an implementation can
scale down that image before proceeding to find its dominant colors. Algorithms to resize
or “resample” images are out of scope for this page, however.

2. Color reduction: Reducing the number of colors in an image usually involves finding that
image’s dominant colors and either—
• applying a “nearest neighbor” approach (replacing that image’s colors with their near-

est dominant colors), or
• applying a dithering technique (especially to reduce undesirable color “banding” in

certain cases).79

3. Unique colors: Finding the number of unique colors in an image color list can be done by
storing those colors as keys in a hash table, then counting the number of keys stored this
way.80

4. Disqualifying dominant colors: An application can disqualify certain kinds of colors
from being dominant, and use a substitute color as the dominant color if no dominant color
remains. For example, the application can ignore colors in the background or near the
image’s edges, can ignore certain kinds of colors (for example, gray or nearly gray colors)
while sampling the image color list, or can delete certain colors from the dominant color list.

5. Averaging the colors of an image, component-by-component, can lead to a meaning-
less result, especially if there is a wide color variety represented in the image (see
stackoverflow.com/questions/43111029).

6. Extracting a scene’s “true colors”: For applications where matching colors from the
real world is important, colors need to be measured using a color measurement device81,
or be calculated from scene-referred image data.82 PNG and many other image for-
mats store image data commonly interpreted as sRGB by default; however, sRGB is an
output-referred color space, not a scene-referred one (it’s based on the color output of
cathode-ray-tube monitors), making sRGB images unsuitable for real-world color-matching
without more.Getting scene-referred image data from a digital camera, including a smart-
phone camera, is not trivial and is not discussed in detail in this document. It requires
knowing, among other things, whether the camera offers access to raw image data, the for-
mat of that raw data, and possibly whether the camera does color rendering (which happens
before generating output-referred image data). A raw image’s colors can be estimated by

graphics operations to the Windows platform and was superseded by DirectX. [https://learn.microsoft.com/en-us/previous-
versions/ms976419(v=msdn.10](https://learn.microsoft.com/en-us/previous-versions/ms976419(v=msdn.10)

79Dithering is the scattering of colors in a limited set to simulate colors outside that set. Detailing the various dithering
techniques is outside the scope of this article, but see the Wikipedia article on dithering as will as Joel Yliluoma’s
algorithm and his review of other dithering algorithms. Another way to implement dithering is mentioned in C.
Peters, “Free blue noise textures”, Moments in Graphics, Dec. 22, 2016. https://en.wikipedia.org/wiki/Dither https:
//bisqwit.iki.fi/story/howto/dither/jy/

80This document does not cover how to implement hash tables.
81https://peteroupc.github.io/suppcolor.html#Color_Measurement_Devices
82An example of scene-referred image data is a raw image from a digital camera after applying an input device transform as

defined in Academy Procedure P-2013-001. Scene-referred image data have not undergone operations such as look modification
transforms (as defined in P-2013-001), tone mapping, gamut mapping, or other color rendering.

36

https://peteroupc.github.io/suppcolor.html#Color_Measurement_Devices
http://eilv.cie.co.at/term/567
http://eilv.cie.co.at/term/565
http://momentsingraphics.de/?p=127
https://en.wikipedia.org/wiki/Dither
https://bisqwit.iki.fi/story/howto/dither/jy/
https://bisqwit.iki.fi/story/howto/dither/jy/

the use of a raw image of a color calibration chart (test target) or by another technique.
The ISO 17321 series and IEC 61966-9 touch on this subject.

12 Color Maps
A color map (or color palette) is a list of colors, which are usually related. All the colors in a color map
can be in any one color space, but unless noted otherwise, linear RGB colors should be used rather than
encoded RGB colors.

Example: A grayscale color map consists of the encoded RGB colors [[0, 0, 0], [0.5,
0.5, 0.5], [1, 1, 1]].

12.1 Kinds of Color Maps
The ColorBrewer 2.0 Web site’s suggestions for color maps are designed above all for visualizing data on
land maps. For such purposes, C. Brewer, the creator of ColorBrewer 2.0, has identified three kinds of
appropriate color maps:

• Sequential color maps for showing “ordered data that progress from low to high”. Those found in
ColorBrewer 2.0 use varying tints of the same hue or of two close hues.

• Diverging color maps for showing continuous data with a clearly defined midpoint (the “critical
value”) and where the distinction between low and high is also visually important. Those found in
ColorBrewer 2.0 use varying tints of two “contrasting hues”, one hue at each end, with lighter tints
closer to the middle. Where such color maps are used in 3D visualizations, K. Moreland recommends
“limiting the color map to reasonably bright colors”.

• Qualitative color maps for showing discrete categories of data (see also “Visually Distinct Col-
ors”). Those found in ColorBrewer 2.0 use varying hues.

Note: The fact that ColorBrewer 2.0 identifies some of its color maps as being “print friendly”83,
“color blind friendly”, or both suggests that these two factors can be important when generating
color maps of the three kinds just mentioned.

12.2 Color Collections
If each color in a color map has a name, number, or code associated with it, the color map is also called a
color collection. Examples of names are “red”, “vivid green”, “orange”, “lemonchiffon”, and “5RP 5/6”84. A
survey of color collections or color atlases is not covered in this document, but some of them are discussed
in some detail in my colors tutorial for the HTML 3D Library85.

Converting a color (such as an RGB color) to a color name can be done by—

• retrieving the name keyed to that color in a hash table (or returning an error if that color doesn’t exist
in the hash table)86, or

• finding the nearest color to that color among the named colors, and returning the name of the color
found this way.

Converting a color name to a color can be done by retrieving the color keyed to that name (or optionally,
its lowercase form) in a hash table, or returning an error if no such color exists.87

83In general, a color can be considered “print friendly” if it lies within the extent of colors (color gamut) that can be reproduced
under a given or standardized printing condition (see also “CMYK and Other Ink-Mixture Color Models”).

84Many color collections are represented by printed or dyed color swatches, are found in printed “fan decks”, or both. Most
color collections of this kind, however, are proprietary. “5RP 5/6” is an example from a famous color system and color space
from the early 20th century.

85https://peteroupc.github.io/html3dutil/tutorial-colors.html#What_Do_Some_Colors_Look_Like
86This document does not cover how to implement hash tables.
87This document does not cover how to implement hash tables.

37

http://colorbrewer2.org/
http://colorbrewer2.org/learnmore/schemes_full.html
http://www.kennethmoreland.com/color-advice/
https://peteroupc.github.io/html3dutil/tutorial-colors.html#What_Do_Some_Colors_Look_Like

If each name, number, or code in a color map is associated with one or several colors, optionally with a
weighting factor for each color, then the color map is also known as a color dictionary (Venn et al.)88.

Notes:

• As used in the CSS Color Module Level 3, named colors defined in that module are
expressed as encoded RGB colors in the sRGB color space.

• If the color names identify points in a color space (as in the “5RP 5/6” example), converting
a color name with a similar format (for example, “5.6PB 7.1/2.5”) to a color can be done
by multidimensional interpolation of the known color points.89

12.3 Visually Distinct Colors
Color maps can list colors used to identify different items. Because of this use, many applications need to
use colors that are easily distinguishable by humans. In this respect—

• K. Kelly (1965) proposed a list of “twenty two colors of maximum contrast”90, the first nine of which
were intended for readers with normal and defective color vision, and

• B. Berlin and P. Kay, in a work published in 1969, identified eleven basic color terms: black, white,
gray, purple, pink, red, green, blue, yellow, orange, and brown.

In general, the greater the number of colors used, the harder it is to distinguish them from each other. Any
application that needs to distinguish many items (especially more than 22 items, the number of colors in
Kelly’s list) should use other visual means in addition to color (or rather than color) to help users identify
them, such as numbered labels, text labels, different shapes, different shading, different dash patterns, or a
combination of these. (Note that under the Web Content Accessibility Guidelines 2.091 level A, color
may not be “the only visual means of conveying information”.)

In general, any method that seeks to choose colors that are maximally distant in a particular color space
(that is, where the smallest color difference [COLORDIFF] between them is maximized as much as feasible)
can be used to select visually distinct colors. Such colors can be generated in advance or while the program
runs, and such colors can be limited to those in a particular color gamut. Here, the color difference method
should be ΔE*ab or another color difference method that takes human color perception into account. (See
also (Tatarize)92.)

12.4 Linear Gradients
A linear gradient is a smooth transition of two or more colors. A linear gradient consists of two or more
gradient stops, which each consist of a point on the number line and a color located at that point. The
remaining colors on the number line are linearly interpolated between these points, that is, the colors between
any two nearby points go from one color to another at an unchanging rate.

The following pseudocode, LinearGradientPoint, gets the color at the specified point on the linear gradient.
It takes a list, stops, consisting of one or more gradient stops, and point, the desired point on the gradient.
Each gradient stop is a list containing the point and the color, in that order, and the gradient stops are
sorted in ascending order by point. The method is independent of color space, but all colors passed to the

88Venn, A., et al. “Das Farbwörterbuch / The Colour Dictionary”.
89This page does not detail how multidimensional interpolation works, but an example is SciPy’s griddata method. https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
90An approximation of the colors, in order, to encoded sRGB in HTML color format, is as follows: “#F0F0F1”, “#181818”,

“#F7C100”, “#875392”, “#F78000”, “#9EC9EF”, “#C0002D”, “#C2B280”, “#838382”, “#008D4B”, “#E68DAB”,
“#0067A8”, “#F99178”, “#5E4B97”, “#FBA200”, “#B43E6B”, “#DDD200”, “#892610”, “#8DB600”, “#65421B”,
“#E4531B”, “#263A21”. The list was generated by converting the Munsell renotations (and a similar renotation for black) to
sRGB using the Python colour package.

91https://www.w3.org/TR/2008/REC-WCAG20-20081211/
92Tatarize, “Color Distribution Methodology”.

38

http://www.w3.org/TR/css3-color/
https://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/#visual-audio-contrast-without-color
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
http://godsnotwheregodsnot.blogspot.com/2012/09/color-distribution-methodology.html

method must be in the same color space and linear RGB colors should be used rather than encoded RGB
colors.

METHOD LinearGradientPoint(stops, point)
if size(stops)==0: return error
if size(stops)==1: return stops[0][1]
if point <= stops[0][0]: return stops[0][1]
lastStop=stops[size(stops)-1]
if point >= lastStop[0]: return lastStop[1]
i = 0
while i < size(stops) - 1

i = i + 1
s = stops[i][0]
e = stops[i + 1][0]
if point == s: return stops[i][1]
if point == e: return stops[i + 1][1]
if point < e
interpPoint=(point - s) / (e - s)
return Lerp3(stops[i][1],stops[i+1][1],

interpPoint)
end
i = i + 1

end
return lastStop[1]

end

Note: Linear gradients are often the basis for 2-dimensional gradients such as radial gradients,
or even gradients in higher dimensions. They can generally be described in terms of a contouring
function, which returns a point on a linear gradient given an N-dimensional point. (The name
comes from U.S. patent 6879327B1, “Creating gradient fills”, which expired in March 2022.)
For instance, a radial gradient can be implemented by using the following contouring function:
sqrt(x*x+y*y), where x and y are the coordinates of an arbitrary point in 2-dimensional space.
The value of the radial gradient function can then be passed to LinearGradientPoint to gen-
erate the appropriate color at the specified 2-dimensional point. Note, however, that generating
multidimensional gradients can cause undesirable “banding” of colors (see the notes in “Domi-
nant_Colors_of_an_Image”). Ways to reduce banding include either dithering techniques93

or adding/subtracting a small random offset (“noise”) to the value of the contouring function for
each 2-dimensional point.

12.5 Pseudocode
In the following pseudocode—

• ColorMapContinuous extracts a continuous color (blended color) from a color map (colormap), and
• ColorMapDiscrete extracts a discrete color (nearest color) from a color map (colormap),

where value is a number 0 or greater and 1 or less (0 and 1 are the start and end of the color map,
respectively).

METHOD ColorMapContinuous(colormap, value)
93Dithering is the scattering of colors in a limited set to simulate colors outside that set. Detailing the various dithering

techniques is outside the scope of this article, but see the Wikipedia article on dithering as will as Joel Yliluoma’s
algorithm and his review of other dithering algorithms. Another way to implement dithering is mentioned in C.
Peters, “Free blue noise textures”, Moments in Graphics, Dec. 22, 2016. https://en.wikipedia.org/wiki/Dither https:
//bisqwit.iki.fi/story/howto/dither/jy/

39

http://momentsingraphics.de/?p=127
https://en.wikipedia.org/wiki/Dither
https://bisqwit.iki.fi/story/howto/dither/jy/
https://bisqwit.iki.fi/story/howto/dither/jy/

nm1 = size(colormap) - 1
index = (value * nm1) - floor(value * nm1)
if index >= nm1: return colormap[index]
fac = (value * nm1) - index)
list1 = colormap[index]
list2 = colormap[index + 1]
return [list1[0]+(list2[0]-list1[0])*fac, list1[1]+(list2[1]-list1[1])*fac,

list1[2]+(list2[2]-list1[2])*fac]
END METHOD

METHOD ColorMapDiscrete(colormap, value)
vn1=value*(N-1)
if floor(vn1)<0.5: return colormap[floor(vn1)]
return colormap[ceil(vn1)]

END METHOD

Example: The idiom ColorMapContinuous(colormap, 1 - value) gets a continuous color
from the reversed version of a color map.

13 Generating a Random Color
The following techniques can be used to generate random colors. In this section:

• RNDRANGEMinMaxExc, RNDINT, and RNDINTEXC are methods defined in my article on random number
generation methods94.

• Some techniques here refer to a light–dark factor. This factor can be implemented by any of the
following, in order of preference from most to least.
1. The color’s CIELAB lightness (_L*_) divided by 100, or another value from 0 through 1 that

expresses a color’s lightness (in terms of human perception).
2. Luminance(color).
3. Any other single number that summarizes a color and ranges from 0 (“minimum intensity”) to 1

(“maximum intensity”).
• For best results, these techniques need to use linear RGB colors rather than encoded RGB colors,

unless noted otherwise.

The techniques follow.

• Generating a random string in the HTML color format can be done by generating a random
hexadecimal string95 with length 6, then inserting the string “#” at the beginning of that string.

• Generating a random three-component color in the 0-1 format can be done as follows:
[RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1)].

• Generating a random 8-bpc encoded RGB color can be done as follows: From888(RNDINT(16777215)).
• To generate a random dark RGB color, either—

– generate color = [RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0,
1)] until a light–dark factor is less than a given threshold, for example, 0.5, or

– generate color = [RNDRANGEMinMaxExc(0, maxComp), RNDRANGEMinMaxExc(0, maxComp),
RNDRANGEMinMaxExc(0, maxComp)], where maxComp is the maximum value of each color
component, for example, 0.5.

• To generate a random light RGB color, either—
– generate color = [RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0,

1)] until a light–dark factor is greater than a given threshold, for example, 0.5, or
94https://peteroupc.github.io/randomfunc.html
95https://peteroupc.github.io/randomfunc.html#Creating_a_Random_Character_String

40

https://peteroupc.github.io/randomfunc.html
https://peteroupc.github.io/randomfunc.html
https://peteroupc.github.io/randomfunc.html#Creating_a_Random_Character_String
https://peteroupc.github.io/randomfunc.html#Creating_a_Random_Character_String

– generate color = [minComp + RNDRANGEMinMaxExc(0, 1) * (1.0 - minComp), minComp +
RNDRANGEMinMaxExc(0, 1) * (1.0 - minComp), minComp + RNDRANGEMinMaxExc(0, 1) *
(1.0 - minComp)], where minComp is the minimum value of each color component, for example,
0.5.

• One way to generate a random pastel RGB color is to generate color = [RNDRANGEMinMaxExc(0,
1), RNDRANGEMinMaxExc(0, 1), RNDRANGEMinMaxExc(0, 1)] until a light–dark factor is greater
than 0.75 and less than 0.9.

• To generate a random three-component color at or between two others (color1 and color2),
generate Lerp3(color1, color2, RNDRANGEMinMaxExc(0, 1)).

• To generate a random shade of a given RGB color, generate Lerp3(color1, [0, 0, 0],
RNDRANGEMinMaxExc(0.2, 1.0)).

• To generate a random tint of a given RGB color, generate Lerp3(color1, [1, 1, 1],
RNDRANGEMinMaxExc(0.0, 0.9)).

• To generate a random tone of a given RGB color, generate Lerp3(color1, [0.5, 0.5, 0.5],
RNDRANGEMinMaxExc(0.0, 0.9)).

• To generate a random monochrome RGB color, generate HslToRgb(H, RNDRANGEMinMaxExc(0,
1),RNDRANGEMinMaxExc(0, 1)), where H is an arbitrary hue.

• Random color sampling:
– To select a random continuous color from a color map (colormap): ColorMapContinuous(colormap,

RNDRANGEMinMaxExc(0, 1)).
– To select one random color from a color map (colormap): colormap[RNDINTEXC(size(colormap))].

See also “Sampling With Replacement: Choosing a Random Item from a List”96.
– To select several random colors from a color map: See “Sampling Without Replacement:

Choosing Several Unique Items”97.
• Similar random colors: Generating a random color that’s similar to another can be done by gen-

erating a random color (color1) until COLORDIFF(color1, color2) (defined earlier) is less than a
predetermined threshold, where color2 is the color to compare.

• Image noise: This alters a color using random numbers, such as by adding or multiplying random
numbers to that color. For example, in uniform noise, each component of a multicomponent color
is changed to min(1,max(0,c+RNDRANGEMinMaxExc(-level, level))), where c is the value of the
previous component and level is the noise level. Other kinds of image noise include noise following
a Gaussian, Poisson, or other probability distribution98, and salt-and-pepper noise that involves
replacing each pixel by black or white at a predetermined probability each.

Note: The methods in this section can also be implemented by using a hash function99

to convert arbitrary data to “random” bits which can be used either directly or to initialize
a pseudorandom number generator which can generate further “random” bits. For example,
From888(MD5_24("Hello World")), where MD5_24() is the first 24 bits of the MD5 hash, can
be interpreted as an 8-bpc encoded RGB color.

14 Spectral Color Functions
As mentioned earlier, color requires the existence of light, an object, and an observer. These three things can
be specified as follows:

• Light. A light source can be specified as a spectral power distribution (SPD), a “curve” that describes
the intensity of a light source across the electromagnetic spectrum.

• Object. There are two kinds of “objects”: reflective (opaque) and transmissive (translucent or
transparent). A reflectance curve or transmittance curve, respectively, describes the fraction of light

96https://peteroupc.github.io/randomfunc.html#Sampling_With_Replacement_Choosing_a_Random_Item_from_a_List
97https://peteroupc.github.io/randomfunc.html#Sampling_Without_Replacement_Choosing_Several_Unique_Items
98https://peteroupc.github.io/randomfunc.html#Specific_Non_Uniform_Distributions
99https://peteroupc.github.io/random.html#Hash_Functions

41

https://peteroupc.github.io/randomfunc.html#Sampling_With_Replacement_Choosing_a_Random_Item_from_a_List
https://peteroupc.github.io/randomfunc.html#Sampling_Without_Replacement_Choosing_Several_Unique_Items
https://peteroupc.github.io/randomfunc.html#Sampling_Without_Replacement_Choosing_Several_Unique_Items
https://peteroupc.github.io/randomfunc.html#Specific_Non_Uniform_Distributions
https://peteroupc.github.io/random.html#Hash_Functions

that is reflected by or passes through the object, respectively.
• Observer. An observer’s visual response can be modeled by three color-matching functions.

The SPD, the reflectance or transmittance curve, and the color-matching functions, are converted to three
numbers (called tristimulus values) that uniquely identify a perceived color.

The pseudocode below includes a SpectrumToTristim method for computing tristimulus values. In the
method:

• lightFunc(wl), reflFunc(wl), and cmfFunc(wl) are arbitrary functions described next. All three
take a wavelength (wl) in nanometers (nm) and return the corresponding values at that wavelength.
(See also note 1 later in this section.)

• lightFunc(wl) models a light source’s SPD; it returns the source’s relative intensity at the wave-
length wl. Choices for lightFunc include—

– a CIE daylight illuminant such as the D65 or D50 illuminant (see the Python sample code100

for implementation),
– the BlackbodySPD method given in “Color Temperature”, and
– the SPD for a light-emitting diode (LED), fluorescent, or other artificial light source.

• reflFunc(wl) models the reflectance or transmittance curve and returns the value of that curve
at the wavelength wl; the value is 0 or greater and usually 1 or less. (For optically brightened and
other photoluminescent and fluorescent materials, the curve can have values greater than 1.)

• cmfFunc(wl) models three color-matching functions and returns a list of those functions’ values
at the wavelength wl. The choice of cmfFunc determines the kind of tristimulus values returned by
SpectrumToTristim. Choices for cmfFunc include the CIE 1931 or 1964 standard observer, which is
used to generate XYZ colors based on color stimuli seen at a 2-degree or 10-degree field of view,
respectively.101

METHOD SpectrumToTristim(reflFunc, lightFunc, cmfFunc)
i = 360 // Start of relevant part of spectrum
xyz=[0,0,0]
weight = 0
// Sample at 5 nm intervals
while i <= 830 // End of relevant part of spectrum

cmf=cmfFunc(i)
refl=reflFunc(i)
specification=lightFunc(i)
weight=weight+cmf[1]*specification*5
xyz[0]=xyz[0]+refl*specification*cmf[0]*5
xyz[1]=xyz[1]+refl*specification*cmf[1]*5
xyz[2]=xyz[2]+refl*specification*cmf[2]*5
i = i + 5

end
if weight==0: return xyz
// NOTE: Note that `weight` is constant for a given
// color-matching function set and light source together,
// so that `weight` can be precomputed if they will
// not change.
// NOTE: If `weight` is 1/683, `cmfFunc` outputs XYZ

100https://peteroupc.github.io/colorutil.zip
101The CIE publishes tabulated data for the D65 illuminant and the CIE 1931 and 1964 standard observers at its Web
site. In some cases, the CIE 1931 standard observer can be approximated using the methods given in Wyman, Sloan, and
Shirley, “Simple analytic approximations to the CIE XYZ color matching functions”, Journal of Computer Graphics
Techniques 2(2), 2013, pp. 1-11.

42

http://eilv.cie.co.at/term/1426
https://peteroupc.github.io/colorutil.zip
http://www.cie.co.at/technical-work/technical-resources
http://jcgt.org/published/0002/02/01/

// values, and `reflFunc` always returns 1, then SpectrumToTristim
// will give out XYZ values where Y is a value in cd/m^2.
xyz[0] = xyz[0] / weight
xyz[1] = xyz[1] / weight
xyz[2] = xyz[2] / weight
return xyz

END METHOD

// Models a perfect reflecting diffuser or
// perfect transmitting diffuser
METHOD PerfectWhite(wavelength)

return 1
END METHOD

Notes:

1. Although lightFunc, reflFunc, and cmfFunc are actually continuous functions, in practice
tristimulus values are calculated based on measurements at discrete wavelengths. For ex-
ample, CIE Publication 15 recommends a 5-nm wavelength interval. For spectral data at
10-nm and 20-nm intervals, the practice described in ISO 13655 or in ASTM International
E308 and E2022 can be used to compute tristimulus values (in particular, E308 includes
tables of weighting factors for common combinations of cmfFunc and lightFunc). For pur-
poses of color reproduction, only wavelengths within the range 360-780 nm (0.36-0.78 �m)
are relevant in practice.

2. Metamerism occurs when two materials match the same color under one viewing situation
(such as light source, lightFunc, or viewer, cmfFunc, or both), but not under another. If
this happens, the two materials’ reflectance or transmittance curves (reflFunc) are called
metamers. For applications involving real-world color matching, metamerism is why re-
flectance and transmittance curves (reflFunc) can be less ambiguous than colors in the
form of three tristimulus values (such as XYZ or RGB colors). (See also B. MacEvoy’s
principle 38.)

Examples: In these examples, D65 is the D65 illuminant, D50 is the D50 illuminant, CIE1931 is
the CIE 1931 standard observer, and refl is an arbitrary reflectance curve.

1. SpectrumToTristim(refl, D65, CIE1931) computes the reflectance curve’s XYZ color
(where a Y of 1 is the D65/2 white point).

2. SpectrumToTristim(refl, D50, CIE1931) is the same, except white is the D50/2 white
point.

3. SpectrumToTristim(PerfectWhite, light, cmf) computes the white point for the spec-
ified illuminant light and the color matching functions cmf.

4. SpectrumToTristim(PerfectWhite, D65, CIE1931) computes the D65/2 white point.
5. XYZTosRGB(SpectrumToTristim(refl, D65, CIE1931)) computes the reflectance curve’s

encoded sRGB color.
6. XYZTosRGB(CIE1931(wl)) computes the encoded sRGB color of a light source that emits

light only at the wavelength wl (a monochromatic stimulus), where the wavelength is ex-
pressed in nm.

14.1 Color Temperature
A blackbody is an idealized material that emits light based only on its temperature. As a blackbody’s
temperature goes up, its chromaticity changes from red to orange to pale yellow up to sky blue.

The Planckian method shown next models the spectral power distribution (SPD) of a blackbody with the
specified temperature in kelvins (its color temperature). The BlackbodySPD method below uses that

43

http://www.handprint.com/HP/WCL/color18a.html#ctprin38
http://www.handprint.com/HP/WCL/color18a.html#ctprin38

method (where TEMP is the desired color temperature).102. Note that such familiar light sources as sunlight,
daylight, candlelight, and incandescent lamps can be closely described by the appropriate blackbody SPD.

METHOD Planckian(wl, temp)
num = pow(wl, -5)
// NOTE: 0.014... was calculated based on
// 2017 versions of Planck and Boltzmann constants, and
// is rounded off to a limited number of decimal places.
return num / (exp(0.0143877687750393/(wl*pow(10, -9)*temp)) - 1)

END METHOD

METHOD BlackbodySPD(wl) # NOTE: Relative only
t=TEMP
if t<60: t=60 # For simplicity, in very low temperature
return Planckian(wl, t) * 100.0 /

Planckian(560, wl)
END METHOD

Note: If TEMP is 2856, the BlackbodySPD function above is substantially equivalent to the CIE
illuminant A.

The concept “color temperature” properly applies only to blackbody chromaticities. For chromaticities
close to a blackbody’s, the CIE defines correlated color temperature (CCT) as the temperature of the
blackbody with the closest (u, v) coordinates103 to those of the specified color. The CCT calculation uses
the CIE 1931 standard observer. (According to the CIE, however, CCT is not meaningful if the straight-line
distance between the two (u, v) points is more than 0.05.)

The following method (XYZToCCT), which computes an approximate CCT from an XYZ color, is based on
McCamy’s formula from 1992.

METHOD XYZToCCT(xyz)
xyy = XYZToxyY(xyz)
c = (xyy[0] - 0.332) / (0.1858 - xyy[1])
return ((449*c+3525)*c+6823.3)*c+5520.33

END METHOD

Note: Color temperature, as used here, is not to be confused with the division of colors into warm
(usually red, yellow, and orange) and cool (usually blue and blue green) categories, a subjective
division which admits of much variation. But in general, in the context of light sources, the lower
the light’s CCT, the “warmer” the light appears, and the higher the CCT, the “cooler”. However,
CCT (or any other single number associated with a light source) is generally inadequate by itself
to describe how a light source renders colors.

14.2 Color Mixture
The mixture of two colorants can be complex, and there are several approaches to simulating this kind of
color mixture.

• As S. A. Burns indicates, two or more reflectance curves, each representing a pigment or
colorant, can be mixed by calculating their weighted geometric mean, which takes into account the

102See also J. Walker, “Colour Rendering of Spectra”.
103CIE Technical Note 001:2014 says the chromaticity difference (Δu ′ v ′) should be calculated as the Euclidean

distance between two u ′ v ′ pairs and that a chromaticity difference of 0.0013 is just noticeable “at 50% probability”. (u, v)
coordinates, a former 1960 version of u ′ and v ′ , are found by taking u as u ′ and v as (v ′ * 2.0 / 3).

44

http://eilv.cie.co.at/term/258
http://www.scottburns.us/subtractive-color-mixture/
http://www.fourmilab.ch/documents/specrend/
http://www.cie.co.at/publications/technical-notes

relative proportions of those colorants in the mixture; the result is a new reflectance curve that can be
converted into an RGB color.104

• As B. MacEvoy indicates, two or more spectral curves for transmissive materials can be mixed
simply by multiplying them; the result is a new spectral curve for the mixed material.

• An alternative method of color formulation, based on the Kubelka–Munk theory, uses two curves
for each colorant: an absorption coefficient curve (K curve) and a scattering coefficient curve (S curve).
The ratio of absorption to scattering (K/S) has a simple relationship to reflectance factors in the
Kubelka–Munk theory. The Python sample code implements the Kubelka–Munk equations. One way
to predict a color formula using this theory is described by E. Walowit in 1985105. ISO 18314-2 is also
a relevant document.

For convenience, the WGM method below computes the weighted geometric mean of one or more numbers,
where—

• values is a list of values (for example, single values of several reflectance curves at the same point),
and

• weights is a list of those values’ corresponding weights (for example, mixing proportions of those
curves).

METHOD WGM(values, weights)
if size(values)!=size(weights): return error
if size(values)==0: return values[0]
sum=0
i=0
while i < size(weights)
sum=sum+weights[i]
i=i+1

end
if sum<=0: return error
ret=1
while i < size(values)
ret=ret*pow(values[i],weights[i]/sum)
i=i+1

end
return ret

END METHOD

15 Conclusion
This page discussed many topics on color that are generally relevant in programming.

Feel free to send comments. They may help improve this page. In particular, corrections to any method
given on this page are welcome.

I acknowledge—
104As B. MacEvoy explains (at “Other Factors in Material Mixtures”), things that affect the mixture of two colorants
include their “refractive index, particle size, crystal form, hiding power and tinting strength” (see also his principles 39 to
41), and “the material attributes of the support [for example, the paper or canvas] and the paint application methods” are
also relevant here. These factors, to the extent the reflectance curves don’t take them into account, are not dealt with in this
method.
105Walowit, E. “Spectrophotometric color formulation based on two-constant Kubelka-Munk theory”. Thesis, Rochester Insti-
tute of Technology, 1985. The following reference may also be of interest: Furferi, R., Carfagni, R., “An As-Short-as-Possible
Mathematical Assessment of Spectrophotometric Color Matching”, Journal of Applied Sciences, 2010.

45

http://www.handprint.com/HP/WCL/color3.html#mixprofile
http://www.handprint.com/HP/WCL/color18a.html#compmatch
http://www.handprint.com/HP/WCL/color18a.html#ctprin39
http://www.handprint.com/HP/WCL/color18a.html#ctprin39

• the CodeProject user Mike-MadBadger, who suggested additional clarification on color spaces and
color models,

• “RawConvert” from the pixls.us discussion forum,
• Elle Stone, and
• Thomas Mansencal.

The following topics may be added in the future based on reader interest:

• The CAM02 color appearance model.
• The perception-based color spaces OkLab, OkLch, and HSLuv.
• Color rendering metrics for light sources, including color rendering index (CRI) and the metrics given

in TM-30-15 by the Illuminating Engineering Society.

Descriptions on the following methods would greatly enhance this document, as long as the methods are
not covered by any active patents or pending patent applications and can be implemented by public-domain
source code (usable for any purpose):

• A method for performing color calibration and color matching using a smartphone’s camera and,
possibly, a color calibration card or white balance card.

• A method to convert two RGB colors into an RGB color that closely matches how the mixture of two
pigments of the input colors would appear on paper.106

• A method to match a desired color on paper given spectral reflectance curves of the paper and of the
inks being used in various concentrations.

16 Notes

17 License
This page is licensed under Creative Commons Zero107.

106Mixbox appears to satisfy this, but the repository’s source code is under a noncommercial license; whether the algorithm
itself is so is uncertain. https://github.com/scrtwpns/mixbox
107https://creativecommons.org/publicdomain/zero/1.0/

46

https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/scrtwpns/mixbox

	Introduction
	Contents
	Notation and Definitions
	Overview of Color Vision
	Human Color Vision
	Defective and Animal Color Vision

	Specifying Colors
	RGB Color Model
	RGB Color Spaces
	sRGB
	Representing RGB Colors
	Binary Formats
	HTML Format and Other Text Formats

	Transformations of RGB Colors
	HSV
	HSL
	HWB
	Y \prime C_{B}C_{R} and Other Video Color Formats

	Other Color Models
	CIE XYZ
	Encoding XYZ Through RGB
	Conversion Matrices Between XYZ and RGB
	Chromaticity Coordinates

	CIELAB
	CIELUV
	CMYK and Other Ink-Mixture Color Models

	Color Operations
	Luminance Factor (Grayscale)
	Alpha Blending
	Binarization
	Color Schemes and Harmonies
	Contrast Between Two Colors
	Porter–Duff Formulas
	Raster Operations
	Blend Modes
	Color Matrices
	Lighten/Darken
	Saturate/Desaturate
	Miscellaneous

	Color Differences
	Nearest Colors

	Dominant Colors of an Image
	Color Maps
	Kinds of Color Maps
	Color Collections
	Visually Distinct Colors
	Linear Gradients
	Pseudocode

	Generating a Random Color
	Spectral Color Functions
	Color Temperature
	Color Mixture

	Conclusion
	Notes
	License

