
Bernoulli Factory Algorithms

Peter Occil

Bernoulli Factory Algorithms

This version of the document is dated 2023-07-03.

Peter Occil

Abstract: This page catalogs algorithms to turn coins biased one way into coins biased another way, also
known as Bernoulli factories. It provides step-by-step instructions to help programmers implement these
Bernoulli factory algorithms. This page also contains algorithms to exactly sample probabilities that are
irrational numbers, using only random bits, which is related to the Bernoulli factory problem. This page is
focused on methods that exactly sample a given probability without introducing new errors, assuming “truly
random” numbers are available. The page links to a Python module that implements several Bernoulli
factories.

2020 Mathematics Subject Classification: 68W20, 60-08, 60-04.

1 Introduction
Suppose a coin shows heads with an unknown probability, 𝜆 . The goal is to use that coin (and possibly also
a fair coin) to build a “new” coin that shows heads with a probability that depends on 𝜆 , call it f (𝜆). This
is the Bernoulli factory problem.

This page:

• Catalogs algorithms to solve the Bernoulli factory problem for a wide variety of functions, algorithms
known as Bernoulli factories. For many of these algorithms, step-by-step instructions are provided.
(Many of these algorithms were suggested in (Flajolet et al., 2010)1, but without step-by-step instruc-
tions in many cases.)

• Contains algorithms to exactly sample probabilities that are irrational numbers, which is related to
the Bernoulli factory problem. (An irrational number is a number that can’t be written as a ratio of
two integers.) Again, many of these algorithms were suggested in (Flajolet et al., 2010)2.

• Assumes knowledge of computer programming and mathematics, but little or no familiarity
with calculus.

• Is focused on methods that exactly sample the probability described, without introducing rounding
errors or other errors beyond those already present in the inputs (and assuming that a source of
independent and unbiased random bits is available).

The Python module bernoulli.py3 includes implementations of several Bernoulli factories. For extra notes,
see: Supplemental Notes for Bernoulli Factory Algorithms4.

1Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

2Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

3https://peteroupc.github.io/bernoulli.py
4https://peteroupc.github.io/bernsupp.html

1

mailto:poccil14@gmail.com
https://peteroupc.github.io/bernoulli.py
https://peteroupc.github.io/bernsupp.html
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

1.1 About This Document
This is an open-source document; for an updated version, see the source code5 or its rendering
on GitHub6. You can send comments on this document on the GitHub issues page7. See
“Requests and Open Questions” for a list of things about this document that I seek answers
to.

My audience for this article is computer programmers with mathematics knowledge, but little or
no familiarity with calculus.

I encourage readers to implement any of the algorithms given in this page, and report their implementation
experiences. In particular, I seek comments on the following aspects8:

• Are the algorithms in the articles easy to implement? Is each algorithm written so that someone could
write code for that algorithm after reading the article?

• Does this article have errors that should be corrected?
• Are there ways to make this article more useful to the target audience?

Comments on other aspects of this document are welcome.

2 Contents
• Introduction

– About This Document
• Contents
• About Bernoulli Factories
• Algorithms

– Implementation Notes
– Algorithms for General Functions of 𝜆

∗ Certain Polynomials
∗ Certain Rational Functions
∗ Certain Power Series
∗ General Factory Functions

– Algorithms for General Irrational Constants
∗ Digit Expansions
∗ Continued Fractions
∗ Continued Logarithms
∗ Certain Algebraic Numbers
∗ Certain Converging Series

– Other General Algorithms
∗ Convex Combinations
∗ Bernoulli Race and Generalizations
∗ Flajolet’s Probability Simulation Schemes
∗ Integrals

– Algorithms for Specific Functions of 𝜆
∗ ExpMinus (exp(− z))
∗ LogisticExp (1 − expit(z/2𝑝𝑟𝑒𝑐))
∗ exp(− (𝜆 * z))
∗ exp(− exp(m + 𝜆))
∗ exp(− (m + 𝜆)𝑘)

5https://github.com/peteroupc/peteroupc.github.io/raw/master/bernoulli.md
6https://github.com/peteroupc/peteroupc.github.io/blob/master/bernoulli.md
7https://github.com/peteroupc/peteroupc.github.io/issues
8https://github.com/peteroupc/peteroupc.github.io/issues/18

2

https://github.com/peteroupc/peteroupc.github.io/raw/master/bernoulli.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/bernoulli.md
https://github.com/peteroupc/peteroupc.github.io/blob/master/bernoulli.md
https://github.com/peteroupc/peteroupc.github.io/issues
https://github.com/peteroupc/peteroupc.github.io/issues/18

∗ **exp(𝜆)*(1 − 𝜆)**
∗ (1 − exp(− (m + 𝜆))) / (m + 𝜆)
∗ expit(z) or 1 − 1/(1+exp(z)) or exp(z)/(1+exp(z)) or 1/(1+exp(− z))
∗ expit(z)*2 − 1 or tanh(z/2) or (exp(z) − 1)/(exp(z)+1)
∗ ** 𝜆 *exp(z) / (𝜆 *exp(z) + (1 − 𝜆)) or 𝜆 *exp(z) / (1 + 𝜆 *(exp(z) − 1))**
∗ (1 + exp(z − w)) / (1 + exp(z))
∗ 1/(2𝑚(𝑘+𝜆)) or exp(−(𝑘 + 𝜆) ⋅ ln(2𝑚))
∗ 1/(2(𝑥/𝑦)⋅𝜆) or exp(−𝜆 ⋅ ln(2𝑥/𝑦))
∗ Two-Coin Algorithm (c * 𝜆 * 𝛽 / (𝛽 * (c * 𝜆 + d * 𝜇) − (𝛽 − 1) * (c + d)))
∗ c * 𝜆 / (c * 𝜆 + d) or (c/d) * 𝜆 / (1 + (c/d) * 𝜆))
∗ (d + 𝜆) / c
∗ d / (c + 𝜆)
∗ (d + 𝜇) / (c + 𝜆)
∗ (d + 𝜇) / ((d + 𝜇) + (c + 𝜆))
∗ d𝑘 / (c + 𝜆)𝑘, or (d / (c + 𝜆))𝑘

∗ 1/(1+ 𝜆)
∗ 1/(2 − 𝜆)
∗ 1/(1+(m+ 𝜆)2)
∗ 1 / (1 + (x/y)* 𝜆)
∗ 𝜆𝑥/𝑦

∗ sqrt(𝜆)
∗ arctan(𝜆) / 𝜆
∗ arctan(𝜆) / 𝜋
∗ arctan(𝜆)
∗ cos(𝜆)
∗ sin(𝜆 *sqrt(c)) / (𝜆 *sqrt(c))
∗ sin(𝜆)
∗ ln(1+ 𝜆)
∗ ln(c+ 𝜆)/(c+ 𝜆)
∗ arcsin(𝜆) + sqrt(1 − 𝜆 2) − 1
∗ tanh(z)
∗ Expressions Involving Polylogarithms
∗ min(𝜆 , 1/2) and min(𝜆 , 1 − 𝜆)

– Algorithms for Specific Functions of 𝜆 (Probability-Sensitive)
∗ ** 𝜆 + 𝜇 **
∗ ** 𝜆 − 𝜇 **
∗ ** 𝜖 / 𝜆 **
∗ ** 𝜇 / 𝜆 **
∗ ** 𝜆 * x/y**
∗ (𝜆 * x/y)𝑖

∗ Linear Bernoulli Factories
∗ 𝜆𝜇

∗ (1 − 𝜆)/cos(𝜆)
∗ (1 − 𝜆) * tan(𝜆)
∗ ln((c + d + 𝜆)/c)
∗ arcsin(𝜆) / 2

– Other Factory Functions
– Algorithms for Specific Constants

∗ 1 / 𝜙 (1 divided by the golden ratio)
∗ sqrt(2) − 1
∗ 1/sqrt(2)
∗ tanh(1/2) or (exp(1) − 1) / (exp(1) + 1)

3

∗ arctan(x/y) * y/x
∗ ** 𝜋 / 12**
∗ ** 𝜋 / 4**
∗ ** 𝜋 /4 − 1/2 or (𝜋 − 2)/4**
∗ (𝜋 − 3)/4
∗ ** 𝜋 − 3**
∗ 4/(3* 𝜋)
∗ 1 / 𝜋
∗ (a/b)𝑧

∗ 1/(exp(1) + c − 2)
∗ exp(1) − 2
∗ ** 𝜁 (3) * 3 / 4 and Other Zeta-Related Constants**
∗ erf(x)/erf(1)
∗ Ratio of Lower Gamma Functions (𝛾 (m, x)/ 𝛾 (m, 1)).
∗ Euler–Mascheroni constant 𝛾
∗ exp(− x/y) * z/t
∗ Certain Numbers Based on the Golden Ratio
∗ ln(1+y/z)
∗ ln(𝜋)/ 𝜋

• Requests and Open Questions
• Correctness and Performance Charts
• Acknowledgments
• Notes
• Appendix

– Using the Input Coin Alone for Randomness
– The Entropy Bound
– Bernoulli Factories and Unbiased Estimation
– Correctness Proof for the Continued Logarithm Simulation Algorithm
– Correctness Proof for Continued Fraction Simulation Algorithm 3
– Proof of the General Martingale Algorithm
– Algorithm for sin(𝜆 * 𝜋 /2)
– Probabilities Arising from Certain Permutations
– Derivation of an Algorithm for 𝜋 / 4
– Sketch of Derivation of the Algorithm for 1 / 𝜋
– Preparing Rational Functions

• License

3 About Bernoulli Factories
A Bernoulli factory (Keane and O’Brien 1994)9 is an algorithm that takes an input coin (a method that
returns 1, or heads, with an unknown probability, or 0, or tails, otherwise) and returns 0 or 1 with a
probability that depends on the input coin’s probability of heads.

• The Greek letter lambda (𝜆) represents the unknown probability of heads.
• The Bernoulli factory’s outputs are statistically independent, and so are those of the input coin.
• Many Bernoulli factories also use a fair coin in addition to the input coin. A fair coin shows heads or

tails with equal probability, and represents a source of randomness outside the input coin.
• A factory function is a known function that relates the old probability to the new one. Its domain is

the closed unit interval or a subset of that interval, and maps an input in its domain to an output in
that interval.

9Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),
1994.

4

• The closed unit interval is the set of numbers consisting of 0, 1, and all real numbers in between.

Example: A Bernoulli factory algorithm can take a coin that returns heads with probability 𝜆
and produce a coin that returns heads with probability exp(− 𝜆). In this example, exp(− 𝜆) is
the factory function.

Note: Although Keane and O’Brien introduced the term “Bernoulli factory”, the problem was
first raised much earlier than 1994, such as by Basu (1975, p. 12)10.

Keane and O’Brien (1994)11 showed that a function f that maps the closed unit interval (or a subset of it)
to the closed unit interval admits a Bernoulli factory if and only if—

• f is continuous and constant on its domain, or
• f is continuous and polynomially bounded on its domain.

Polynomially bounded means that both f (𝜆) and 1 − f (𝜆) are not less than min(𝜆 𝑛, (1 − 𝜆)𝑛) for some
integer n. In other words, there are two non-constant, non-negative polynomials: one can be “sandwiched”
between the 𝜆 -axis and f, and another between the 𝜆 -axis and 1 − f.

The following shows some functions that are factory functions and some that are not. In the table below, 𝜖
is a number greater than 0 and less than 1/2.

Function f (𝜆) Domain Can f be a factory function?
0 0 ≤ 𝜆 ≤ 1 Yes; constant.
1 0 ≤ 𝜆 ≤ 1 Yes; constant.
1/2 0< 𝜆 <1 Yes; constant.
1/4 if 𝜆 <1/2, and 3/4 elsewhere 0< 𝜆 <1 No; discontinuous.
2* 𝜆 [0, 1] or [0, 1/2) No; not polynomially bounded

since f (𝜆) approaches 1 as 𝜆
approaches 1/2 (as opposed to 0
or 1).12.

1 − 2* 𝜆 [0, 1] or [0, 1/2) No; not polynomially bounded
since f (𝜆) approaches 0 as 𝜆
approaches 1/2.

2* 𝜆 [0, 1/2 − 𝜖] Yes; continuous and polynomially
bounded on domain (Keane and
O’Brien 1994)13.

min(2 * 𝜆 , 1 − 𝜖) 0 ≤ 𝜆 ≤ 1 Yes; continuous and polynomially
bounded on domain (Huber 2014,
introduction)14.

exp(− 1/ 𝜆) 0< 𝜆 <1 No; not polynomially bounded
since no nonconstant polynomial
can come between the 𝜆 -axis and
𝑓 .

(exp(− 1/ 𝜆))/4. 0< 𝜆 <1 No, for same reason.
(𝜆 + 𝜆 *sin(1/ 𝜆)+exp(− 1/
𝜆))/4.

0< 𝜆 <1 No, for same reason.

(𝜆 + 𝜆 *sin(1/ 𝜆)+exp(− 1/
𝜆))/4.

0< 𝜆 <1 No, for same reason.

𝜆 *min(1/ 𝜆 − floor(1/ 𝜆),1-(1/ 𝜆
− floor(1/ 𝜆)))+exp(− 1/ 𝜆).

0< 𝜆 <1 No, for same reason.

10Basu, D., “Statistical information and likelihood”, Sankhyā A 37 (1975).
11Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),

1994.

5

Function f (𝜆) Domain Can f be a factory function?
(𝜆 *abs(sin(1/ 𝜆))𝛼+exp(− 1/
𝜆))/4, where 𝛼 >0.

0< 𝜆 <1 No, for same reason.

exp(− 1/ 𝜆) + 𝜖 0< 𝜆 <1 Yes; continuous, minimum greater
than 0, maximum less than 1.

exp(− 1/ 𝜆) [𝜖 , 1) Yes; same reason.
𝜆 𝑛 where n ≥ 2 is an integer. 0 ≤ 𝜆 ≤ 1 Yes; continuous and the

polynomial 𝜆𝑛+1 can go below 𝑓 ,
and the polynomial 𝜆𝑛−1 can go
above 𝑓 .

If f ’s domain includes 0, 1, or both (so that the input coin is allowed to return 0 every time, 1 every time,
or either, respectively), then f can be a factory function only if—

1. the function is constant on its domain, or is continuous and polynomially bounded on its domain, and
2. f (0) equals 0 or 1 whenever 0 is in the function’s domain, and
3. f (1) equals 0 or 1 whenever 1 is in the function’s domain,

unless outside randomness (besides the input coin) is available.

4 Algorithms
This section will show algorithms for a number of factory functions, allowing different kinds of probabilities
to be sampled from input coins.

The algorithms as described here do not always lead to the best performance. An implementation may
change these algorithms as long as they produce the same results as the algorithms as described here.

Notes:

1. Most of the algorithms assume that a source of independent and unbiased random bits is
available, in addition to the input coins. But in many cases, they can be implemented using
nothing but those coins as a source of randomness. See the appendix for details.

2. Bernoulli factory algorithms that sample the probability f (𝜆) act as unbiased estimators of
f (𝜆) (their “long run average” equals f (𝜆)). See the appendix for details.

4.1 Implementation Notes
This section shows implementation notes that apply to the algorithms in this article. They should be followed
to avoid introducing error in the algorithms.

In the following algorithms:
12There is an analogue to the Bernoulli factory problem called the quantum Bernoulli factory, with the same goal of simulating

functions of unknown probabilities, but this time with algorithms that employ quantum-mechanical operations (unlike classical
algorithms that employ no such operations). However, quantum-mechanical programming is far from being accessible to most
programmers at the same level as classical programming, and will likely remain so for the foreseeable future. For this reason,
the quantum Bernoulli factory is outside the scope of this document, but it should be noted that more factory functions can be
“constructed” using quantum-mechanical operations than by classical algorithms. For example, a factory function whose domain
is [0, 1] has to meet the requirements proved by Keane and O’Brien except it can touch 0, 1, or both at a finite number of
points in the domain (Dale, H., Jennings, D. and Rudolph, T., 2015, “Provable quantum advantage in randomness processing”,
Nature communications 6(1), pp. 1-4).

13Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),
1994.

14Huber, M., “Nearly optimal Bernoulli factories for linear functions”, arXiv:1308.1562v2 [math.PR], 2014. https:
//arxiv.org/abs/1308.1562v2

6

https://arxiv.org/abs/1308.1562v2
https://arxiv.org/abs/1308.1562v2

• The Greek letter lambda (𝜆) represents the unknown probability of heads of the input coin.
• choose(n, k) = (1*2*3*…*n)/((1*…*k)*(1*…*(n − k))) = n!/(k! * (n − k)!) = (𝑛

𝑘) is a binomial
coefficient, or the number of ways to choose k out of n labeled items. It can be calculated, for example,
by calculating i/(n − i+1) for each integer i satisfying n − k+1 ≤ i ≤ n, then multiplying the
results (Manolopoulos 2002)15. For every m>0, choose(m, 0) = choose(m, m) = 1 and choose(m, 1) =
choose(m, m − 1) = m; also, in this document, choose(n, k) is 0 when k is less than 0 or greater than
n.

• n! = 1*2*3*…*n is also known as n factorial; in this document, (0!) = 1.
• Summation notation, involving the Greek capital sigma (Σ), is a way to write the sum of one or more

terms of similar form. For example, ∑𝑛
𝑘=0 𝑔(𝑘) means 𝑔(0) + 𝑔(1) + ... + 𝑔(𝑛), and ∑𝑘≥0 𝑔(𝑘) means

𝑔(0) + 𝑔(1) +
• The instruction to “generate a uniform random variate between 0 and 1” can be implemented—

– by creating a uniform partially-sampled random number (PSRN)16 with a positive sign,
an integer part of 0, and an empty fractional part (most accurate), or

– by generating a uniform random variate greater than 0 and less than 1 (for example,
RNDRANGEMinMaxExc(0, 1) in “Randomization and Sampling Methods17” (less accurate).

• The instruction to “choose [integers] with probability proportional to [weights]” can be implemented
in one of the following ways:
– If the weights are rational numbers, take the result of WeightedChoice(NormalizeRatios(weights))),

where WeightedChoice and NormalizeRatios are given in “Randomization and Sampling
Methods18”.

– If the weights are uniform PSRNs, use the algorithm given in “Weighted Choice Involving
PSRNs19”.

For example, “Choose 0, 1, or 2 with probability proportional to the weights [A, B, C]” means to choose
0, 1, or 2 at random so that 0 is chosen with probability A/(A+B+C), 1 with probability B/(A+B+C),
and 2 with probability C/(A+B+C).

• Where an algorithm says “if a is less than b”, where a and b are random variates, it means to run the
RandLess algorithm on the two numbers (if they are both PSRNs), or do a less-than operation on a
and b, as appropriate. (RandLess is described in my article on PSRNs20.)

• Where an algorithm says “if a is less than (or equal to) b”, where a and b are random variates, it means
to run the RandLess algorithm on the two numbers (if they are both PSRNs), or do a less-than-or-
equal operation on a and b, as appropriate.

• To sample from a number u means to generate a number that is 1 with probability u and 0 otherwise.
– If the number is a uniform PSRN, call the SampleGeometricBag algorithm with the PSRN

and take the result of that call (which will be 0 or 1) (most accurate). (SampleGeometricBag
is described in my article on PSRNs21.)

– Otherwise, this can be implemented by generating a uniform random variate between 0 and 1 v
(see above) and generating 1 if v is less than u (see above) or 0 otherwise.

• Where a step in the algorithm says “with probability x” to refer to an event that may or may not
happen, then this can be implemented in one of the following ways:
– Generate a uniform random variate between 0 and 1 v (see above). The event occurs if v is less

than x (see above).
– Convert x to a rational number y/z, then call ZeroOrOne(y, z). The event occurs if the call

returns 1. For example, if an instruction says “With probability 3/5, return 1”, then implement it
as “Call ZeroOrOne(3, 5). If the call returns 1, return 1.” ZeroOrOne is described in my article

15Yannis Manolopoulos. 2002. “Binomial coefficient computation: recursion or iteration?”, SIGCSE Bull. 34, 4 (December
2002), 65–67. DOI: https://doi.org/10.1145/820127.820168.

16https://peteroupc.github.io/exporand.html
17https://peteroupc.github.io/randomfunc.html
18https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
19https://peteroupc.github.io/randmisc.html#Weighted_Choice_Involving_PSRNs
20https://peteroupc.github.io/exporand.html
21https://peteroupc.github.io/exporand.html

7

https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/randomfunc.html
https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
https://peteroupc.github.io/randmisc.html#Weighted_Choice_Involving_PSRNs
https://peteroupc.github.io/randmisc.html#Weighted_Choice_Involving_PSRNs
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/exporand.html
https://doi.org/10.1145/820127.820168

on random sampling methods22. If x is not a rational number, then rounding error will result,
however.

• For best results, the algorithms should be implemented using exact rational arithmetic (such as
Fraction in Python or Rational in Ruby). Floating-point arithmetic is discouraged because it can
introduce errors due to fixed-precision calculations, such as rounding and cancellations.

4.2 Algorithms for General Functions of 𝜆
This section describes general-purpose algorithms for sampling probabilities that are polynomials, rational
functions, or functions in general.

4.2.1 Certain Polynomials

Any polynomial can be written in Bernstein form as—

(𝑛
0)𝜆0(1 − 𝜆)𝑛−0𝑎[0] + (𝑛

1)𝜆1(1 − 𝜆)𝑛−1𝑎[1] + ... + (𝑛
𝑛)𝜆𝑛(1 − 𝜆)𝑛−𝑛𝑎[𝑛],

where n is the polynomial’s degree and a[0], a[1], …, a[n] are its n plus one Bernstein coefficients.

But a polynomial admits a Bernoulli factory only if each of its Bernstein coefficients is 0 or greater and less
than 1, and a function can be simulated with a fixed number of coin flips only if it’s a polynomial of that
kind (Goyal and Sigman 201223; Qian et al. 2011)24; see also Wästlund 1999, section 425).

Goyal and Sigman give an algorithm for simulating these polynomials, which is given below.

1. Flip the input coin n times, and let j be the number of times the coin returned 1 this way.26

2. Return a number that is 1 with probability a[j], or 0 otherwise.

For certain polynomials with duplicate Bernstein coefficients, the following is an optimized version of this
algorithm, not given by Goyal and Sigman:

1. Set j to 0 and i to 0. If n is 0, return 0.
2. If i is n or greater, or if the Bernstein coefficients a[k], with k in the interval [j, j+(n − i)], are all

equal, return a number that is 1 with probability a[j], or 0 otherwise.
3. Flip the input coin. If it returns 1, add 1 to j.
4. Add 1 to i and go to step 2.

And here is another optimized algorithm:

1. Set j to 0 and i to 0. If n is 0, return 0. Otherwise, generate a uniform random variate between 0 and
1, call it u.

2. If u is less than a lower bound of the lowest Bernstein coefficient, return 1. Otherwise, if u is less
than (or equal to) an upper bound of the highest Bernstein coefficient, go to the next step. Otherwise,
return 0.

3. If i is n or greater, or if the Bernstein coefficients a[k], with k in the interval [j, j+(n − i)], are all
equal, return a number that is 1 if u is less than a[j], or 0 otherwise.

4. Flip the input coin. If it returns 1, add 1 to j.
5. Add 1 to i and go to step 3.

22https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
23Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 22(2), pp.1-5.
24Weikang Qian, Marc D. Riedel, Ivo Rosenberg, “Uniform approximation and Bernstein polynomials with coefficients

in the unit interval”, European Journal of Combinatorics 32(3), 2011, https://doi.org/10.1016/j.ejc.2010.11.004
http://www.sciencedirect.com/science/article/pii/S0195669810001666

25Wästlund, J., “Functions arising by coin flipping”, 1999.
26Then j is a binomial random variate expressing the number of successes in n trials that each succeed with probability 𝜆 .

8

https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
https://doi.org/10.1016/j.ejc.2010.11.004
http://www.sciencedirect.com/science/article/pii/S0195669810001666
http://www.math.chalmers.se/~wastlund/coinFlip.pdf

Because the Bernstein coefficients a[i] must be 0 or greater, but not greater than 1, some or all of them can
themselves be coins with unknown probability of heads. In that case, the first algorithm can read as follows:

1. Flip the input coin n times, and let j be the number of times the coin returned 1 this way.
2. If a[j] is a coin, flip it and return the result. Otherwise, return a number that is 1 with probability a[j],

or 0 otherwise.

Notes:

1. Each a[i] acts as a control point for a 1-dimensional Bézier curve27, where 𝜆 is the relative
position on that curve, the curve begins at a[0], and the curve ends at a[n]. For example,
given control points 0.2, 0.3, and 0.6, the curve is at 0.2 when 𝜆 = 0, and 0.6 when 𝜆 = 1.
(The curve, however, is not at 0.3 when 𝜆 = 1/2; in general, Bézier curves do not cross their
control points other than the first and the last.)

2. The problem of simulating polynomials in Bernstein form is related to stochastic logic, which
involves simulating probabilities that arise out of Boolean functions (functions that use only
AND, OR, NOT, and exclusive-OR operations) that take a fixed number of bits as input,
where each bit has a separate probability of being 1 rather than 0, and output a single bit
(for further discussion see (Qian et al. 2011)28, Qian and Riedel 200829).

Examples:

1. Take the following parabolic function discussed in Thomas and Blanchet (2012)30: (1 −
4*(𝜆 − 1/2)2)*c, where 0 < c < 1. This is a polynomial of degree 2 that can be rewritten
as − 4*c* 𝜆 2+4*c* 𝜆 , so that this power form has power coefficients (0, 4*c, − 4*c) and a
degree (n) of 2. Rewriting the polynomial from power form to Bernstein form (such as via
the matrix method by Ray and Nataraj (2012)31) leads to Bernstein coefficients (0, 2*c, 0).
Thus, for this polynomial, a[0] is 0, a[1] is 2*c, and a[2] is 0. Thus:
• If 0 < c ≤ 1/2, this function can be simulated as follows: “Flip the input coin twice. If

exactly one of the flips returns 1, return a number that is 1 with probability 2*c and 0
otherwise. Otherwise, return 0.”

• If 1/2 < c < 1, the algorithm requires rewriting the polynomial to Bernstein form, then
elevating the degree of the rewritten polynomial enough times to bring its Bernstein
coefficients in the closed unit interval; the required degree approaches infinity as c
approaches 1.32

2. The conditional construction, mentioned in Flajolet et al. (2010)33, has the form 𝜆𝑎[0]+(1−
𝜆)𝑎[1]. This is a degree-1 polynomial with variable 𝜆 and Bernstein coefficients a[0] and a[1].
It has the following algorithm: “Flip the 𝜆 input coin. If the result is 0, flip the a[0] input
coin and return the result. Otherwise, flip the a[1] input coin and return the result.” Special
cases of the conditional construction include complement, mean, product, and logical OR;
see “Other Factory Functions”.

27https://en.wikipedia.org/wiki/Bézier_curve
28Weikang Qian, Marc D. Riedel, Ivo Rosenberg, “Uniform approximation and Bernstein polynomials with coefficients

in the unit interval”, European Journal of Combinatorics 32(3), 2011, https://doi.org/10.1016/j.ejc.2010.11.004
http://www.sciencedirect.com/science/article/pii/S0195669810001666

29Qian, W. and Riedel, M.D., 2008, June. The synthesis of robust polynomial arithmetic with stochastic logic. In 2008 45th
ACM/IEEE Design Automation Conference (pp. 648-653). IEEE.

30Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],
2012. https://arxiv.org/abs/1106.2508v3

31S. Ray, P.S.V. Nataraj, “A Matrix Method for Efficient Computation of Bernstein Coefficients”, Reliable Com-
puting 17(1), 2012. https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf

32And this shows that the polynomial couldn’t be simulated if c were allowed to be 1, since the required degree would be
infinity; in fact, the polynomial would touch 1 at the point 0.5 in this case, ruling out its simulation by any algorithm (see
“About Bernoulli Factories”, earlier).

33Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

9

https://en.wikipedia.org/wiki/Bézier_curve
https://doi.org/10.1016/j.ejc.2010.11.004
http://www.sciencedirect.com/science/article/pii/S0195669810001666
https://arxiv.org/abs/1106.2508v3
https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

Multiple coins. Niazadeh et al. (2021)34 describes monomials (involving one or more coins) of the form 𝜆
[1] [1] * (1 − 𝜆 [1]) [1] * 𝜆 [2] [2] * (1 − 𝜆 [2]) [2] * … * 𝜆 [n] [] * (1 − 𝜆 [n]) [] , where there are n coins, 𝜆 [i]
is the probability of heads of coin i, and a[i] ≥ 0 and b[i] ≥ 0 are parameters for coin i (specifically, of a+b
flips, the first a flips must return heads and the rest must return tails to succeed).

1. For each i in [1, n]:
1. Flip the 𝜆 [i] input coin a[i] times. If any of the flips returns 0, return 0.
2. Flip the 𝜆 [i] input coin b[i] times. If any of the flips returns 1, return 0.

2. Return 1.

The same paper also describes polynomials that are weighted sums of this kind of monomials, namely
polynomials of the form P = ∑ 𝑗 = 1𝑘 c[j]*M [j](** 𝜆), where there are k monomials, M [j](.) identifies
monomial j, 𝜆 ** identifies the coins’ probabilities of heads, and c[j] ≥ 0 is the weight for monomial j.

Let C be the sum of all c[j]. To simulate the probability P/C, choose one of the monomials with probability
proportional to its weight (see “Weighted Choice With Replacement35”), then run the algorithm above
on that monomial (see also “Convex Combinations”, later).

The following is a special case:

• If there is only one coin, the polynomials P are in Bernstein form if c[j] is 𝛼 [j]*choose(k − 1, j −
1) where 𝛼 [j] is 0 or greater, but not greater than 1, and if a[1] = j − 1 and b[1] = k − j for each
monomial j.

4.2.2 Certain Rational Functions

A rational function is a ratio of polynomials.

According to Mossel and Peres (2005)36, if a function f (𝜆) satisfies 0 < f (𝜆) < 1 whenever 0 < 𝜆 < 1, it can
be simulated by a finite-state machine if and only if the function can be written as a rational function whose
Bernstein coefficients are rational numbers.

The following algorithm is suggested from the Mossel and Peres paper and from (Thomas and Blanchet
2012)37. It assumes the rational function is written as D(𝜆)/E(𝜆), where—

• D(𝜆) = ∑𝑛
𝑖=0 𝜆𝑖(1 − 𝜆)𝑛−𝑖𝑑[𝑖],

• E(𝜆) = ∑𝑛
𝑖=0 𝜆𝑖(1 − 𝜆)𝑛−𝑖𝑒[𝑖],

• every d[i] is less than or equal to the corresponding e[i], and
• each d[i] and each e[i] is an integer or rational number in the interval [0, choose(n, i)], where the upper

bound is the total number of n-bit words with i ones.

Here, d[i] is akin to the number of “passing” n-bit words with i ones, and e[i] is akin to that number plus
the number of “failing” n-bit words with i ones. (Because of the assumptions, D and E are polynomials that
map the closed unit interval to itself.)

The algorithm follows.

1. Flip the input coin n times, and let heads be the number of times the coin returned 1 this way.
34Niazadeh, R., Paes Leme, R., Schneider, J., “Combinatorial Bernoulli Factories: Matchings, Flows, and Poly-

topes”, in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 833-846, June 2021; also
at https://arxiv.org/abs/2011.03865.pdf . https://dl.acm.org/doi/10.1145/3406325.3451072

35https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
36Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,

2005.
37Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],

2012. https://arxiv.org/abs/1106.2508v3

10

https://peteroupc.github.io/randomfunc.html#Weighted_Choice_With_Replacement
https://arxiv.org/abs/2011.03865
https://dl.acm.org/doi/10.1145/3406325.3451072
https://arxiv.org/abs/1106.2508v3

2. Choose 0, 1, or 2 with probability proportional to these weights: [e[heads] − d[heads], d[heads], choose(n,
heads) − e[heads]]. If 0 or 1 is chosen this way, return it. Otherwise, go to step 1.

Notes:

1. In the formulas above—

• d[i] can be replaced with 𝛿 [i] * choose(n,i), where 𝛿 [i] is a rational number in the
interval [0, 1] (and thus expresses the probability that a given word is a “passing” word
among all n-bit words with i ones), and

• e[i] can be replaced with 𝜂 [i] * choose(n,i), where 𝜂 [i] is a rational number in the
interval [0, 1] (and thus expresses the probability that a given word is a “passing” or
“failing” word among all n-bit words with i ones),

and then 𝛿 [i] and 𝜂 [i] can be seen as control points for two different 1-dimensional Bézier
curves38, where the 𝛿 curve is always on or “below” the 𝜂 curve. For each curve, 𝜆 is the
relative position on that curve, the curve begins at 𝛿 [0] or 𝜂 [0], and the curve ends at 𝛿 [n]
or 𝜂 [n]. See also the next section.

2. This algorithm could be modified to avoid additional randomness besides the input coin flips
by packing the coin flips into an n-bit word and looking up whether that word is “passing”,
“failing”, or neither, among all n-bit words with j ones, but this can be impractical (in
general, a lookup table of size 2 𝑛 first has to be built in a setup step; as n grows, the table
size grows exponentially). Moreover, this approach works only if d[i] and e[i] are integers
(or if d[i] is replaced with floor(d[i]) and e[i] with ceil(e[i]) (Nacu and Peres 2005)39, but this
suffers from rounding error when done in this algorithm for simulating rational numbers).
See also (Thomas and Blanchet 2012)40.

3. In the formulas above, e[i] can be replaced with choose(n,i). In that case, the algorithm
will simulate a polynomial equal to D, and the values d[0], …, d[n] are the polynomial’s
coefficients in homogeneous form, also known as scaled Bernstein form (Farouki and Rajan
1988)41.

Example: Take the function f (𝜆) = 1/(𝜆 − 2)2. This is a rational function, in this case a ratio of
two polynomials that are both nonnegative on the closed unit interval. One algorithm to simulate
this function follows.(1) Flip the input coin twice, and let heads be the number of times the coin
returned 1 this way.(2) Depending on heads, choose 0, 1, or 2 with probability proportional to
the following weights: heads=0 → [3, 1, 0], heads=1 → [1, 1, 2], heads=2 → [0, 1, 3]; if 0 or 1
is chosen this way, return it; otherwise, go to step 1.Here is how f was prepared to derive this
algorithm:(1) Take the numerator 1, and the denominator (𝜆 − 2)2. Rewrite the denominator as
1* 𝜆 2 − 4* 𝜆 + 4.(2) Rewrite the numerator and denominator into homogeneous polynomials
(polynomials whose terms have the same degree) of degree 2; see the “homogenizing” section in
“Preparing Rational Functions”. The result has homogeneous coefficients (1, 2, 1) and (4, 4,
1) respectively.(3) Divide both polynomials (actually their homogeneous coefficients) by the same
value so that both polynomials are 1 or less. An easy (but not always best) choice is to divide
them by their maximum homogeneous coefficient, which is 4 in this case. The result is d = (1/4,
1/2, 1/4), e = (1, 1, 1/4).(4) Prepare the weights as given in step 2 of the original algorithm.
The result is [3/4, 1/4, 0], [1/2, 1/2, 1], and [0, 1/4, 3/4], for different counts of heads. Because

38https://en.wikipedia.org/wiki/Bézier_curve
39Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.

1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
40Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],

2012. https://arxiv.org/abs/1106.2508v3
41Farouki, Rida T., and V. T. Rajan. “Algorithms for polynomials in Bernstein form”. Computer Aided Geometric

Design 5, no. 1 (1988): 1-26. https://www.sciencedirect.com/science/article/pii/0167839688900167

11

https://en.wikipedia.org/wiki/Bézier_curve
https://en.wikipedia.org/wiki/Bézier_curve
https://projecteuclid.org/euclid.aoap/1106922322
https://arxiv.org/abs/1106.2508v3
https://www.sciencedirect.com/science/article/pii/0167839688900167

the weights in this case are multiples of 1/4, they can be simplified to integers without affecting
the algorithm: [3, 1, 0], [1, 1, 2], [0, 1, 3], respectively.

“Dice Enterprise” special case. The following algorithm implements a special case of the “Dice Enter-
prise” method of Morina et al. (2022)42. The algorithm returns one of m outcomes (namely X, an integer in
[0, m)) with probability P𝑋(𝜆) / (P0(𝜆) + P1(𝜆) + … + Pm − 1(𝜆)), where 𝜆 is the input coin’s probability
of heads and m is 2 or greater. Specifically, the probability is a rational function, or ratio of polynomials.
Here, all the P𝑘(𝜆) are in the form of polynomials as follows:]/max(R[state], R[state − 1]). 2. If state
< n and b is 1, return either state+1 if u is less than (or equal to) PB, or state otherwise, where PB is
R[state+1]/max(R[state], R[state+1]). 3. Return state.

Then the algorithm is as follows:

1. Create two empty lists: blist and ulist.
2. Set state1 to the position of the first non-zero item in R. Set state2 to the position of the last non-zero

item in R. In both cases, positions start at 0. If all the items in R are zeros, return 0.
3. Flip the input coin and append the result (which is 0 or 1) to the end of blist. Generate a uniform

random variate between 0 and 1 and append it to the end of ulist.
4. (Monotonic coupling from the past (Morina et al., 2022)43, (Propp and Wilson 1996)44.) Set i to the

number of items in blist minus 1, then while i is 0 or greater:
1. Let b be the item at position i (starting at 0) in blist, and let u be the item at that position in

ulist.
2. Get the new state given state1, b, u, and n, and set state1 to the new state.
3. Get the new state given state2, b, u, and n, and set state2 to the new state.
4. Subtract 1 from i.

5. If state1 and state2 are not equal, go to step 2.
6. Let b(j) be the value of a[state1] for the polynomial for j. Choose an integer in [0, m) with probability

proportional to these weights: [b(0), b(1), …, b(m − 1)]. Then return the chosen integer.

Notes:

1. If there are only two outcomes, then this is the special Bernoulli factory case; the algorithm
would then return 1 with probability P1(𝜆) / (P0(𝜆) + P1(𝜆)).

2. If R[j] = choose(n, j), steps 1 through 5 have the same effect as counting the number of ones
from n input coin flips (which would be stored in state1 in this case), but unfortunately,
these steps wouldn’t be more efficient. In this case, PA is equivalent to “1 if state is greater
than floor(n/2), and state/(n+1 − state) otherwise”, and PB is equivalent to “1 if state is
less than floor(n/2), and (n − state)/(state+1) otherwise”.

Example: Let P0(𝜆) = 2* 𝜆 *(1 − 𝜆) and P1(𝜆) = (4* 𝜆 *(1 − 𝜆))2/2. The goal is to produce
1 with probability P1(𝜆) / (P0(𝜆) + P1(𝜆)). Preparing this function (along with noting that
the maximum degree is n = 4) results in the coefficient sums R = (0, 2, 12, 2, 0). Since R begins
and ends with 0, step 2 of the algorithm sets state1 and state2, respectively, to the position of
the first or last nonzero item, namely 1 or 3. (Alternatively, because R begins and ends with 0,
a third polynomial is included, namely the constant P2(𝜆) = 0.001, so that the new coefficient
sums would be R ′ = (0.001, 10.004, 12.006, 2.006, 0.001) [formed by adding 0.001*choose(n, i)
to the sum at i, starting at i = 0]. Now run the algorithm using R ′ , and if it returns 2 [meaning
that the constant polynomial was chosen], try again until the algorithm no longer returns 2.)

42Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise
via perfect sampling of Markov chains”, Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679

43Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise
via perfect sampling of Markov chains”, Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679

44Propp, J.G., Wilson, D.B., “Exact sampling with coupled Markov chains and applications to statistical mechanics”, 1996.

12

https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679

4.2.3 Certain Power Series

Some functions can be written as—

𝑓(𝜆) = 𝑎0(𝑔(𝜆))0 + 𝑎1(𝑔(𝜆))1 + ... + 𝑎𝑖(𝑔(𝜆))𝑖 + ..., (1)

where 𝑎𝑖 are power coefficients and 𝑔(𝜆) is a function in the variable 𝜆. The right-hand side of (1) is called
a power series as long as 𝑔(𝜆) = 𝜆. A function writable as (1) will be called a generalized power series here.
Not all power series sum to a definite value, but all generalized power series that matter in this section do,
and they must be Bernoulli factory functions. (In particular, 𝑔(𝜆) must be a Bernoulli factory function, too.)

Depending on the power coefficients, different algorithms can be built to simulate a generalized power series:

• The power coefficients are arbitrary, but can be split into two parts.
• The power coefficients alternate in sign, and their absolute values form a decreasing sequence.
• The power coefficients are nonnegative and sum to 1 or less.
• The power coefficients are nonnegative and may sum to 1 or greater.

Note: In theory, the series (1) can contain power coefficients that are irrational numbers or sum
to an irrational number, but the algorithms for such series can be inexact in practice. Also, not
all generalized power series that admit a Bernoulli factory are covered by the algorithms in this
section. They include:

• Series with power coefficients that alternate in sign, but do not satisfy the general mar-
tingale algorithm or Algorithm 1 below. This includes nearly all such series that equal
0 at 0 and 1 at 1, or equal 0 at 1 and 1 at 0. (An example is sin(𝜆𝜋/2).)

• Series with negative and positive power coefficients that do not eventually alternate in sign
(ignoring zeros).

Certain Alternating Series:
Suppose the following holds true for a generalized power series 𝑓(𝜆):

• 𝑓 is written as in equation (1).
• Suppose (𝑎𝑖) is the sequence formed from the power coefficients.
• Let (𝑑𝑗) be the sequence formed from (𝑎𝑖) by deleting the zeros from (𝑎𝑖). Then suppose that:

– 𝑑0 is greater than 0, and the elements in (𝑑𝑗) alternate in sign (example: 1/2, − 1/3, 1/4, − 1/5,
…).

– The absolute values of (𝑑𝑗)’s elements are 1 or less and form a nowhere increasing sequence that
is finite or converges to 0.

In addition, the power coefficients should be rational numbers.

Example: Let 𝑓(𝜆) = (1/2)𝜆0 − (1/4)𝜆2 + (1/8)𝜆4 − Then (𝑎𝑖) = (1/2, 0, −1/4, 0, 1/8, ...)
(for example, 𝑎0 = 1/2) and deleting the zeros leads to (𝑑𝑖) = (1/2, −1/4, 1/8, ...) (for example,
𝑑0 = 1/2), which meets the requirements above.

Then the algorithm below, based on an algorithm by Łatuszyński et al. (2009/2011, especially section 3.1)45,
simulates 𝑓(𝜆) given a coin that shows heads (returns 1) with probability 𝑔(𝜆).
General martingale algorithm:

1. Set u to abs(𝑑0) (𝑑0 is the value of the first nonzero power coefficient in the sequence (𝑎𝑖)), set w to 1,
set _ 𝑙 _ to 0, and set n to 1.

2. Generate a uniform random variate between 0 and 1 ret.
3. Do the following process repeatedly, until this algorithm returns a value:

45Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via
reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2

13

https://arxiv.org/abs/0907.4018v2

1. If w is not 0, run a Bernoulli factory algorithm for 𝑔(𝜆) (if 𝑔(𝜆) = 𝜆, this is done by flipping the
input coin), then multiply w by the result of the run.

2. If 𝑎𝑛 is greater than 0: Set u to _ 𝑙 _ + w * 𝑎𝑛, then, if no further nonzero power coefficients
follow 𝑎𝑛, set _ 𝑙 _ to u.

3. If 𝑎𝑛 is less than 0: Set _ 𝑙 _ to u − w * abs(𝑎𝑛), then, if no further nonzero power coefficients
follow 𝑎𝑛, set u to _ 𝑙 _.

4. If ret is less than (or equal to) _ 𝑙 _, return 1. Otherwise, if ret is less than u, add 1 to
n. Otherwise, return 0. (If ret is a uniform partially-sampled random number [PSRN], these
comparisons should be done via the URandLessThanReal algorithm, which is described in
my article on PSRNs46.)

Note: The general martingale algorithm, as it’s called in this article, supports more functions
than in section 3.1 of Łatuszyński et al. (2019/2011), which supports only functions writable as
a power series whose power coefficients alternate in sign and decrease in absolute value, with no
zeros in between nonzero power coefficients. However, the general martingale algorithm uses that
paper’s framework. A proof of its correctness is given in the appendix.

General Power Series:
Suppose the following for a generalized power series 𝑓(𝜆):

• 𝑓 is written as in equation (1).
• There is a rational number 𝑍 defined as follows. For every 𝜆 that satisfies 0 ≤ 𝜆 ≤ 1, it is true that

0 ≤ 𝑓(𝜆) ≤ 𝑍 < 1.
• There is an even integer 𝑚 defined as follows. The series in equation (1) can be split into two parts: the

first part (𝐴) is the sum of the first 𝑚 terms, and the second part (𝐶) is the sum of the remaining terms.
Moreover, both parts admit a Bernoulli factory algorithm (see “About Bernoulli Factories47”).
Specifically:

𝐶(𝜆) = ∑
𝑖≥𝑚

𝑎𝑖(𝑔(𝜆))𝑖, 𝐴(𝜆) = 𝑓(𝜆) − 𝐶(𝜆).

As an example, if 𝐶 is a generalized power series described in the section “Certain Alternating Series”,
above, then 𝐶 admits a Bernoulli factory algorithm, namely the general martingale algorithm.

In addition, the algorithm will be simpler if each power coefficient 𝑎𝑖 is a rational number.

Then rewrite the function as—
𝑓(𝜆) = 𝐴(𝜆) + (𝑔(𝜆))𝑚𝐵(𝜆),

where—

• 𝐴(𝜆) = 𝑓(𝜆) − 𝐶(𝜆) = ∑𝑚−1
𝑖=0 𝑎𝑖(𝑔(𝜆))𝑖 is a polynomial in 𝑔(𝜆) of degree 𝑚 − 1, and

• 𝐵(𝜆) = 𝐶(𝜆)/(𝑔(𝜆))𝑚 = ∑𝑖≥𝑚 𝑎𝑚+𝑖(𝑔(𝜆))𝑖.

Rewrite 𝐴 as a polynomial in Bernstein form, in the variable 𝑔(𝜆). (One way to transform a polynomial
from power form to Bernstein form, given the power coefficients 𝑎0, ..., 𝑎𝑚−1, is the so-called “matrix method”
from Ray and Nataraj (2012)48.) Let 𝑏0, ..., 𝑏𝑚−1 be the polynomial’s Bernstein coefficients. Then if those
coefficients all lie on the closed unit interval, then the following algorithm simulates 𝑓(𝜆).
Algorithm 1: Run a linear Bernoulli factory49, with parameters 𝑥 = 2, 𝑦 = 1, and 𝜖 = 1−𝑍. Whenever
the linear Bernoulli factory “flips the input coin”, it runs the sub-algorithm below.

46https://peteroupc.github.io/exporand.html
47https://peteroupc.github.io/bernoulli.html#About_Bernoulli_Factories
48S. Ray, P.S.V. Nataraj, “A Matrix Method for Efficient Computation of Bernstein Coefficients”, Reliable Com-

puting 17(1), 2012. https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf
49https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories

14

https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/bernoulli.html#About_Bernoulli_Factories
https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
https://interval.louisiana.edu/reliable-computing-journal/volume-17/reliable-computing-17-pp-40-71.pdf

• Sub-algorithm: Generate an unbiased random bit. If that bit is 1, sample the polynomial 𝐴 as
follows (Goyal and Sigman (2012)50):

1. Run a Bernoulli factory algorithm for 𝑔(𝜆), 𝑚 − 1 times. Let 𝑗 be the number of runs that return
1.

2. With probability 𝑏𝑗, return 1. Otherwise, return 0.

If the bit is 0, do the following:

1. Run a Bernoulli factory algorithm for 𝑔(𝜆), 𝑚 times. Return 0 if any of the runs returns 0.
2. Run a Bernoulli factory algorithm for 𝐵(𝜆), and return the result.

Series with Non-Negative Power Coefficients Summing to 1 or Less:
Now, suppose 𝑓(𝜆) can be written as in equation (1), at the beginning of this section, but this time, the
power coefficients 𝑎𝑖 are 0 or greater and their sum is 1 or less.

If 𝑔(𝜆) = 𝜆, this kind of function—

• satisfies 0 ≤ 𝑓(𝜆) ≤ 1 whenever 0 ≤ 𝜆 ≤ 1,
• is either constant or strictly increasing, and
• is convex (its “slope” or “velocity” doesn’t decrease as 𝜆 increases; for a proof, see Lemma A1 in

“Approximations in Bernstein Form51”).

Suppose 𝑓 can be written as 𝑓(𝜆) = 𝑓0(𝑔(𝜆)), where—

𝑓0(𝜆) = ∑
𝑛

𝑎𝑛𝜆𝑛 = ∑
𝑛

𝑤(𝑛) 𝑎𝑛
𝑤(𝑛)𝜆𝑛,

where each sum is taken over all nonnegative values of 𝑛 where 𝑎𝑛 > 0. (For notation details, see “Imple-
mentation Notes”.)

Then the key to simulating 𝑓(𝜆) is to “tuck” the values 𝑎𝑛 under a function 𝑤(𝑛) such that—

• 1 ≥ 𝑤(𝑛) ≥ 𝑎𝑛 ≥ 0 for every allowed n, and
• 𝑤(0) + 𝑤(1) + ... = 1 (required for a valid distribution of integers 0 or greater).

Notes:

1. Assuming 𝑓0(1) does not equal 0, an appropriate 𝑤(𝑛) is trivial to find — 𝑤(𝑛) = 𝑎𝑛/𝑓0(1)
(because 𝑎𝑛 ≤ 𝑓0(1) for every allowed 𝑛). But in general, this can make 𝑤(𝑛) an irrational
number and thus harder to handle with arbitrary precision.

2. If the power coefficients 𝑎𝑛 sum to 1, then 𝑤(𝑛) can equal 𝑎𝑛. In this case, 𝑓0(𝜆) is what’s
called the probability generating function for getting 𝑋 with probability 𝑎𝑋 (or 𝑤(𝑋)), and
the expected value (“long-run average”) of 𝑋 equals the “slope” of 𝑓0(𝜆) at 1. See also
(Dughmi et al. 2021)52.

3. Assuming 𝑓0(1) is an irrational number, 𝑤(𝑛) can equal 𝑎𝑛 + 𝑐𝑛/2𝑛, where 𝑐𝑛 is the 𝑛-th
base-2 digit after the point in the binary expansion of 1 − 𝑓0(1) (or 0 if 𝑛 = 0). Here, a
number’s binary expansion is written as 0.bbbbb... in base 2, where each b is a base-2
digit (either 0 or 1). See my Stack Exchange question53.

Once 𝑎𝑛 and 𝑤(𝑛) are found, the function 𝑓(𝜆) can be simulated using the following algorithm, which takes
advantage of the convex combination method54.

50Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.

51https://peteroupc.github.io/bernapprox.html
52Dughmi, Shaddin, Jason Hartline, Robert D. Kleinberg, and Rad Niazadeh. “Bernoulli Factories and Black-box Reductions

in Mechanism Design.” Journal of the ACM (JACM) 68, no. 2 (2021): 1-30.
53https://math.stackexchange.com/questions/4495216
54https://peteroupc.github.io/bernoulli.html#Convex_Combinations

15

https://peteroupc.github.io/bernapprox.html
https://math.stackexchange.com/questions/4495216
https://peteroupc.github.io/bernoulli.html#Convex_Combinations

Algorithm 2:

1. Choose at random an integer n that equals i with probability 𝑤(𝑖).
2. (The next two steps succeed with probability 𝑎𝑛

𝑤(𝑛) (𝑔(𝜆))𝑛.) Let P be 𝑎𝑛/𝑤(𝑛). With probability P, go
to the next step. Otherwise, return 0.

3. (At this point, n equals i with probability 𝑎𝑖.) Run a Bernoulli factory algorithm for 𝑔(𝜆), n times
or until a run returns 0, whichever happens first. (For example, if 𝑔(𝜆) = 𝜆, flip the input coin each
time.) Return 1 if all the runs, including the last, returned 1 (or if n is 0). Otherwise, return 0.

Step 1 is rather general, and doesn’t fully describe how to generate the value 𝑛 at random. That depends
on the function 𝑤(𝑛). See “Power Series Examples”, later, for examples of generalized power series 𝑓(𝜆)
that can be simulated using Algorithm 2.

Note: Part of Algorithm 2 involves choosing 𝑋 at random with probability 𝑤(𝑋), then doing
𝑋 coin flips. Thus, the algorithm uses, on average, at least the number of unbiased random bits
needed to generate 𝑋 on average (Knuth and Yao 1976)55.

Algorithm 2 covers an algorithm that was given by Luis Mendo (2019)56 for simulating certain functions
writable as power series, but that works only if the power coefficients (𝑎𝑛) sum to 1 or less and only if 𝑎0 is
0.

To get to an algorithm equivalent to Mendo’s, first Algorithm 2 is modified to simulate 𝑓0(𝜆)/CS as follows,
where CS is the sum of all power coefficients 𝑎𝑖, starting with 𝑖 = 1. This shows Mendo’s algorithm, like
Algorithm 2, is actually a special case of the convex combination algorithm57.

• Step 1 of Algorithm 2 becomes: “(1a.) Set dsum to 0 and 𝑛 to 1; (1b.) With probability 𝑎𝑛/(CS
− dsum), go to step 2. Otherwise, add 𝑎𝑛 to dsum; (1c.) Add 1 to i and go to step 1b.” (Choose at
random 𝑛 with probability 𝑤(𝑛) = 𝑎𝑛/CS.)

• Step 2 becomes “Go to step 3”. (The P in Algorithm 2 is not used; it’s effectively 𝑤(𝑛)/ 𝑎𝑛
𝐶𝑆 =

𝑎𝑛
𝐶𝑆 / 𝑎𝑛

𝐶𝑆 = 1.)
• In step 3, 𝑔(𝜆) is either 𝜆 (flip the input coin) or 1 − 𝜆 (flip the input coin and take 1 minus the flip).

Mendo’s algorithm and extensions of it mentioned by him cover several variations of functions writable as
power series as follows:

Type Power Series Algorithm
1 𝑓(𝜆) = 1 − 𝑓0(1 − 𝜆) With probability CS, run the modified algorithm

with 𝑔(𝜆) = 1 − 𝜆 and return 1 minus the result.
Otherwise, return 1.

2 𝑓(𝜆) = 𝑓0(1 − 𝜆) With probability CS, run the modified algorithm
with 𝑔(𝜆) = 1 − 𝜆 and return the result.
Otherwise, return 0.

3 𝑓(𝜆) = 𝑓0(𝜆) With probability CS, run the modified algorithm
with 𝑔(𝜆) = 𝜆 and return the result. Otherwise,
return 0.

4 𝑓(𝜆) = 1 − 𝑓0(𝜆) With probability CS, run the modified algorithm
with 𝑔(𝜆) = 𝜆 and return 1 minus the result.
Otherwise, return 1.

The conditions on 𝑓 given above mean that—
55Knuth, Donald E. and Andrew Chi-Chih Yao. “The complexity of nonuniform random number generation”, in Algorithms

and Complexity: New Directions and Recent Results, 1976.
56Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”

Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.
57https://peteroupc.github.io/bernoulli.html#Convex_Combinations

16

https://peteroupc.github.io/bernoulli.html#Convex_Combinations

• for series of type 1, f (0) = 1 − CS and f (1) = 1 (series of type 1 with CS=1 is the main form in
Mendo’s paper),

• for series of type 2, f (0) = CS and f (1) = 0,
• for series of type 3, f (0) = 0 and f (1) = CS, and
• for series of type 4, f (0) = 1 and f (1) = 1 − CS.

Series with General Non-Negative Power Coefficients:
If 𝑓 is written as equation (1), in the beginning of this section, but—

• each of the power coefficients is positive or zero, and
• the power coefficients sum to greater than 1,

then Nacu and Peres (2005, proposition 16)58 gave an algorithm which takes the following parameters:

• t is a rational number such that B < t ≤ 1 and f (t) < 1.
• 𝜖 is a rational number such that 0 < 𝜖 ≤ (t − B)/2.

B is not a parameter, but is the maximum allowed value for 𝑔(𝜆) (probability of heads), and is greater than
0 and less than 1. The following algorithm is based on that algorithm, but runs a Bernoulli factory for 𝑔(𝜆)
instead of flipping the input coin with probability of heads 𝜆.

1. Create a 𝜈 input coin that does the following: “(1) Set n to 0. (2) With probability 𝜖 /t, go to the
next substep. Otherwise, add 1 to n and repeat this substep. (3) With probability 1 − 𝑎𝑛 ⋅ 𝑡𝑛, return
0. (4) Run a linear Bernoulli factory59 n times, x/y = 1/(t − 𝜖), and 𝜖 = 𝜖 . If the linear Bernoulli
factory would flip the input coin, the coin is ‘flipped’ by running a Bernoulli factory for 𝑔(𝜆). If any
run of the linear Bernoulli factory returns 0, return 0. Otherwise, return 1.”

2. Run a linear Bernoulli factory60 once, using the 𝜈 input coin described earlier, x/y = t/ 𝜖 , and 𝜖
= 𝜖 , and return the result.

Power Series Examples:
Examples 1 to 4 show how Algorithm 1 leads to algorithms for simulating certain factory functions.

Note: In the SymPy computer algebra library, the series(func, x, n=20) method computes
the terms of a function’s power series up to the term with 𝑥19. An example is: series(sin(x),
x, n=20).

Example 1: Take 𝑓(𝜆) = sin(3𝜆)/2, which is writable as a power series.

• 𝑓 is less than or equal to 𝑍 = 1/2 < 1.
• 𝑓 satisfies 𝑚 = 8 since splitting the series at 8 leads to two functions that admit Bernoulli factories.
• Thus, 𝑓 can be written as—

𝑓(𝜆) = 𝐴(𝜆) + 𝜆𝑚 (∑
𝑖≥0

𝑎𝑚+𝑖𝜆𝑖) ,

where 𝑚 = 8, and where 𝑎𝑖 = 3𝑖
𝑖!×2 (−1)(𝑖−1)/2 if 𝑖 is odd and 0 otherwise.

• 𝐴 has power coefficients 𝑎0, ..., 𝑎𝑚−1. Those power coefficients are transformed to the following Bern-
stein coefficients, in order: [0, 3/14, 3/7, 81/140, 3/5, 267/560, 81/280, 51/1120].

• Now, Algorithm 1 can be used to simulate 𝑓 given a coin that shows heads (returns 1) with probability
𝜆, where:
– 𝑔(𝜆) = 𝜆, so the Bernoulli factory algorithm for 𝑔(𝜆) is simply to flip the coin for 𝜆.
– The values 𝑏0, ..., 𝑏𝑚−1, in order, are 𝐴’s Bernstein coefficients.

58Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via
reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2

59https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
60https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories

17

https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
https://peteroupc.github.io/bernoulli.html#Linear_Bernoulli_Factories
https://arxiv.org/abs/0907.4018v2

– The Bernoulli factory algorithm for 𝐵(𝜆) is as follows: Let ℎ𝑖 = 𝑎𝑖. Then run the general
martingale algorithm with 𝑔(𝜆) = 𝜆 and 𝑎𝑖 = ℎ𝑚+𝑖.

Example 2: Take 𝑓(𝜆) = 1/2 + sin(6𝜆)/4, rewritable as another power series. This is as in Example 1,
except:

• 𝑓 is less than or equal to 𝑍 = 3/4 < 1.
• 𝑓 satisfies 𝑚 = 16 since splitting the series at 16 leads to two functions that admit Bernoulli factories.
• 𝑎𝑖 is 1/2 if 𝑖 = 0; 6𝑖

𝑖!×4 (−1)(𝑖−1)/2 if 𝑖 is odd; and 0 otherwise.
• The Bernstein coefficients of 𝐴, in order, are [1/2, 3/5, 7/10, 71/91, 747/910, 4042/5005, 1475/2002,

15486/25025, 167/350, 11978/35035, 16869/70070, 167392/875875, 345223/1751750, 43767/175175,
83939/250250, 367343/875875].

Example 3: Take 𝑓(𝜆) = 1/2 + cos(6𝜆)/4. This is as in Example 1, except:

• 𝑍 = 3/4 and 𝑚 = 16.
• 𝑎𝑖 is 3/4 if 𝑖 = 0; 6𝑖

𝑖!×4 (−1)𝑖/2 if 𝑖 is even and greater than 0; and 0 otherwise.
• The Bernstein coefficients of 𝐴, in order, are [3/4, 3/4, 255/364, 219/364, 267/572, 1293/4004,

4107/20020, 417/2860, 22683/140140, 6927/28028, 263409/700700, 2523/4900, 442797/700700,
38481/53900, 497463/700700].

Example 4: Take 𝑓(𝜆) = 1/2 + sin(𝜋𝜆)/4 = 1/2 + sin(6𝑔(𝜆))/4, where 𝑔(𝜆) = 𝜆𝜋/6. To simulate this
probability:

1. Create a 𝜇 coin that does the following: “Flip the input coin. If it returns 0, return 0. Otherwise:
With probability 1/3, return 0. Otherwise, run the algorithm for ** 𝜋 /4** (in ‘Bernoulli Factory
Algorithms’) and return the result.” (Simulates 𝜆 × 𝜋 /6.)

2. Run the algorithm for 1/2 + sin(6𝜆)/4 in Example 2, using the 𝜇 coin.

Example 5: Take 𝑓(𝜆) = 1/2 + cos(𝜋𝜆)/4 = 1/2 + cos(6𝑔(𝜆))/4, where 𝑔(𝜆) = 𝜆𝜋/6. This is as in Example
4, except step 2 runs the algorithm for 1/2 + cos(6𝜆)/4 in Example 3.

Examples 6: The following functions can be written as power series that satisfy the general martingale
algorithm. In the table, 𝐵(𝑖) is the 𝑖 𝑡ℎ Bernoulli number (see the note after the table), and (𝑛

𝑚) = choose(𝑛,
𝑚) is a binomial coefficient.

Function 𝑓(𝜆) Power Coefficients Value of 𝑑0

𝜆/(exp(𝜆) − 1) 𝑎𝑖 = −1/2 if 𝑖 = 1, or 𝐵(𝑖)/(𝑖!)
otherwise.

1.

Hyperbolic tangent: tanh(𝜆) 𝑎𝑖 = 𝐵(𝑖+1)2𝑖+1(2𝑖+1−1)
(𝑖+1)! if 𝑖 is odd61,

or 0 otherwise.
1.

cos(
√

𝜆) 𝑎𝑖 = (−1)𝑖

(2𝑖)! . 1.
∑𝑖≥0 𝑎𝑖𝑥𝑖 (source62) 𝑎𝑖 = (−1)𝑖4𝑖

(2𝑖+1)2(2𝑖
𝑖) . 1.

To simulate a function in the table, run the general martingale algorithm with 𝑔(𝜆) = 𝜆 and with the
given power coefficients and value of 𝑑0 (𝑑0 is the first nonzero power coefficient).

Note: Bernoulli numbers can be computed with the following algorithm, namely Get the m 𝑡ℎ

Bernoulli number:
61“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer

and the least significant bit of abs(x) is 1.
62https://math.stackexchange.com/questions/855517

18

https://math.stackexchange.com/questions/855517

1. If m is 0, 1, 2, 3, or 4, return 1, 1/2, 1/6, 0, or − 1/30, respectively. Otherwise, if m is
odd63, return 0.

2. Set i to 2 and v to 1 − (m+1)/2.
3. While i is less than m:

1. Get the i 𝑡ℎ Bernoulli number, call it b. Add b*choose(m+1, i) to v.
2. Add 2 to i.

4. Return − v/(m+1).

Examples 7 to 9 use Algorithm 2 to simulate generalized power series where the power coefficients 𝑎0 are
nonnegative.

Example 7: The hyperbolic cosine minus 1, denoted as cosh(𝜆) − 1, can be written as follows:

𝑓(𝜆) = cosh(𝜆) − 1 = ∑
𝑛

𝑎𝑛𝜆𝑛 = ∑
𝑛

𝑤(𝑛)𝑎𝑛𝜆𝑛

𝑤(𝑛) ,

where:

• Each sum given above is taken over all values of n that can occur after step 1 is complete (in this case,
all values of n that are even and greater than 0).

• 𝑎𝑛 is 1/(𝑛!).64

• The power coefficients 𝑎𝑛 are tucked under a function 𝑤(𝑛), which in this case is 1
2𝑛−2 if n>0 and n is

even65, or 0 otherwise.

For this particular function:

• Step 1 of Algorithm 2 can read: “(1a.) Generate unbiased random bits (each bit is 0 or 1 with equal
probability) until a zero is generated this way, then set n to the number of ones generated this way;
(1b.) Set n to 2*n + 2.”

• In step 2, P is 𝑎𝑛/𝑤(𝑛) = 1
𝑛! / 1

2𝑛−2 = 2𝑛/2
𝑛! for each allowed 𝑛.

• In step 3, 𝑔(𝜆) is simply 𝜆.
Examples 8: cosh(𝜆) − 1 and additional target functions are shown in the following table. (In the table
below, 𝑤(𝑛) = 1/(2𝑧−1(𝑛)+1) where 𝑧−1(𝑛) is the inverse of the “Step 1b” column, and the 𝑔(𝜆) in step 3 is
simply 𝜆.)

Target function f (𝜆)
Step 1b in Example 7 reads
“Set n to …” 𝑎𝑛 𝑤(𝑛) Value of P

cosh(𝜆) − 1. 2*n + 2. 1/(n!). 1/(2
(𝑛−2)/2+1).

2 𝑛/2 /(n!).

exp(𝜆 /4)/2. n. 1/(n!*2*4𝑛) 1/(2𝑛+1). 1/(2 𝑛

*(n!)).
exp(𝜆)/4. n. 1/(n!*4). 1/(2𝑛+1). 2 𝑛−1 /(n!).
exp(𝜆)/6. n. 1/(n!*6). 1/(2𝑛+1). 2 𝑛

/(3*(n!)).
exp(𝜆 /2)/2. n. 1/(n!*2*2 𝑛

)
1/(2𝑛+1). 1/(n!).

(exp(𝜆) − 1)/2. n + 1. 1/((n+1)!*4). 1/(2 𝑛). 2 𝑛−1 /(n!).
sinh(𝜆)/2 2*n + 1. 1/(n!*2). 1/(2

(−1)/2+1).
2 (−1)/2

/(n!).
63“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer

and the least significant bit of abs(x) is 1.
64n! = 1*2*3*…*n is also known as n factorial; in this document, (0!) = 1.
65“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and

the least significant bit of abs(x) is 0.

19

Target function f (𝜆)
Step 1b in Example 7 reads
“Set n to …” 𝑎𝑛 𝑤(𝑛) Value of P

cosh(𝜆)/2 2*n. 1/(n!*2). 1/(2 𝑛/2+1

).
2 𝑛/2 /(n!).

Note: sinh(𝜆) is the hyperbolic sine function.

Examples 9: The table below shows generalized power series shifted downward and shows the algorithm
changes needed to simulate the modified function. In the table, D is a rational number such that 0 ≤ D ≤
𝜙 (0), where 𝜙 (.) is the original function.

Original function (𝜙 (𝜆)) Target function f (𝜆)

Step 1b in
Example 7
reads “Set n
to …” Value of P

exp(𝜆)/4. 𝜙 (𝜆) − D. n. (1/4 − D)*2
or (𝜙 (0) −
D)*2 if n =
0;2 𝑛−1 /(n!)
otherwise.

exp(𝜆)/6. 𝜙 (𝜆) − D. n. (1/6 − D)*2
if n = 0;2 𝑛

/(3*(n!))
otherwise.

exp(𝜆 /2)/2. 𝜙 (𝜆) − D. n. (1/2 − D)*2
if n = 0;1/(n!)
otherwise.

cosh(𝜆)/4. 𝜙 (𝜆) − D. 2*n. (1/4 − D)*2
if n = 0;2 𝑛/2

/(2*(n!))
otherwise.

Example 10: Let 𝑓 = exp(𝜆)/3. Then this function is a generalized power series, with nonnegative power
coefficients, which can be tucked under probabilities of the form 𝑤(𝑛) = (2

3 (1 − 2
3)𝑛).

• Step 1 of Algorithm 2 can read: “(1a.) Set n to 0. (1b.) With probability 2/3, go to substep 1c.
Otherwise, add 1 to n and repeat this substep. (1c.) Set n to n.”

• In step 2, P is 𝑎𝑛/𝑤(𝑛) = 1
3⋅𝑛! / (2

3 (1 − 2
3)𝑛) = (3/2)𝑛+1

𝑛! for each allowed 𝑛.
• In step 3, 𝑔(𝜆) is simply 𝜆.

Example 11: Let 𝑓(𝜆) = exp(𝜆) ⋅ (1 − 𝜆). Run Mendo’s algorithm for series of type 1, with 𝑎𝑖 = 𝑖−1
𝑖! and

𝐶𝑆 = 1.

4.2.4 General Factory Functions

A coin with unknown probability of heads of 𝜆 can be turned into a coin with probability of heads of f (𝜆),
where f is any factory function, via an algorithm that builds randomized bounds on f (𝜆) based on the
outcomes of the coin flips. These randomized bounds come from two sequences of polynomials:

• One sequence of polynomials converges from above to f, the other from below.
• For each sequence, the polynomials must have increasing degree.
• The polynomials are written in Bernstein form (see “Certain Polynomials”).

20

• For each n, the degree-n polynomials’ Bernstein coefficients must lie at or “inside” those of the previous
upper polynomial and the previous lower one (once the polynomials are elevated to degree n).

The following algorithm can be used to simulate factory functions via polynomials. In the algorithm:

• fbelow(n, k) is a lower bound of the k 𝑡ℎ Bernstein coefficient for a degree-n polynomial that comes
close to f from below, where 0 ≤ k ≤ n. For example, this can be f (k/n) minus a constant that depends
on n. (See note 1 below.)

• fabove(n, k) is an upper bound of the k 𝑡ℎ Bernstein coefficient for a degree-n polynomial that comes
close to f from above. For example, this can be f (k/n) plus a constant that depends on n. (See note
1.)

The algorithm implements the reverse-time martingale framework (Algorithm 4) in Łatuszyński et
al. (2009/2011)66 and the degree-doubling suggestion in Algorithm I of Flegal and Herbei (2012)67, although
an error in Algorithm I is noted below. The first algorithm follows.

1. Generate a uniform random variate between 0 and 1, call it ret.
2. Set _ 𝑙 _ and LT to 0. Set u and ut to 1. Set lastdegree to 0, and set ones to 0.
3. Set degree so that the first pair of polynomials has degree equal to degree and has Bernstein coefficients

all lying in the closed unit interval. For example, this can be done as follows: Let fbound(n) be the
minimum value for fbelow(n, k) and the maximum value for fabove(n,k) with k in the interval [0, n];
then set degree to 1; then while fbound(degree) returns an upper or lower bound that is less than 0 or
greater than 1, multiply degree by 2; then go to the next step.

4. Set startdegree to degree.
5. (The remaining steps are now done repeatedly until the algorithm finishes by returning a value.) Flip

the input coin t times, where t is degree − lastdegree. For each time the coin returns 1 this way, add 1
to ones.

6. Calculate _ 𝑙 _ and u as follows:
1. Define FB(a, b) as follows: Let c be choose(a, b). (Optionally, multiply c by 2𝑎; see note 3.)

Calculate fbelow(a, b) as lower and upper bounds LB and UB that are accurate enough that
floor(LB*c) = floor(UB*c), then return floor(LB*c)/c.

2. Define FA(a, b) as follows: Let c be choose(a, b). (Optionally, multiply c by 2𝑎; see note 3.)
Calculate fabove(a, b) as lower and upper bounds LB and UB that are accurate enough that
ceil(LB*c) = ceil(UB*c), then return ceil(LB*c)/c.

3. Set _ 𝑙 _ to FB(degree, ones) and set u to FA(degree, ones).
7. (This step and the next find the means of the previous _ 𝑙 _ and of u given the current coin flips.) If

degree equals startdegree, set LS to 0 and us to 1. (Algorithm I of Flegal and Herbei 2012 doesn’t take
this into account.)

8. If degree is greater than startdegree:
1. Let nh be choose(degree, ones), and let k be min(lastdegree, ones).
2. Set LS to ∑𝑘

𝑗=0 FB(lastdegree,j)*choose(degree − lastdegree, ones − j)*choose(lastdegree,j)/nh.
3. Set us to ∑𝑘

𝑗=0 FA(lastdegree,j)*choose(degree − lastdegree, ones − j)*choose(lastdegree,j)/nh.
9. Let m be (ut − LT)/(us − LS). Set LT to LT+(_ 𝑙 _ − LS)*m, and set ut to ut − (us − u)*m.
10. If ret is less than (or equal to) LT, return 1. If ret is less than ut, go to the next step. If neither is the case,

return 0. (If ret is a uniform PSRN, these comparisons should be done via the URandLessThanReal
algorithm, which is described in my article on PSRNs68.)

11. (Find the next pair of polynomials and restart the loop.) Set lastdegree to degree, then increase degree
so that the next pair of polynomials has degree equal to a higher value of degree and gets closer to the
target function (for example, multiply degree by 2). Then, go to step 5.

66Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via
reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2

67Flegal, J.M., Herbei, R., “Exact sampling from intractible probability distributions via a Bernoulli factory”, Electronic
Journal of Statistics 6, 10-37, 2012.

68https://peteroupc.github.io/exporand.html

21

https://peteroupc.github.io/exporand.html
https://arxiv.org/abs/0907.4018v2

Another algorithm, given in Thomas and Blanchet (2012)69, was based on the one from Nacu and Peres
(2005)70. That algorithm is not given here, however.

Notes:

1. The efficiency of this algorithm depends on many things, including how “smooth” f is
(Holtz et al. 2011)71 and how easy it is to calculate the appropriate values for fbelow and
fabove. The best way to implement fbelow and fabove for a given function f will require a
deep mathematical analysis of that function. For more information, see my Supplemental
Notes on Bernoulli Factories72.

2. In some cases, a single pair of polynomial sequences may not converge quickly to the desired
function f, especially when f is not “smooth” enough. An intriguing suggestion from Thomas
and Blanchet (2012)73 is to use multiple pairs of polynomial sequences that converge to f,
where each pair is optimized for particular ranges of 𝜆 : first flip the input coin several times
to get a rough estimate of 𝜆 , then choose the pair that’s optimized for the estimated 𝜆 ,
and run either algorithm in this section on that pair.

3. Normally, the algorithm works only if 0 < 𝜆 < 1. If 𝜆 can be 0 or 1 (meaning the input
coin is allowed to return 1 every time or 0 every time), then based on a suggestion in Holtz
et al. (2011)74, the c in FA and FB can be multiplied by 2𝑎 (as shown in step 6) to ensure
correctness for every value of 𝜆 .

4.3 Algorithms for General Irrational Constants
This section shows general-purpose algorithms to generate heads with a probability equal to an irrational
number (a number that isn’t a ratio of two integers), when that number is known by its digit or series
expansion, continued fraction, or continued logarithm.

But on the other hand, probabilities that are rational constants are trivial to simulate. If fair coins are
available, the ZeroOrOne method, which is described in my article on random sampling methods75,
should be used. If coins with unknown probability of heads are available, then a randomness extraction76

method should be used to turn them into fair coins.

4.3.1 Digit Expansions

Probabilities can be expressed as a digit expansion (of the form 0.dddddd...). The following algorithm
returns 1 with probability p and 0 otherwise, where 0 ≤ p < 1. (The number 0 is also an infinite digit
expansion of zeros, and the number 1 is also an infinite digit expansion of base-minus-ones.) Irrational
numbers always have infinite digit expansions, which must be calculated “on-the-fly”.

In the algorithm (see also (Brassard et al., 2019)77, (Devroye 1986, p. 769)78), BASE is the digit base, such
as 2 for binary or 10 for decimal.

69Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],
2012. https://arxiv.org/abs/1106.2508v3

70Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322

71Brassard, G., Devroye, L., Gravel, C., “Remote Sampling with Applications to General Entanglement Simulation”, Entropy
2019(21)(92), https://doi.org/10.3390/e21010092 .

72https://peteroupc.github.io/bernsupp.html
73Thomas, A.C., Blanchet, J., “A Practical Implementation of the Bernoulli Factory”, arXiv:1106.2508v3 [stat.AP],

2012. https://arxiv.org/abs/1106.2508v3
74Brassard, G., Devroye, L., Gravel, C., “Remote Sampling with Applications to General Entanglement Simulation”, Entropy

2019(21)(92), https://doi.org/10.3390/e21010092 .
75https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
76https://peteroupc.github.io/randextract.html
77Brassard, G., Devroye, L., Gravel, C., “Remote Sampling with Applications to General Entanglement Simulation”, Entropy

2019(21)(92), https://doi.org/10.3390/e21010092 .
78Devroye, L., Non-Uniform Random Variate Generation, 1986.

22

https://peteroupc.github.io/bernsupp.html
https://peteroupc.github.io/bernsupp.html
https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
https://peteroupc.github.io/randextract.html
https://arxiv.org/abs/1106.2508v3
https://projecteuclid.org/euclid.aoap/1106922322
https://doi.org/10.3390/e21010092
https://arxiv.org/abs/1106.2508v3
https://doi.org/10.3390/e21010092
https://doi.org/10.3390/e21010092
http://luc.devroye.org/rnbookindex.html

1. Set u to 0 and k to 1.
2. Set u to (u * BASE) + v, where v is a uniform random integer in the interval [0, BASE) (if BASE is

2, then v is simply an unbiased random bit). Calculate pa, which is an approximation to p such that
abs(p − pa) ≤ BASE −‵𝑘‵ . Set pk to pa’s digit expansion up to the k digits after the point. Example:
If p is 𝜋 /4, BASE is 10, and k is 5, then pk = 78539.

3. If pk + 1 <= u, return 0.79 If pk - 2 >= u, return 1. If neither is the case, add 1 to k and go to step
2.

4.3.2 Continued Fractions

A simple continued fraction is a way to write a real number between 0 and 1. A simple continued fraction
has the form—

0 + 1/(𝑎[1] + 1/(𝑎[2] + 1/(𝑎[3] + ...))),
where the a[i] are the partial denominators, none of which may have an absolute value less than 1.

Inspired by (Flajolet et al., 2010, “Finite graphs (Markov chains) and rational functions”)80, I developed the
following algorithm.

Algorithm 1. The following algorithm simulates a probability expressed as a simple continued fraction.
This algorithm works only if each a[i]’s absolute value is 1 or greater and a[1] is greater than 0, but otherwise,
each a[i] may be negative, be a non-integer, or both. The algorithm begins with pos equal to 1. Then the
following steps are taken.

1. Set k to a[pos].
2. If the partial denominator at pos is the last, return a number that is 1 with probability 1/k and 0

otherwise.
3. If a[pos] is less than 0, set kp to k − 1 and s to 0. Otherwise, set kp to k and s to 1. (This step accounts

for negative partial denominators.)
4. Do the following process repeatedly until this run of the algorithm returns a value:

1. With probability kp/(1+kp), return a number that is 1 with probability 1/kp and 0 otherwise.
2. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate

run returns s, return 0.

Algorithm 2.

A generalized continued fraction has the form 0 + b[1] / (a[1] + b[2] / (a[2] + b[3] / (a[3] + …))). The a[i]
are the same as before, but the b[i] are the partial numerators. The following are two algorithms to simulate
a probability in the form of a generalized continued fraction.

The following algorithm works only if each ratio b[i]/a[i] has an absolute value of 1 or less, but otherwise,
each b[i] and each a[i] may be negative, be a non-integer, or both. This algorithm employs an equivalence
transform from generalized to simple continued fractions. The algorithm begins with pos and r both equal
to 1. Then the following steps are taken.

1. Set r to 1 / (r * b[pos]), then set k to a[pos] * r. (k is the partial denominator for the equivalent simple
continued fraction.)

2. If the partial numerator/denominator pair at pos is the last, return a number that is 1 with probability
1/abs(k) and 0 otherwise.

3. Set kp to abs(k) and s to 1.
4. Set r2 to 1 / (r * b[pos + 1]). If a[pos + 1] * r2 is less than 0, set kp to kp − 1 and s to 0. (This step

accounts for negative partial numerators and denominators.)
79Note that u * BASE −‵𝑘‵ is not just within BASE −‵𝑘‵ of its “true” result, but also not more than that result. Hence pk + 1

<= u rather than pk + 2 <= u.
80Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:

//arxiv.org/abs/0906.5560

23

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

5. Do the following process repeatedly until this run of the algorithm returns a value:
1. With probability kp/(1+kp), return a number that is 1 with probability 1/kp and 0 otherwise.
2. Do a separate run of the currently running algorithm, but with pos = pos + 1 and r = r. If the

separate run returns s, return 0.

Algorithm 3. This algorithm works only if each ratio b[i]/a[i] is 1 or less and if each b[i] and each a[i] is
greater than 0, but otherwise, each b[i] and each a[i] may be a non-integer. The algorithm begins with pos
equal to 1. Then the following steps are taken.

1. If the partial numerator/denominator pair at pos is the last, return a number that is 1 with probability
b[pos]/a[pos] and 0 otherwise.

2. Do the following process repeatedly until this run of the algorithm returns a value:
1. With probability a[pos]/(1 + a[pos]), return a number that is 1 with probability b[pos]/a[pos] and

0 otherwise.
2. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate

run returns 1, return 0.

See the appendix for a correctness proof of Algorithm 3.

Notes:

• If any of these algorithms encounters a probability outside the closed unit interval, the entire
algorithm will fail for that continued fraction.

• These algorithms will work for continued fractions of the form “1 − …” (rather than “0 +
…”) if—

– before running the algorithm, the first partial numerator and denominator have their
sign removed, and

– after running the algorithm, 1 minus the result (rather than just the result) is taken.

• These algorithms are designed to allow the partial numerators and denominators to be
calculated “on the fly”.

• The following is an alternative way to write Algorithm 1, which better shows the inspiration
because it shows how the so-called “even-parity construction”81 (or the two-coin algorithm)
as well as the “1 − x” construction can be used to develop rational number simulators
that are as big as their continued fraction expansions, as suggested in the cited part of the
Flajolet paper. However, it only works if the size of the continued fraction expansion (here,
size) is known in advance.

1. Set i to size.
2. Create an input coin that does the following: “Return a number that is 1 with proba-

bility 1/a[size] or 0 otherwise”.
3. While i is 1 or greater:

1. Set k to a[i].
2. Create an input coin that takes the previous input coin and k and does the following:

“(a) With probability k/(1+k), return a number that is 1 with probability 1/k and
0 otherwise; (b) Flip the previous input coin. If the result is 1, return 0. Otherwise,
go to step (a)”. (The probability k/(1+k) is related to 𝜆 /(1+ 𝜆) = 1 − 1/(1+ 𝜆),
which involves the even-parity construction—or the two-coin algorithm—for 1/(1+
𝜆) as well as complementation for “1 − x”.)

3. Subtract 1 from i.
81The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until

it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.

24

4. Flip the last input coin created by this algorithm, and return the result.

4.3.3 Continued Logarithms

The continued logarithm (Gosper 1978)82, (Borwein et al., 2016)83 of a number greater than 0 and less than
1 has the following continued fraction form: 0 + (1 / 2 [1]) / (1 + (1 / 2 [2]) / (1 + …)), where c[i] are the
parameters of the continued logarithm and all 0 or greater. I have come up with the following algorithm
that simulates a probability expressed as a continued logarithm expansion.

The algorithm begins with pos equal to 1. Then the following steps are taken.

1. If the parameter at pos is the last, return a number that is 1 with probability 1/(2 []) and 0 otherwise.
2. Do the following process repeatedly until this run of the algorithm returns a value:

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return
a number that is 1 with probability 1/(2 []) and 0 otherwise.

2. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate
run returns 1, return 0.

For a correctness proof, see the appendix.

4.3.4 Certain Algebraic Numbers

A method to sample a probability equal to a polynomial’s root appears in a French-language article by
Penaud and Roques (2002)84. The following is an implementation of that method, using the discussion in
the paper’s section 1 and Algorithm 2, and incorporates a correction to Algorithm 2. The algorithm takes
a polynomial as follows:

• It has the form P(x) = a[0]*x0 + a[1]*x1 + … + a[n]*x𝑛, where a[i], the power coefficients, are all
rational numbers, and 0 ≤ x ≤ 1.

• It equals 0 (has a root) at exactly one point, and that point is greater than 0 and less than 1.

And the algorithm returns 1 with probability equal to the root, and 0 otherwise. The root R is known as an
algebraic number because it satisfies the polynomial equation P(R) = 0. The algorithm follows.

1. Set r to 0 and d to 2.
2. Do the following process repeatedly, until this algorithm returns a value:

1. Generate an unbiased random bit, call it z.
2. Set t to (r*2+1)/d.
3. If P(0) > 0:

1. If z is 1 and P(t) is less than 0, return 0.
2. If z is 0 and P(t) is greater than 0, return 1.

4. If P(0) < 0:
1. If z is 1 and P(t) is greater than 0, return 0.
2. If z is 0 and P(t) is less than 0, return 1.

5. Set r to r*2+z, then multiply d by 2.

Example (Penaud and Roques 2002)85: Let P(x) = 1 − x − x2. When 0 ≤ x ≤ 1, this is a
polynomial whose only root 1 is 2/(1+sqrt(5)), that is, 1 divided by the golden ratio or 1/ 𝜙 or
about 0.618, and P(0) > 0. Then given P, the algorithm above samples the probability 1/ 𝜙
exactly.

82Bill Gosper, “Continued Fraction Arithmetic”, 1978.
83Borwein, J. et al. “Continued Logarithms and Associated Continued Fractions.” Experimental Mathematics 26 (2017): 412

- 429.
84Penaud, J.G., Roques, O., “Tirage à pile ou face de mots de Fibonacci”, Discrete Mathematics 256, 2002.
85Penaud, J.G., Roques, O., “Tirage à pile ou face de mots de Fibonacci”, Discrete Mathematics 256, 2002.

25

4.3.5 Certain Converging Series

A general-purpose algorithm was given by Mendo (2020/2021)86 that can simulate any probability, as long
as—

• the probability is greater than 0 and less than 1,
• the probability can be written as a (possibly infinite) sum of rational numbers greater than 0, that is,

as p = a[0] + a[1] + …, and
• a sequence of rational numbers err[0], err[1], … is available that is nowhere increasing and approaches

0 (converges to 0), where err[n] is not less than p − (a[0] + … + a[n]).

The algorithm follows.

1. Set 𝜖 to 1, then set n, lamunq, lam, s, and k to 0 each.
2. Add 1 to k, then add s/(2𝑘) to lam.
3. If lamunq+ 𝜖 ≤ lam + 1/(2𝑘), go to step 8.
4. If lamunq > lam + 1/(2𝑘), go to step 8.
5. If lamunq > lam + 1/(2 +1) and lamunq+ 𝜖 < 3/(2 +1), go to step 8.
6. Add a[n] to lamunq and set 𝜖 to err[n].
7. Add 1 to n, then go to step 3.
8. Let bound be lam+1/(2𝑘). If lamunq+ 𝜖 ≤ bound, set s to 0. Otherwise, if lamunq > bound, set s to 2.

Otherwise, set s to 1.
9. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), go to step 2.

Otherwise, return a number that is 0 if s is 0, 1 if s is 2, or an unbiased random bit (either 0 or 1 with
equal probability) otherwise.

If a, given above, sums to the base-2 logarithm of the probability rather than that probability, the following
algorithm I developed simulates that probability. For simplicity’s sake, even though logarithms for such
probabilities are negative, all the a[i] must be 0 or greater (and thus are the negated values of the already
negative logarithm approximations) and must form a nowhere decreasing sequence, and all the err[i] must
be 0 or greater.

1. Set intinf to floor(max(0, abs(a[0]))). (This is the absolute integer part of the first term in the series,
or 0, whichever is greater.)

2. If intinf is greater than 0, generate unbiased random bits until a zero bit or intinf bits were generated
this way. If a zero was generated this way, return 0.

3. Generate an exponential random variate E with rate ln(2). This can be done, for example, by using
the exponential distribution with rate ln(x) algorithm given in “Partially-Sampled Random
Numbers87”. (This step takes advantage of the exponential distribution’s memoryless property: given
that an exponential random variate E is greater than intinf, E minus intinf has the same distribution.)

4. Set n to 0.
5. Do the following process repeatedly until the algorithm returns a value:

1. Set inf to max(0, a[n]), then set sup to min(0, inf+err[n]).
2. If E is less than inf+intinf, return 0. If E is less than sup+intinf, go to the next step. If neither

is the case, return 1.
3. Set n to 1.

The case when the sequence a converges to a natural logarithm rather than a base-2 logarithm is trivial
by comparison. Again for this algorithm, all the a[i] must be 0 or greater and form a nowhere decreasing
sequence, and all the err[i] must be 0 or greater.

1. Generate an exponential random variate E with rate 1. This can be done, for example, by using the
86Mendo, L., “Simulating a coin with irrational bias using rational arithmetic”, arXiv:2010.14901 [math.PR],

2020/2021. https://arxiv.org/abs/2010.14901
87https://peteroupc.github.io/exporand.html#Exponential_Distribution_with_Rate_ln__x

26

https://peteroupc.github.io/exporand.html#Exponential_Distribution_with_Rate_ln__x
https://peteroupc.github.io/exporand.html#Exponential_Distribution_with_Rate_ln__x
https://arxiv.org/abs/2010.14901

ExpRand or ExpRand2 algorithm given in “Partially-Sampled Random Numbers88”.
2. Set n to 0.
3. Do the following process repeatedly until the algorithm returns a value:

1. Set inf to max(0, a[n]), then set sup to min(0, inf+err[n]).
2. If E is less than inf+intinf, return 0. If E is less than sup+intinf, go to the next step. If neither

is the case, return 1.
3. Set n to 1.

Notes:

1. Mendo (2020/2021)89 as well as Carvalho and Moreira (2022)90 discuss how to find error
bounds on “cutting off” a series that work for many infinite series. This can be helpful in
finding the appropriate sequences a and err needed for the first algorithm in this section.

2. If a number is known as a simple continued fraction whose partial denominators are integers,
Citterio and Pavani (2016)91 show how to calculate lower and upper bounds for that number.
The bounds will be rational numbers whose numerator has at most a given number of digits.

Examples:

• Let f (𝜆) = cosh(1) − 1, namely, the hyperbolic cosine, minus 1, of 1. This function can
be rewritten as a sum required by the first algorithm in this section, namely f ’s Taylor
series at 0. Then this algorithm can be used with a[i] = 1/(((i+1)*2)!) and err[i] =
2/((((i+1)*2)+1)!). 92

• Logarithms can form the basis of efficient algorithms to simulate the probability z =
choose(n, k)/2 𝑛 when n can be very large (for example, as large as 230), without rely-
ing on floating-point arithmetic. In this example, the trivial algorithm for choose(n, k), a
binomial coefficient, will generally require a growing amount of storage that depends on n
and k. On the other hand, any constant can be simulated using up to two unbiased random
bits on average, and even slightly less than that for the constants at hand here (Kozen
2014)93. Instead of calculating binomial coefficients directly, a series can be calculated that
sums to that coefficient’s logarithm, such as ln(choose(n, k)), which is economical in space
even for large n and k. Then the algorithm above can be used with that series to simulate
the probability z. See also an appendix in (Bringmann et al. 2014)94.

4.4 Other General Algorithms

4.4.1 Convex Combinations

Assume there is one or more input coins h𝑖(𝜆) that return heads with a probability that depends on 𝜆 .
(The number of coins may be infinite.) The following algorithm chooses one of these coins at random then
flips that coin. Specifically, the algorithm generates 1 with probability equal to the following weighted sum:
g(0) * h0(𝜆) + g(1) * h1(𝜆) + …, where g(i) is the probability that coin i will be chosen, h𝑖 is the function

88https://peteroupc.github.io/exporand.html#Exponential_Distribution
89Mendo, L., “Simulating a coin with irrational bias using rational arithmetic”, arXiv:2010.14901 [math.PR],

2020/2021. https://arxiv.org/abs/2010.14901
90Carvalho, Luiz Max, and Guido A. Moreira. “Adaptive truncation of infinite sums: applications to Statistics”,

arXiv:2202.06121 (2022). https://arxiv.org/abs/2202.06121
91Citterio, M., Pavani, R., “A Fast Computation of the Best k-Digit Rational Approximation to a Real Number”, Mediter-

ranean Journal of Mathematics 13 (2016).
92The error term, which follows from the so-called Lagrange remainder for Taylor series, has a numerator of 2 because 2 is

higher than the maximum value at the point 1 (in cosh(1)) that f ’s slope, slope-of-slope, etc. functions can achieve.
93Kozen, D., “Optimal Coin Flipping”, 2014.
94K. Bringmann, F. Kuhn, et al., “Internal DLA: Efficient Simulation of a Physical Growth Model.” In: Proc. 41st Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP’14), 2014.

27

https://peteroupc.github.io/exporand.html#Exponential_Distribution
https://arxiv.org/abs/2010.14901
https://arxiv.org/abs/2202.06121
http://www.cs.cornell.edu/~kozen/Papers/Coinflip.pdf

simulated by coin i, and all the g(i) sum to 1. See (Wästlund 1999, Theorem 2.7)95. (Alternatively, the
algorithm can be seen as returning heads with probability E[h𝑋(𝜆)], that is, the expected value, or “long-run
average”, of h𝑋 where X is the number that identifies the randomly chosen coin.)

1. Generate a random integer X in some way. For example, it could be a uniform random integer greater
than 1 and less than 6, or it could be a Poisson random variate. (Specifically, the number X is generated
with probability g(X). If every g(i) is a rational number, the following algorithm96 can generate X:
“(1) Set X to 0 and d to 1. (2) With probability g(X)/d, return X; otherwise subtract g(X) from d,
add 1 to X, and repeat this step.”)

2. Flip the coin represented by X and return the result.

Notes:

1. Building convex combinations. Suppose the following:

• A function f (𝜆) is written as f (𝜆) = 𝑤1(𝜆) + 𝑤2(𝜆) + ..., where 𝑤1, 𝑤2, ... are continuous
functions.

• Let g(n) be a number such that 0 < g(1) + g(2) + … = T, and T is 1 or less.
• Define X as a randomly chosen number as follows: X is 0 with probability 1 − T, and

X is n (where n ≥ 1) with probability g(n).
• For each integer n ≥ 1, 1 ≥ 𝑔(𝑛) ≥ 𝑤𝑛(𝜆) ≥ 0, wherever 0 ≤ 𝜆 ≤ 1.
• For each integer n ≥ 1, if 𝑔(𝑛) > 0, the function 𝑤𝑛(𝜆)/𝑔(𝑛) admits a Bernoulli factory;

see the section “About Bernoulli Factories”.

Then by generating X and outputting 0 if X is 0, and otherwise flipping a coin
with probability of heads of w𝑋(𝜆)/g(X), the probability f (𝜆) can be simulated as the
convex combination—

𝑓(𝜆) = (1 − 𝑇) 0
1 − 𝑇 + 𝑔(1)𝑤1(𝜆)

𝑔(1) + 𝑔(2)𝑤2(𝜆)
𝑔(2) + ...,

letting 0/0 = 0. See also Mendo (2019)97.

2. Constants writable as a sum of nonnegative numbers. A special case of note 1. Let
g be as in note 1 (except T must equal 1), and let 𝑐 be a constant written as—

𝑐 = 𝑎1 + 𝑎2 + 𝑎3 + ...,

where—

• 𝑎𝑛 are each 0 or greater and sum to 1 or less, and
• 1 ≥ 𝑔(𝑛) ≥ 𝑎𝑛 ≥ 0 for each integer 𝑛 ≥ 1.

Then by generating X and flipping a coin with probability of heads of aX −
1/g(X), the probability c can be simulated as the convex combination—

𝑓(𝜆) = 𝑔(1) 𝑎1
𝑔(1) + 𝑔(2) 𝑎2

𝑔(2) + ...,

letting 0/0 = 0.

Examples:

1. Generate X, a Poisson random variate with mean 𝜇 , then flip the input coin. With proba-
bility 1/(1+X), return the result of the coin flip; otherwise, return 0. This corresponds to

95Wästlund, J., “Functions arising by coin flipping”, 1999.
96https://www.keithschwarz.com/darts-dice-coins/
97Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”

Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

28

https://www.keithschwarz.com/darts-dice-coins/
http://www.math.chalmers.se/~wastlund/coinFlip.pdf

g(i) being the Poisson probabilities and the coin for h𝑖 returning 1 with probability 1/(1+i),
and 0 otherwise. The probability that this method returns 1 is E[1/(1+X)], or (exp(𝜇) −
1)/(exp(𝜇)* 𝜇).

2. (Wästlund 1999)98: Generate a Poisson random variate X with mean 1, then flip the input
coin X times. Return 0 if any of the flips returns 1, or 1 otherwise. This is a Bernoulli factory
for exp(− 𝜆), and corresponds to g(i) being the Poisson probabilities, namely 1/(i!*exp(1)),
and h𝑖() being (1 − 𝜆)𝑖.

3. Generate X, a Poisson random variate with mean 𝜇 , run the ExpMinus algorithm with
z = X, and return the result. The probability of returning 1 this way is E[exp(− X)],
or exp(𝜇 *exp(− 1) − 𝜇). The following Python code uses the computer algebra library
SymPy to find this probability: from sympy.stats import *; E(exp(-Poisson('P',
x))).simplify().

4. A multivariate Bernoulli factory (Huber 2016)99 of the form R = C0* 𝜆 0 + C1* 𝜆 1 + …
+ Cm − 1* 𝜆 m − 1, where C 𝑖 are known constants greater than 0, 𝜖 > 0, and R ≤ 1 − 𝜖 :
Choose an integer in [0, m) uniformly at random, call it i, then run a linear Bernoulli factory
for (m*C 𝑖)* 𝜆 𝑖. This differs from Huber’s suggestion of “thinning” a random process driven
by multiple input coins.

5. Probability generating function (PGF) (Dughmi et al. 2021)100. Generates heads with
probability E[𝜆 𝑋], that is, the expected value (“long-run average”) of 𝜆 𝑋. E[𝜆 𝑋] is the
PGF for the distribution of X. The algorithm follows: (1) Generate a random integer X in
some way; (2) Flip the input coin until the flip returns 0 or the coin is flipped X times,
whichever comes first. Return 1 if all the coin flips, including the last, returned 1 (or if X
is 0); or return 0 otherwise.

6. Assume X is the number of unbiased random bits that show 0 before the first 1 is generated.
Then g(n) = 1/(2𝑛+1).

7. Poisson to Bernoulli. Suppose there is a stream of independent Poisson random variates
with unknown mean 𝑝. Also suppose there is a continuous function 𝑓(𝑝) satisfying 0 ≤
𝑓(𝑝) ≤ 1 whenever 𝑝 ≥ 0. Then consider the following simple algorithm, which takes an
integer 𝑛 > 0:
1. Take 𝑛 variates from the stream and sum them. Call the sum 𝑋. (The result is then a

Poisson random variate with mean 𝑛 ⋅ 𝑝.)
2. With probability 𝑓(𝑋/𝑛), return 1. Otherwise, return 0.

Then this algorithm outputs 1 with probability equal to 𝜙(𝑝), where 𝜙(𝑝) is the Szász
operator (or Szász–Mirakyan operator) of 𝑓 of degree 𝑛 (e.g., Szász (1950)101). Indeed, the
Szász operator can be written as a convex combination with 𝑔(𝑖) equal to the probability of
getting 𝑖 in step 1 and with ℎ𝑋 equal to 𝑓(𝑋/𝑛). The algorithm is the same as in Goyal
and Sigman (2012)102, except coin flips with heads probability 𝜆 are replaced with Poisson
variates of mean 𝑝.

98Wästlund, J., “Functions arising by coin flipping”, 1999.
99Huber, M., “Optimal linear Bernoulli factories for small mean problems”, arXiv:1507.00843v2 [math.PR], 2016.

https://arxiv.org/abs/1507.00843v2
100Dughmi, Shaddin, Jason Hartline, Robert D. Kleinberg, and Rad Niazadeh. “Bernoulli factories and black-box reductions
in mechanism design.” Journal of the ACM (JACM) 68, no. 2 (2021): 1-30.
101Szász, O., “Generalization of S. Bernstein’s Polynomials to the Infinite Interval”, Journal of Research of the National Bureau
of Standards 45 (1950).
102Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.

29

http://www.math.chalmers.se/~wastlund/coinFlip.pdf
https://arxiv.org/abs/1507.00843v2

8. The original Bernoulli factories. Keane and O’Brien’s (1994)103 paper introducing
Bernoulli factories showed that any Bernoulli factory function 𝑓(𝜆) can be written as a
convex combination of polynomials. In their proof, 𝑔(𝑖) = (1/4) ⋅ (3/4)𝑖−1 (and 𝑔(0) = 0),
and each ℎ𝑖(𝜆) is a polynomial, not necessarily of degree i, whose Bernstein coefficients are
each either 0 or 1 (see “Certain Polynomials”).

9. Polynomials to zero-and-one polynomials. Suppose 𝑓(𝜆) is a polynomial of degree-𝑛
and each of its Bernstein coefficients (𝑎[0], 𝑎[1], ..., 𝑎[𝑛]) (see “Certain Polynomials”) is 0
or greater and 1 or less. Then 𝑓 can be written as a convex combination of polynomials with
only 0 and 1 as Bernstein coefficients.Specifically, 𝑔(𝑖) = (1/2)𝑖 and 𝑔(0) = 0, and ℎ𝑖(𝜆) is a
polynomial whose Bernstein coefficients are (𝑏[𝑖][0], 𝑏[𝑖][1], ..., 𝑏[𝑖][𝑛]), where 𝑏[𝑖][𝑗] is 1 if 𝑎[𝑗]
is 1 or if floor(𝑎[𝑗] ⋅ 2𝑖) (or the 𝑖-th binary digit after the point in 𝑎[𝑗]’s binary expansion) is
odd104, or 0 otherwise.

The previous algorithm can be generalized further, so that an input coin that simulates the probability 𝜆
helps generate the random integer in step 1. Now, the overall algorithm returns 1 with probability—

∑
𝑘≥0

𝑔(𝑘, 𝜆)ℎ𝑘(𝜆).

This algorithm, called Algorithm CC in this document, follows.

1. Choose an integer 0 or greater at random, with help of the input coin for 𝜆, so that 𝑘 is chosen with
probability 𝑔(𝑘, 𝜆). Call the chosen integer X.

2. Flip the coin represented by X and return the result.

Notes:

1. Step 1 of this algorithm is incomplete, since it doesn’t explain how to generate 𝑋 exactly.
That depends on the probability 𝑔(𝑘, 𝜆).

2. If we define S to be a set of integers 0 or greater, and replace step 2 with “If X is in
the set S, return 1. Otherwise, return 0”, then the algorithm returns 1 with probability
∑𝑘 in 𝑆 𝑔(𝑘, 𝜆) (because ℎ𝑘(𝜆) is either 1 if 𝑘 is in S, or 0 otherwise). Then the so-called
“even-parity” construction105 is a special case of this algorithm, if S is the even positive
integers and zero and if the example below is used.

Example: Step 1 can read “Flip the input coin for 𝜆 repeatedly until it returns 0. Set X to
the number of times the coin returned 1 this way.” Then step 1 generates X with probability
𝜆𝑋(1 − 𝜆).106

4.4.2 Bernoulli Race and Generalizations

The Bernoulli factory approach, which simulates a coin with unknown heads probability, leads to an algorithm
to roll an n-face die where the chance of each face is unknown. Here is one such die-rolling algorithm (Schmon
103Keane, M. S., and O’Brien, G. L., “A Bernoulli factory”, ACM Transactions on Modeling and Computer Simulation 4(2),
1994.
104“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
105The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.
106However, the number of flips needed by this method will then grow without bound as 𝜆 approaches 1. Also, this article avoids
calling the value X produced this way a “geometric” random variate. Indeed, there is no single way to give the probabilities of
a “geometric” random variate; different academic works define the variate differently.

30

et al. 2019)107. It generalizes the so-called Bernoulli Race (see note 1 below) and returns i with probability—

𝜙𝑖 = 𝑔(𝑖) ⋅ ℎ𝑖(𝜇𝜇𝜇)
∑𝑟

𝑘=0 𝑔(𝑘) ⋅ ℎ𝑘(𝜇𝜇𝜇) ,

where:

• r is an integer greater than 0. There are r+1 values this algorithm can choose from.
• g(i) takes an integer i and returns a number 0 or greater. This serves as a weight for the “coin” labeled

i; the higher the weight, the greater the probability the “coin” will be “flipped”.
• h𝑖(** 𝜇 **) takes in a number i and the probabilities of heads of one or more input coins, and returns

a number that is 0 or greater and 1 or less. This represents the “coin” for one of the r+1 choices.

The algorithm follows.

1. Generate a random integer i in some way, so that i is generated with probability proportional to the
following weights: [g(0), g(1), …, g(r)].

2. Run a Bernoulli factory algorithm for h𝑖(** 𝜇 **). If the run returns 0 (i is rejected), go to step 1.
3. i is accepted, so return i.

Notes:

1. The Bernoulli Race (Dughmi et al. 2021)108 is a special case of this algorithm with g(k) =
1 for every k. Say there are n coins, then choose one of them uniformly at random and flip
that coin. If the flip returns 1, return X; otherwise, repeat this algorithm. This algorithm
chooses a random coin based on its probability of heads.

2. If we define S to be the integers [0, r] or a subset of them and replace step 3 with “If i
is in the set S, return 1. Otherwise, return 0.”, the algorithm returns 1 with probability
∑𝑘 in 𝑆 𝜙𝑘, and 0 otherwise. In that case, the modified algorithm has the so-called “die-coin
algorithm” of Agrawal et al. (2023, Appendix D)109 as a special case with—g(k) = c𝑘*d −

,h𝑘(𝜆 , 𝜇) = 𝜆 𝑘* 𝜇 − (for the following algorithm: flip the 𝜆 coin k times and the 𝜇 coin r
− k times; return 1 if all flips return 1, or 0 otherwise), andS is the set of integers that are
1 or greater and r or less,where c ≥ 0, d ≥ 0, and 𝜆 and 𝜇 are the probabilities of heads of
two input coins. In that paper, c, d, 𝜆 , and 𝜇 correspond to c𝑦, c𝑥, p𝑦, and p𝑥, respectively.

3. Although not noted in the Schmon paper, the r in the algorithm can be infinity (see also
Wästlund 1999, Theorem 2.7110). In that case, Step 1 is changed to say “Choose an integer
0 or greater at random with probability g(k) for integer k. Call the chosen integer i.” As an
example, step 1 can sample from a Poisson distribution, which can take on any integer 0 or
greater.

The previous algorithm can be generalized further, so that an input coin that simulates the probability
𝜆 helps generate the random integer in step 1. Now, the overall algorithm generates an integer X with
probability—

𝑔(𝑋, 𝜆)ℎ𝑋(𝜇𝜇𝜇)
∑𝑘≥0 𝑔(𝑘, 𝜆)ℎ𝑘(𝜇𝜇𝜇) .

In addition, the set of integers to choose from can be infinite. This algorithm, called Algorithm BR in this
document, follows.
107Schmon, S.M., Doucet, A. and Deligiannidis, G., 2019, April. Bernoulli race particle filters. In The 22nd International
Conference on Artificial Intelligence and Statistics (pp. 2350-2358).
108Dughmi, Shaddin, Jason Hartline, Robert D. Kleinberg, and Rad Niazadeh. “Bernoulli factories and black-box reductions
in mechanism design.” Journal of the ACM (JACM) 68, no. 2 (2021): 1-30.
109Agrawal, Sanket, Dootika Vats, Krzysztof Łatuszyński, and Gareth O. Roberts. “Optimal scaling of MCMC beyond
Metropolis.” Advances in Applied Probability 55, no. 2 (2023): 492-509; also in “Optimal Scaling of MCMC Beyond
Metropolis”, arXiv:2104.02020 [stat.CO], 2021. https://arxiv.org/abs/2104.02020
110Wästlund, J., “Functions arising by coin flipping”, 1999.

31

https://arxiv.org/abs/2104.02020
http://www.math.chalmers.se/~wastlund/coinFlip.pdf

1. Choose an integer 0 or greater at random, with help of the input coin for 𝜆, so that 𝑘 is chosen with
probability proportional to 𝑔(𝑘, 𝜆). Call the chosen integer X. (If the integer must be less than or equal
to an integer r, then the integer will have probability proportional to the following weights: [g(0, 𝜆),
g(1, 𝜆), …, g(r, 𝜆)].)

2. Run a Bernoulli factory algorithm for h𝑋(** 𝜇 **). If the run returns 0 (i is rejected), go to step 1.
3. X is accepted, so return X.

Notes:

1. Step 1 of this algorithm is incomplete, since it doesn’t explain how to generate 𝑋 exactly.
That depends on the weights 𝑔(𝑘, 𝜆).

2. The probability that 𝑠 many values of X are rejected by this algorithm is 𝑝(1𝑝)𝑠, where—

𝑝 =
∑𝑘≥0 𝑔(𝑘, 𝜆)ℎ𝑘(𝜇𝜇𝜇)

∑𝑘≥0 𝑔(𝑘, 𝜆) .

Example: Step 1 can read “Flip the input coin for 𝜆 repeatedly until it returns 0. Set X to
the number of times the coin returned 1 this way.” Then step 1 generates X with probability
𝑔(𝑋, 𝜆) = 𝜆𝑋(1 − 𝜆).111

4.4.3 Flajolet’s Probability Simulation Schemes

Flajolet et al. (2010)112 described two schemes for probability simulation, inspired by restricted models of
computing.

Certain algebraic functions. Flajolet et al. (2010)113 showed a sampling method modeled on pushdown
automata (state machines with a stack) that are given flips of a coin with unknown heads probability 𝜆 .114

These flips form a bitstring, and each pushdown automaton accepts only a certain class of bitstrings. The
rules for determining whether a bitstring belongs to that class are called a binary stochastic grammar, which
uses an alphabet of only two “letters”. If a pushdown automaton terminates, it accepts a bitstring with
probability f (𝜆), where f must be an algebraic function over rationals (a function that can be a solution of
a nonzero polynomial equation whose power coefficients are rational numbers) (Mossel and Peres 2005)115.

Specifically, the method simulates the following function (not necessarily algebraic):

𝑓(𝜆) = ∑
𝑘≥0

𝑔(𝑘, 𝜆)ℎ𝑘(𝜆),

where the paper uses 𝑔(𝑘, 𝜆) = 𝜆𝑘(1 − 𝜆) and ℎ𝑘(𝜆) = 𝑊(𝑘)/𝛽𝑘, so that—

𝑓(𝜆) = (1 − 𝜆)𝑂𝐺𝐹(𝜆/𝛽),

where:

• 𝑊(𝑘) returns a number in the interval [0, 𝛽𝑘]. If 𝑊(𝑘) is an integer for every 𝑘, then 𝑊(𝑘) is the
number of 𝑘-letter words that can be produced by the stochastic grammar in question.

111However, the number of flips needed by this method will then grow without bound as 𝜆 approaches 1. Also, this article avoids
calling the value X produced this way a “geometric” random variate. Indeed, there is no single way to give the probabilities of
a “geometric” random variate; different academic works define the variate differently.
112Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

113Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

114The appendix to the supplemental notes defines pushdown automata in more detail and has proofs on which algebraic
functions are possible with these conceptual machines. https://peteroupc.github.io/bernsupp.html#Pushdown_Automata_an
d_Algebraic_Functions
115Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.

32

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://peteroupc.github.io/bernsupp.html#Pushdown_Automata_and_Algebraic_Functions
https://peteroupc.github.io/bernsupp.html#Pushdown_Automata_and_Algebraic_Functions

• 𝛽 ≥ 2 is an integer. This is the alphabet size, or the number of “letters” in the alphabet. This is 2 for
the cases discussed in the Flajolet paper (binary stochastic grammars), but it can be greater than 2
for more general stochastic grammars.

• 𝑂𝐺𝐹(𝑥) = 𝑊(0) + 𝑊(1)𝑥 + 𝑊(2)𝑥2 + 𝑊(3)𝑥3 + ... is an ordinary generating function. This is a power
series whose power coefficients are 𝑊(𝑖) (for example, 𝑊(2) is power coefficient 2).

The method uses Algorithm CC, where step 1 is done as follows: “Flip the input coin repeatedly until it
returns 0. Set X to the number of times the coin returned 1 this way.”116 Optionally, step 2 can be done
as described in Flajolet et al., (2010)117: generate an X-letter word uniformly at random and “parse” that
word using a stochastic grammar to determine whether that word can be produced by that grammar.

Note: The radius of convergence of OGF is the greatest number 𝜌 such that OGF is defined at
every point less than 𝜌 away from the origin (0, 0). In this algorithm, the radius of convergence
is in the interval [1/ 𝛽 , 1] (Flajolet 1987)118. For example, the OGF involved in the square root
construction given in the examples below has radius of convergence 1/2.

Examples:

1. The following is an example from the Flajolet et al. paper. An X-letter binary word can be
“parsed” as follows to determine whether that word encodes a ternary tree: “2. If X is 0,
return 0. Otherwise, set i to 1 and d to 1.; 2a. Generate an unbiased random bit (that is,
either 0 or 1, chosen with equal probability), then subtract 1 from d if that bit is 0, or add
2 to d otherwise.; 2b. Add 1 to i. Then, if i < X and d > 0, go to step 3a.; 2c. Return 1 if
d is 0 and i is X, or 0 otherwise.”

2. ℎ𝑋(𝜆) can have the form—

(𝑋
𝑋/𝑡) ⋅ (1 − Coin(𝜆))𝑋−𝑋/𝑡 ⋅ (Coin(𝜆))𝑋/𝑡,

if X is divisible by t, and 0 otherwise, where Coin(𝜆) is a Bernoulli factory function, and t ≥
2 is an integer. One special case is when Coin(𝜆) = 1/ 𝛽 , where 𝛽 ≥ 2 is the alphabet size
and is an integer. In that case, 𝑊(𝑋) is the number of X-letter words with exactly
X/t A’s, for an alphabet size of 𝛽 , is equal to ℎ𝑋(𝜆)𝛽𝑋, and also has the following
form:

(𝑋
𝑋/𝑡)(𝛽 − 1)𝑋−𝑋/𝑡 = (𝑋

𝑋/𝑡)(1 − 1/𝛽)𝑋−𝑋/𝑡(1/𝛽)𝑋/𝑡𝛽𝑋,

if X is divisible by t, and 0 otherwise. (Here, 𝛽 − 1𝑋−𝑋/𝑡 is the number of (X − X/t)-letter
words with only letters other than A.) Then step 2 of the algorithm can be done as follows:
“2. If X is not divisible by t, return 0. Otherwise, run a Bernoulli factory algorithm for
Coin(𝜆), X times, and set y to the number of runs that return 1 this way (for example, if
Coin(𝜆) = 1/ 𝛽 , generate X uniform random integers in the interval [0, 𝛽), then set y to the
number of zeros generated this way), then return 1 if y equals X/t, or 0 otherwise.” If 𝛽 =
2, then this reproduces another example from the Flajolet paper, namely, lattice paths with
upward steps of size t − 1 and downward steps of size 1.Although not required, Coin(𝜆)
can be a rational function (a ratio of two polynomials) whose Bernstein coefficients are
rational numbers; if so, f will be an algebraic function and can be simulated by a pushdown
automaton.An alternative algorithm is: “Set d to 0, then do the following process repeatedly
until this run of the algorithm returns a value: (a) Flip the input coin. If it returns 1, go to

116However, the number of flips needed by this method will then grow without bound as 𝜆 approaches 1. Also, this article avoids
calling the value X produced this way a “geometric” random variate. Indeed, there is no single way to give the probabilities of
a “geometric” random variate; different academic works define the variate differently.
117Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

118Flajolet, Ph., “Analytic models and ambiguity of context-free languages”, Theoretical Computer Science 49, pp. 283-309,
1987

33

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

substep (b). Otherwise, return either 1 if d is 0, or 0 otherwise. (b) Run a Bernoulli factory
algorithm for Coin(𝜆). If the run returns 1, add (t − 1) to d. Otherwise, subtract 1 from
d.”

3. ℎ𝑋(𝜆) can have the form—

(𝑋𝛼
𝑋) ⋅ (1 − Coin(𝜆))𝑋⋅𝛼−𝑋 ⋅ (Coin(𝜆))𝑋,

where Coin(𝜆) is a Bernoulli factory function (as in example 2), and 𝛼 ≥ 1 is an integer.
One special case is when Coin(𝜆) = 1/ 𝛽 , where 𝛽 ≥ 2 is the alphabet size and is an integer.
In that case, 𝑊(𝑋) is equal to ℎ𝑋(𝜆)𝛽𝑋 and also has the following form:

(𝑋𝛼
𝑋) ⋅ (𝛽 − 1)𝑋⋅𝛼−𝑋(1/𝛽)𝑋⋅𝛼−𝑋 = (𝑋𝛼

𝑋) ⋅ (1 − 1/𝛽)𝑋⋅𝛼−𝑋.

Then step 2 of the algorithm can be done as follows: “2. Run a Bernoulli factory algorithm
for Coin(𝜆), X * 𝛼 times, and set y to the number of runs that return 1 this way, then
return 1 if y equals X, or 0 otherwise.” If 𝛼 = 2 and 𝛽 = 2 (or Coin(𝜆) = 1/2), then this
expresses the square-root construction sqrt(1 − 𝜆), mentioned in the Flajolet et al. paper.
If 𝛼 is 1, the modified algorithm simulates the following probability: (𝜆 − 1)/(𝜆 *Coin(𝜆)
− 1). If 𝛼 =2, the probability is (1 − 𝜆)/√1 + 4𝜆Coin(𝜆)(Coin(𝜆) − 1).Interestingly, I have
found that if 𝛼 is 2 or greater, the probability simplifies to involve a hypergeometric function.
Specifically, if Coin(𝜆) = 1/ 𝛽 , the probability becomes—

𝑓(𝜆) = (1 − 𝜆) ×𝛼−1 𝐹𝛼−2 (1
𝛼, 2

𝛼, ..., 𝛼 − 1
𝛼 ; 1

𝛼 − 1, 2
𝛼 − 1, ..., 𝛼 − 2

𝛼 − 1; 𝜆 𝛼𝛼

(𝛼 − 1)𝛼−12𝛼) ,

if 𝛽 = 2, or more generally—

𝑓(𝜆) = (1 − 𝜆) ×𝛼−1 𝐹𝛼−2 (1
𝛼, 2

𝛼, ..., 𝛼 − 1
𝛼 ; 1

𝛼 − 1, 2
𝛼 − 1, ..., 𝛼 − 2

𝛼 − 1; 𝜆𝛼𝛼(𝛽 − 1)𝛼−1

(𝛼 − 1)𝛼−1𝛽𝛼) .

The ordinary generating function for this modified algorithm is thus—

𝑂𝐺𝐹(𝑧) = 1 ×𝛼−1 𝐹𝛼−2 (1
𝛼, 2

𝛼, ..., 𝛼 − 1
𝛼 ; 1

𝛼 − 1, 2
𝛼 − 1, ..., 𝛼 − 2

𝛼 − 1; 𝑧 𝛼𝛼(𝛽 − 1)𝛼−1

(𝛼 − 1)𝛼−1𝛽𝛼−1) .

4. The probability involved in example 2 likewise involves hypergeometric functions:

𝑓(𝜆) = (1 − 𝜆) ×𝑡−1 𝐹𝑡−2 (1
𝑡 , 2

𝑡 , ..., 𝑡 − 1
𝑡 ; 1

𝑡 − 1, 2
𝑡 − 1, ..., 𝑡 − 2

𝑡 − 1; 𝜆𝑡 𝑡𝑡(𝛽 − 1)𝑡−1

(𝑡 − 1)𝑡−1𝛽𝑡) .

5. If 𝑊(𝑋) is the number of 𝑋-letter words with a two-letter alphabet that meet
some condition, where the chance of the letter “heads” is Coin(𝜆), and Coin(𝜆) is a
Bernoulli factory function (as in example 2), then ℎ𝑋(𝜆) can be written as—

𝑋
∑
𝑚=0

𝑉 (𝑋, 𝑚)(Coin(𝜆))𝑚(1 − Coin(𝜆))𝑋−𝑚,

where 𝑉 (𝑋, 𝑚) satisfies 0 ≤ 𝑉 (𝑋, 𝑚) ≤ (𝑋
𝑚) and is the number of 𝑋-letter words that have

𝑚 heads and meet that condition, so that—

𝑊(𝑋) = ℎ𝑋(𝜆)(1/Coin(𝜆))𝑋 =
𝑋

∑
𝑚=0

𝑉 (𝑋, 𝑚) (1 − Coin(𝜆)
Coin(𝜆))

𝑋−𝑚
.

34

The von Neumann schema. Flajolet et al. (2010)119, section 2, describes what it calls the von Neumann
schema, which produces random integers based on a coin with unknown heads probability. To describe the
schema, the following definition is needed:

• A permutation class is a rule that describes how a sequence of numbers must be ordered. The ordering
of the numbers is called a permutation. Two examples of permutation classes cover permutations
sorted in descending order, and permutations whose highest number appears first. When checking
whether a sequence follows a permutation class, only less-than and greater-than comparisons between
two numbers are allowed.

Now, given a permutation class and an input coin, the von Neumann schema generates a random integer
𝑛 ≥ 0, with probability equal to—

𝑤𝑛(𝜆) = 𝑔(𝑛, 𝜆)ℎ𝑛(𝜆)
∑𝑘≥0 𝑔(𝑘, 𝜆)ℎ𝑘(𝜆) ,

where the schema uses 𝑔(𝑘, 𝜆) = 𝜆𝑘(1 − 𝜆) and ℎ𝑘(𝜆) = 𝑉 (𝑘)
𝑘! , so that—

𝑤𝑛(𝜆) = (1 − 𝜆)𝜆𝑛𝑉 (𝑛)/(𝑛!)
(1 − 𝜆)𝐸𝐺𝐹(𝜆) = 𝜆𝑛𝑉 (𝑛)/(𝑛!)

𝐸𝐺𝐹(𝜆) ,

where:

• 𝑉 (𝑛) returns a number in the interval [0, n!]. If 𝑉 (𝑛) is an integer for every 𝑛, this is the number of
permutations of size 𝑛 that belong in the permutation class.

• 𝐸𝐺𝐹(𝜆) = ∑𝑘≥0 𝜆𝑘 𝑉 (𝑘)
𝑘! is an exponential generating function, which completely determines a permu-

tation class.
• The probability that 𝑟 many values of 𝑋 are rejected by the von Neumann schema (for the choices of

𝑔 and ℎ above) is 𝑝(1𝑝)𝑟, where 𝑝 = (1 − 𝜆)𝐸𝐺𝐹(𝜆).
The von Neumann schema uses Algorithm BR, where in step 1, the von Neumann schema as given in
the Flajolet paper does the following: “Flip the input coin repeatedly until it returns 0. Set X to the
number of times the coin returned 1 this way.”120 Optionally, step 2 can be implemented as described in
Flajolet et al., (2010)121: generate X uniform random variates between 0 and 1, then determine whether
those numbers satisfy the given permutation class, or generate as many of those numbers as necessary to
make this determination.

Note: The von Neumann schema can sample from any power series distribution (such as Poisson,
negative binomial, and logarithmic series), given a suitable exponential generating function. How-
ever, the number of input coin flips required by the schema grows without bound as 𝜆 approaches
1.

Examples:

1. Examples of permutation classes include the following (using the notation in “Analytic
Combinatorics” (Flajolet and Sedgewick 2009)122):

• Single-cycle permutations, or permutations whose highest number appears first (EGF(𝜆)
= Cyc(𝜆) = ln(1/(1 − 𝜆)); V(n) = ((n − 1)!) [or 0 if n is 0)]).

• Sorted permutations, or permutations whose numbers are sorted in descending order
(EGF(𝜆) = Set(𝜆) = exp(𝜆); V(n) = 1).

119Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

120However, the number of flips needed by this method will then grow without bound as 𝜆 approaches 1. Also, this article avoids
calling the value X produced this way a “geometric” random variate. Indeed, there is no single way to give the probabilities of
a “geometric” random variate; different academic works define the variate differently.
121Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

122Flajolet, P. and Sedgewick, R., Analytic Combinatorics, 2009.

35

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

• All permutations (EGF(𝜆) = Seq(𝜆) = 1/(1 − 𝜆); V(n) = n!),
• Alternating permutations of even size (EGF(𝜆) = 1/cos(𝜆) = sec(𝜆); V(n) = W(n/2)

if n is even123 and 0 otherwise, where the W(m) starting at m = 0 is A000364124 in
the On-Line Encyclopedia of Integer Sequences).

• Alternating permutations of odd size (EGF(𝜆) = tan(𝜆); V(n) = W((n+1)/2) if n is
odd125 and 0 otherwise, where the W(m) starting at m = 1 is A000182126).

2. Using the class of sorted permutations, we can generate a Poisson random variate with mean
𝜆 via the von Neumann schema, where 𝜆 is the probability of heads of the input coin. This
would lead to an algorithm for exp(− 𝜆) — outputting 1 if a Poisson random variate with
mean 𝜆 is 0, or 0 otherwise — but for the reason given in the note, this algorithm gets
slower as 𝜆 approaches 1. Also, if c > 0 is a real number, adding a Poisson random variate
with mean floor(c) to one with mean c − floor(c) generates a Poisson random variate with
mean c.

3. The algorithm for exp(− 𝜆), described in example 2, is as follows:

1. Flip the input coin repeatedly until it returns 0. Set X to the number of times the coin
returned 1 this way.

2. With probability 1/((X)!), X is accepted so return a number that is 1 if X is 0 and 0
otherwise. Otherwise, go to the previous step.

4. For the class of alternating permutations of even size (see example 1), step 2 in Algorithm
BR can be implemented as follows (Flajolet et al. 2010, sec. 2.2)127:

• (2a.) (Limited to even-sized permutations.) If X is odd128, reject X (and go to step 1).
• (2b.) Generate a uniform random variate between 0 and 1, call it U, then set i to 1.
• (2c.) While i is less than X:

– Generate a uniform random variate between 0 and 1, call it V.
– If i is odd129 and V is less than U, or if i is even130 and U is less than V, reject X
(and go to step 1).

– Add 1 to i, then set U to V.

5. For the class of alternating permutations of odd size (see example 1), step 2 in Algorithm
BR can be implemented as in example 4, except 2a reads: “(2a.) (Limited to odd-sized
permutations.) If X is even131, reject X (and go to step 1).” (Flajolet et al. 2010, sec. 2.2)132.

6. By computing—
∑𝑘≥0 𝑔(2𝑘 + 1, 𝜆)ℎ2𝑘+1(𝜆)

∑𝑘≥0 𝑔(𝑘, 𝜆)ℎ𝑘(𝜆)
123“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
124https://oeis.org/A000364
125“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
126https://oeis.org/A000182
127Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

128“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
129“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
130“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
131“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
132Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

36

https://oeis.org/A000364
https://oeis.org/A000182
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

(which is the probability of getting an odd-numbered output), and using the class of sorted
permutations (ℎ𝑖(𝜆) = 1/(𝑖!)), it is found that the von Neumann schema’s output is odd
with probability exp(−𝜆) × sinh(𝜆), where 𝑠𝑖𝑛ℎ is the hyperbolic sine function.

7. The X generated in step 1 can follow any distribution of integers 0 or greater, not just the
distribution used by the von Neumann schema (because Algorithm BR is more general
than the von Neumann schema). (In that case, the function 𝑔(𝑘, 𝜆) will be the probability
of getting 𝑘 under the new distribution.) For example, if X is a Poisson random variate
with mean z2/4, where z > 0, and if the sorted permutation class is used, the algorithm will
return 0 with probability 1/I0(z), where I0(.) is the modified Bessel function of the first
kind.

Examples for the von Neumann schema. Examples contained in Theorem 2.3 of Flajolet et al. (2010)133.
In the table:

• 𝜆 is the unknown heads probability of a coin.
• 𝜇 is another coin that flips the 𝜆 coin and returns 1 minus the result (thus simulating 1 − 𝜆).

Function Values Allowed Algorithm
exp(− 𝜆) 0 ≤ 𝜆 < 1 Uses von Neumann schema

algorithm (VNS) with sorted
permutations, and the 𝜆 coin.
Return 1 if VNS returns 0,
and 0 otherwise.

exp(𝜆 − 1) = exp(− (1 − 𝜆)) 0 < 𝜆 ≤ 1 Uses VNS with sorted
permutations, and the 𝜇 coin.
Return 1 if VNS returns 0,
and 0 otherwise.

(1 − 𝜆)*exp(𝜆) 0 ≤ 𝜆 < 1 Uses VNS with sorted
permutations, and the 𝜆 coin.
Return 1 if VNS finishes in
one iteration, and 0 otherwise.

𝜆 *exp(1 − 𝜆) 0 < 𝜆 ≤ 1 Uses VNS with sorted
permutations, and the 𝜇 coin.
Return 1 if VNS finishes in
one iteration, and 0 otherwise.

𝜆 /ln(1/(1 − 𝜆)) 0 ≤ 𝜆 < 1 Uses VNS with single-cycle
permutations, and the 𝜆 coin.
Return 1 if VNS returns 1,
and 0 otherwise.

(1 − 𝜆)/ln(1/ 𝜆) 0 < 𝜆 ≤ 1 Uses VNS with single-cycle
permutations, and the 𝜇 coin.
Return 1 if VNS returns 1,
and 0 otherwise.

(1 − 𝜆)*ln(1/(1 − 𝜆)) 0 ≤ 𝜆 < 1 Uses VNS with single-cycle
permutations, and the 𝜆 coin.
Return 1 if VNS finishes in
one iteration, and 0 otherwise.

133Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

37

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

Function Values Allowed Algorithm
𝜆 *ln(1/ 𝜆) 0 < 𝜆 ≤ 1 Uses VNS with single-cycle

permutations, and the 𝜇 coin.
Return 1 if VNS finishes in
one iteration, and 0 otherwise.

cos(𝜆) 0 ≤ 𝜆 < 1 Uses VNS with alternating
even-sized permutations, and
the 𝜆 coin. Return 1 if VNS
returns 0, and 0 otherwise.

(1 − 𝜆)/cos(𝜆) = (1 −
𝜆)*sec(𝜆)

0 ≤ 𝜆 < 1 Uses VNS with alternating
even-sized permutations, and
the 𝜆 coin. Return 1 if VNS
finishes in one iteration, and 0
otherwise.

𝜆 /tan(𝜆) 0 ≤ 𝜆 < 1 Uses VNS with alternating
odd-sized permutations, and
the 𝜆 coin. Return 1 if VNS
returns 1, and 0 otherwise.

(1 − 𝜆)*tan(𝜆) 0 ≤ 𝜆 < 1 Uses VNS with alternating
odd-sized permutations, and
the 𝜆 coin. Return 1 if VNS
finishes in one iteration, and 0
otherwise.

Recap. As can be seen—

• the scheme for algebraic functions usesAlgorithm CC with 𝑔(𝑘, 𝜆) = 𝜆𝑘(1−𝜆) and ℎ𝑘(𝜆) = 𝑊(𝑘)/𝛽𝑘,
and

• the von Neumann schema uses Algorithm BR with 𝑔(𝑘, 𝜆) = 𝜆𝑘(1 − 𝜆) and ℎ𝑘(𝜆) = 𝑉 (𝑘)/(𝑘!),
and both schemes implement step 1 of the algorithm in the same way. However, different choices for 𝑔 and
ℎ will lead to modified schemes that could lead to Bernoulli factory algorithms for new functions.

4.4.4 Integrals

Roughly speaking, the integral of f (x) on an interval [a, b] is the “area under the graph” of that function
when the function is restricted to that interval. If f is continuous there, this is the value that 1

𝑛 (𝑓(𝑎 + (𝑏 −
𝑎)(1 − 1

2)/𝑛) + 𝑓(𝑎 + (𝑏 − 𝑎)(2 − 1
2)/𝑛) + ... + 𝑓(𝑎 + (𝑏 − 𝑎)(𝑛 − 1

2)/𝑛)) approaches as 𝑛 gets larger and larger.

Algorithm 1. (Flajolet et al., 2010)134 showed how to turn an algorithm that simulates f (𝜆) into an
algorithm that simulates the probability—

• 1
𝜆 ∫𝜆

0 𝑓(𝑢) 𝑑𝑢 (1
𝜆 times the integral of 𝑓(𝑢) on [0, 𝜆]), or equivalently,

• ∫1
0 𝑓(𝜆𝑢) 𝑑𝑢 (the integral of 𝑓(𝜆𝑢) on the closed unit interval),

namely the following algorithm:

1. Generate u, a uniform random variate between 0 and 1, call it u.
2. Create an input coin that does the following: “Flip the original input coin, then sample from the

number u. Return 1 if both the call and the flip return 1, and return 0 otherwise.”
134Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

38

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

3. Run the original Bernoulli factory algorithm, using the input coin described in step 2 rather than the
original input coin. Return the result of that run.

Algorithm 2. A special case of Algorithm 1 is the integral ∫1
0 𝑓(𝑢) 𝑑𝑢, when the original input coin always

returns 1:

1. Generate a uniform random variate between 0 and 1, call it u.
2. Create an input coin that does the following: “Sample from the number u and return the result.”
3. Run the original Bernoulli factory algorithm, using the input coin described in step 2 rather than the

original input coin. Return the result of that run.

Algorithm 3. I have found that it’s possible to simulate the following integral, namely—

∫
𝑏

𝑎
𝑓(𝜆𝑢) 𝑑𝑢,

where 0 ≤ 𝑎 < 𝑏 ≤ 1, using the following algorithm:

1. Generate u, a uniform random variate between 0 and 1. Then if u is less than a or is greater than
b, repeat this step. (If u is a uniform PSRN, these comparisons should be done via the URand-
LessThanReal algorithm.)

2. Create an input coin that does the following: “Sample from the number u and return the result.”
3. Run the original Bernoulli factory algorithm, using the input coin described in step 2. If the run

returns 0, return 0. Otherwise, generate a uniform random variate between 0 and 1 v and return a
number that is 0 if v is less than a or is greater than b, or 1 otherwise.

Note: If a is 0 and b is 1, the probability simulated by this algorithm will be strictly increasing
(will keep going up), have a slope no greater than 1, and equal 0 at the point 0.

4.5 Algorithms for Specific Functions of 𝜆
This section and the next one describe algorithms for specific functions, especially when they have a more
convenient simulation than the general-purpose algorithms given earlier. They can be grouped as follows:

• Functions involving the exponential function exp(x).
• Rational functions of several variables.
• Addition, subtraction, and division.
• Powers and roots.
• Linear Bernoulli factories.
• Transcendental functions.
• Other factory functions.

4.5.1 ExpMinus (exp(− z))

In this document, the ExpMinus algorithm is a Bernoulli factory taking a parameter z. The parameter z
is 0 or greater and can be written in any of the following ways:

1. As a rational number, namely x/y where x ≥ 0 and y>0 are integers.
2. As an integer and fractional part, namely m + 𝜈 where m ≥ 0 is an integer and 𝜈 (0 ≤ 𝜈 ≤ 1) is the

probability of heads of a coin. (Specifically, the “coin” must implement a Bernoulli factory algorithm
that returns 1 [or outputs heads] with probability equal to the fractional part 𝜈 .135)

3. As a finite sum of positive numbers, each of which can be written as in case 1, case 2, or case 4. For
example, if z = 𝜋 , it can be written as a sum of four numbers, each of which is (𝜋 / 4), that is, m =

135In fact, thanks to the “geometric bag” technique of Flajolet et al. (2010), the fractional part 𝜈 can even come from a uniform
partially-sampled random number (PSRN).

39

0 and 𝜈 = (𝜋 / 4). (This case makes use of the identity exp(− (b+c)) = exp(− b) * exp(− c). Here, 𝜋
/4 has a not-so-trivial Bernoulli factory algorithm described in this article.)

4. As the expression 𝜌 *(m+ 𝜈), where m and 𝜈 are described in case 2, and where 𝜌 (0 ≤ 𝜌 ≤ 1) is the
probability of heads of another coin.

The ExpMinus algorithm is as follows. To flip a coin with probability of heads of exp(− z):

• In case 1, use the following algorithm (Canonne et al. (2020)136) 137:

1. Special case: If x is 0, return 1. (This is because the probability becomes exp(0) = 1.)
2. If x > y (so x/y is greater than 1), call this algorithm (recursively) floor(x/y) times with x = y

= 1 and once with x = x − floor(x/y) * y and y = y. Return 1 if all these calls return 1; otherwise,
return 0.

3. Set r to 1 and i to 1.
4. Return r with probability (y * i − x) / (y * i).
5. Set r to 1 − r, add 1 to i, and go to step 4.

Or the following algorithm:

– If x is 0, return 1. Otherwise, generate N, a Poisson random variate with mean x/y (see “Poisson
Distribution138” for one way to do this), and return a number that is 1 if N is 0, or 0 otherwise.

• In case 2, use case 2 of the algorithm for exp(− (𝜆 * z)) with parameter z = m + 𝜈 , where 𝜆
represents a coin that always returns 1.

• In case 3, rewrite the z parameter as a sum of positive numbers. For each number, run either case 1,
case 2, or case 4 (depending on how the number is written) of the ExpMinus algorithm with that
number as the parameter. If any of these runs returns 0, return 0; otherwise, return 1. (See also
(Canonne et al. 2020)139.)

• In case 4, use case 2 of the algorithm for exp(− (𝜆 * z)) with parameter z = m + 𝜈 , where 𝜆
represents the coin for 𝜌 .

Examples: The ExpMinus algorithm with the following parameters can be implemented as
follows:

• Parameter 𝜋 : Run the algorithm for exp(− (𝜆 * z)), four times, with parameter z = 0
+ 𝜈 , where 𝜈 is a Bernoulli factory for (𝜋 /4), and 𝜆 represents a coin that always returns
1. If any of these runs returns 0, return 0; otherwise, return 1.

• Parameter 3: Run case 1 of the algorithm where x=3 and y=1.
• Parameter 7/5: Run case 1 of the algorithm where x=7 and y=5.

Note: exp(− z) = exp(1 − z)/exp(1) = 1/exp(z) = 1 − (exp(z) − 1)/exp(z).

4.5.2 LogisticExp (1 − expit(z/2𝑝𝑟𝑒𝑐))

This is the probability that the binary digit at prec (the prec 𝑡ℎ binary digit after the point, where prec is
greater than 0) is set for an exponential random variate with rate z. In this document, the LogisticExp
algorithm is a Bernoulli factory taking the following parameters in this order:

1. z is 0 or greater, and written in one of the ways described in the “ExpMinus” section.
2. prec is an integer 0 or greater.

136Canonne, C., Kamath, G., Steinke, T., “The Discrete Gaussian for Differential Privacy”, arXiv:2004.00010 [cs.DS],
2020. https://arxiv.org/abs/2004.00010
137Another algorithm for exp(− 𝜆) involves the von Neumann schema, but unfortunately, it converges slowly as 𝜆 approaches
1.
138https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
139Canonne, C., Kamath, G., Steinke, T., “The Discrete Gaussian for Differential Privacy”, arXiv:2004.00010 [cs.DS],
2020. https://arxiv.org/abs/2004.00010

40

https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
https://arxiv.org/abs/2004.00010
https://arxiv.org/abs/2004.00010

The LogisticExp algorithm is as follows. To flip a coin with probability of heads of 1/(1+exp(z/2𝑝𝑟𝑒𝑐)) =
1 − expit(𝜆 /2𝑝𝑟𝑒𝑐):

• Run the algorithm for expit(𝜆 *z) where z = z, and where 𝜆 represents a coin that returns a number
that is 1 with probability 1/(2𝑝𝑟𝑒𝑐) or 0 otherwise. Return 1 minus the result of that run (leading to
1 − expit(𝜆 *z)).

4.5.3 exp(− (𝜆 * z))

In the following algorithm:

• z is 0 or greater, and written as a rational number (case 1), as an integer and fractional part (case 2),
or as a sum of positive numbers (case 3), as described in the “ExpMinus” section.

• 𝜆 is the probability of heads of an input coin, with 0 ≤ 𝜆 ≤ 1.

The algorithm follows.

• In case 1 (z = x/y) (see also algorithm for exp(− ((1 − 𝜆)1 * c)) in “Other Factory Functions”):
1. Special case: If x is 0, return 1.
2. Generate N, a Poisson random variate with mean x/y. (See “Poisson Distribution140” for one

way to do this.)
3. Flip the 𝜆 input coin until a flip returns 1 or the coin is flipped N times, whichever comes first.

Return 0 if N is greater than 0 and any of the flips, including the last, returns 1. Otherwise,
return 1. (The flips transform a Poisson variate with mean x/y to one with mean 𝜆 *x/y; see
(Devroye 1986, p. 487)141.)

• In case 2 (z = m + 𝜈):
1. Set j to 0, then while j < m+1:

1. Generate N, a Poisson random variate with mean 1.
2. If j = m, flip the 𝜈 input coin N times and set N to the number of flips that return 1 this

way. (This transforms a Poisson variate with mean 1 to one with mean 𝜈 ; see (Devroye 1986,
p. 487)142.)

3. Flip the 𝜆 input coin until a flip returns 1 or the coin is flipped N times, whichever comes
first. Return 0 if N is greater than 0 and any of the flips, including the last, returns 1.

4. Add 1 to j.
2. Return 1.

• In case 3, rewrite the z parameter as a sum of positive numbers. For each number, run either case 1 or
case 2 (depending on how the number is written) of this algorithm with that number as the parameter.
If any of these runs returns 0, return 0; otherwise, return 1.

Notes:

1. The following is a proof of case 2 of this algorithm. First, suppose 𝜆 = 1. Each itera-
tion of the loop in the algorithm returns 0 if a Poisson random variate with mean 𝑡 (see
second substep of step 1) is other than 0, where 𝑡 is 𝜈 in the last iteration, or 1 other-
wise. Since the Poisson variate is 0 with probability exp(−𝑡), the iteration will terminate
the algorithm with probability 1 − exp(−𝑡) and “succeed” with probability exp(−𝑡). If all
the iterations “succeed”, the algorithm will return 1, which will happen with probability
exp(−𝜈) ⋅ (exp(−1))𝑚 = exp(−(𝑚 + 𝜈)). Now suppose 0 ≤ 𝜆 < 1. Then (due to the third
substep of step 1) the Poisson variate just mentioned has mean 𝑡𝜆 rather than 𝑡, so that
each iteration succeeds with probability 1− exp(−𝑡𝜆) and the final algorithm returns 1 with
probability exp(−𝜈𝜆) ⋅ (exp(−𝜆))𝑚 = exp(−(𝑚 + 𝜈)𝜆).

140https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
141Devroye, L., Non-Uniform Random Variate Generation, 1986.
142Devroye, L., Non-Uniform Random Variate Generation, 1986.

41

https://peteroupc.github.io/randomfunc.html#Poisson_Distribution
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html

2. When z is a rational number with 0 ≤ z ≤ 1, this function can be rewritten as a power series
expansion. In that case, one way to simulate the function is to run the general martingale
algorithm (see “Certain Power Series”), with 𝑔(𝜆) = 𝜆, and with parameter 𝑑0 = 1 and
power coefficients 𝑎𝑖 = (−1)𝑖𝑧𝑖

𝑖! , and return the result of that algorithm.
3. When z is a rational number 0 or greater, this function can be simulated as follows: Let m

be floor(c). Call the algorithm in note 2 m times with z = 1. If any of these calls returns 0,
return 0. Otherwise, if z is an integer (that is, if floor(z) = z), return 1. Otherwise, call the
algorithm in note 2 once, with z = z − floor(z). Return the result of this call.

4. When m = 0 and 𝜇 = 1, this function, in case 2, becomes exp(− 𝜆) and can be rewritten
as a power series expansion. In that case, one way to simulate the function is to use the
general martingale algorithm (see “Certain Power Series”), with 𝑔(𝜆) = 𝜆, and with
𝑑0 = 1 and power coefficients 𝑎𝑖 = (−1)𝑖/(𝑖!).143

4.5.4 exp(− exp(m + 𝜆))
In the following algorithm, m is an integer 0 or greater.

1. Generate n, a Poisson random variate with mean 3 +1 . (See “Poisson Distribution144” for one way
to do this.)

2. If n is greater than 0, do the following n times or until this algorithm returns a value:
• Run the algorithm for exp(𝜆)/3 (see “Certain Power Series”), m times, with 𝜆 being a coin that

always returns 0. Then run the algorithm for exp(𝜆)/3 once, with 𝜆 being the input coin. If all
these runs return 1, return 0.

3. Return 1.

Note: The following is a proof this algorithm is valid. Rewrite exp(𝑚 + 𝜆) = 3𝑚+1 ⋅ (exp(1)
3)

𝑚
⋅

exp(𝜆)
3 . Step 1 generates a Poisson variate with mean 3𝑚+1. This variate is then thinned to a

Poisson variate with mean exp(𝑚+𝜆) in step 2, returning early if the new variate would be greater
than 0 (because a Poisson variate with mean exp(𝑚+𝜆) is 0 with probability exp(− exp(𝑚+𝜆))).

4.5.5 exp(− (m + 𝜆)𝑘)

In the following algorithm, m and k are both integers 0 or greater.

1. If k is 0, run the ExpMinus algorithm with parameter 1, and return the result.
2. If k is 1, run the ExpMinus algorithm with parameter m + 𝜆 , and return the result.
3. (Expand (m + 𝜆)𝑘 to a polynomial in 𝜆 in rest of algorithm. First the 𝜆 0 term.) Run the ExpMinus

algorithm with parameter m𝑘. If the algorithm returns 0, return 0.
4. (Now the 𝜆 𝑘 term.) Run the ExpMinus algorithm with parameter 0 + 𝜇 , where 𝜇 represents an

input coin that does: “Flip the 𝜆 input coin k times and return either 1 if all the flips return 1, or 0
otherwise”. If the algorithm returns 0, return 0.

5. (Now the other terms.) If m is 0, return 1.
6. Set i to 1, then while i < k:

1. Set w to choose(k, i) * m − .
2. (Now the 𝜆 𝑖 term.) Run the ExpMinus algorithm, w times, with parameter 0 + 𝜇 , where 𝜇

represents an input coin that does: “Flip the 𝜆 input coin i times and return either 1 if all the
flips return 1, or 0 otherwise”. If any of these calls returns 0, return 0.

3. Add 1 to i.
7. Return 1.

143Another algorithm for exp(− 𝜆) involves the von Neumann schema, but unfortunately, it converges slowly as 𝜆 approaches
1.
144https://peteroupc.github.io/randomfunc.html#Poisson_Distribution

42

https://peteroupc.github.io/randomfunc.html#Poisson_Distribution

4.5.6 exp(𝜆)*(1 − 𝜆)
(Flajolet et al., 2010)145:

1. Set k and w each to 0.
2. Flip the input coin. If it returns 0, return 1.
3. Generate u, a uniform random variate between 0 and 1.
4. If k > 0 and w is less than U, return 0.
5. Set w to U, add 1 to k, and go to step 2.

4.5.7 (1 − exp(− (m + 𝜆))) / (m + 𝜆)
In this algorithm, m + 𝜆 must be greater than 0.

1. If m = 0, run the general martingale algorithm (see “Certain Power Series”), with 𝑔(𝜆) = 𝜆,
and with 𝑑0 = 1 and power coefficients 𝑎𝑖 = (−1)𝑖

(𝑖+1)! , and return the result of that algorithm.
2. (m>0.) Run the ExpMinus algorithm with parameter z = m + 𝜆 . If it returns 1, return 0.
3. Run the algorithm for d/(c+ 𝜆) with d=1 and c=m, and return the result of that algorithm.

4.5.8 expit(z) or 1 − 1/(1+exp(z)) or exp(z)/(1+exp(z)) or 1/(1+exp(− z))

expit(z), also known as the logistic function, is the probability that a random variate from the logistic
distribution is z or less.

z is a number (positive or not) whose absolute value (abs(z)) is written in one of the ways described in the
“ExpMinus” section.

• If z is known to be 0 or greater:
1. Create an R coin that runs the ExpMinus algorithm with parameter z.
2. Run the algorithm for d/(c+ 𝜆) with d=1, c=1, and with 𝜆 being the R coin, and return the

result of that run.
• If z is known to be 0 or less:

1. Create a R coin that runs the ExpMinus algorithm with parameter abs(z).
2. Run the algorithm for d/(c+ 𝜆) with d=1, c=1, and with 𝜆 being the R coin, and return 1

minus the result of that run.

Note:

1. This algorithm can be used to simulate expit(𝜆 * z), where 𝜆 is the probability of heads of
an input coin, with 0 ≤ 𝜆 ≤ 1, except it runs the algorithm for exp(− (𝜆 * z)) instead
of the ExpMinus algorithm.

2. expit(z) = (tanh(z/2)+1)/2. tanh is the hyperbolic tangent function.

4.5.9 expit(z)*2 − 1 or tanh(z/2) or (exp(z) − 1)/(exp(z)+1)

In this algorithm, z is 0 or greater and is written in one of the ways described in the “ExpMinus” section.
tanh is the hyperbolic tangent function.

• Do the following process repeatedly, until this algorithm returns a value:
1. Run the ExpMinus algorithm with parameter z. Let r be the result of that run.
2. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1

− r. Otherwise, if r is 1, return 0.

Note: Follows from observing that tanh(z/2) = (d + (1 − 𝜇)) / (c + 𝜇), where 𝜇 = exp(− z),
d = 0, and c = 1. (See algorithm for (d + 𝜇) / (c + 𝜆).)

145Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

43

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4.5.10 𝜆 *exp(z) / (𝜆 *exp(z) + (1 − 𝜆)) or 𝜆 *exp(z) / (1 + 𝜆 *(exp(z) − 1))

In this algorithm:

• z is an “exponential shift” (Peres et al. 2021)146 or “exponential twist” (Sadowsky and Bucklew 1990)147.
Its absolute value is written in one of the ways described in the “ExpMinus” section.

• 𝜆 is a coin that shows heads with probability equal to the probability to be shifted.

The algorithm follows:

• Do the following process repeatedly, until this algorithm returns a value:
1. Flip the 𝜆 input coin. Let flip be the result of that flip.
2. Run the algorithm for expit(z) with z=z. If the run returns 1 and if flip is 1, return 1. If the

run returns 0 and if flip is 0, return 0.

Note: This is also a special case of the two-coin algorithm, where 𝛽 =1, c=exp(z), d=1, 𝜆 = 𝜆 ,
and 𝜇 = 1 − 𝜆 .

4.5.11 (1 + exp(z − w)) / (1 + exp(z))

In this algorithm, z is a number (positive or not), and w is 0 or greater, and their absolute values are each
written in one of the ways described in the “ExpMinus” section148“.

• If z is known to be 0 or greater:
– Run the ExpMinus algorithm with parameter w, then run the expit(z) algorithm with parameter

z. If the ExpMinus run returns 1 and the expit run returns 0, return 0. Otherwise, return 1.
• If z is known to be 0 or less:

– Run the ExpMinus algorithm with parameter w, then run the expit(z) algorithm with parameter
abs(z). If both runs return 0, return 0. Otherwise, return 1.

Notes:

1. (1 + exp(z − 1)) / (1 + exp(z)) = 1 − 1−𝑒−1
𝑒−𝑧+1 . (1 + exp(1 − 1)) / (1 + exp(1)) = 2 / (1 +

exp(2)) = (1 + exp(0)) / (1 + exp(1)).
2. For the similar function (1 + exp(z)) / (1 + exp(z+1)), use this algorithm with w =

1, except add 1 to z (if z is written as an integer and fractional part, add 1 to the integer
part; if written as a sum of numbers, append 1 to those numbers).

4.5.12 1/(2𝑚(𝑘+𝜆)) or exp(−(𝑘 + 𝜆) ⋅ ln(2𝑚))
This new algorithm uses the base-2 logarithm k + 𝜆 and is useful when this logarithm is very large. In this
algorithm, k ≥ 0 is an integer, and m ≥ 0 is an integer.

1. (Factor function in two parts. First, simulate 1/(2𝑚𝑘).) If k > 0, generate unbiased random bits until
a zero bit or k*m bits were generated this way, whichever comes first. If a zero bit was generated this
way, return 0.

2. (Rest of algorithm simulates 1/(2𝑚𝜆).) Create an input coin 𝜇 that does the following: “Flip the input
coin, then run the algorithm for ln(1+y/z) (given later) with y/z = 1/1. If both the call and the
flip return 1, return 1. Otherwise, return 0.” (Simulates ln(2)𝜆.)

3. Run the ExpMinus algorithm, with parameter 0 + 𝜇 (using the 𝜇 input coin), m times. If any of the
runs returns 0, return 0. Otherwise, return 1.

146Peres, N., Lee, A.R. and Keich, U., 2021. Exactly computing the tail of the Poisson-Binomial Distribution. ACM Transac-
tions on Mathematical Software (TOMS), 47(4), pp.1-19.
147Sadowsky, Bucklew, On large deviations theory and asymptotically efficient Monte Carlo estimation, IEEE Transactions on
Information Theory 36 (1990)
148https://peteroupc.github.io/bernoulli.html#ExpMinus_exp_minus__z

44

https://peteroupc.github.io/bernoulli.html#ExpMinus_exp_minus__z

4.5.13 1/(2(𝑥/𝑦)⋅𝜆) or exp(−𝜆 ⋅ ln(2𝑥/𝑦))
Based on the previous algorithm. In this algorithm, x ≥ 0 and y > 0 are integers.

1. Special case: If x is 0, return 1.
2. Let c = ceil(x/y). Create an input coin 𝜇 that does the following: “Flip the input coin, then run

the algorithm for ln(1+y/z) (given later) with y/z = 1/1. If both the call and the flip return 1,
return a number that is 1 with probability x/(y*c) and 0 otherwise. Otherwise, return 0.” (Simulates
ln(2) 𝑥𝑦

𝑐 𝜆.)
3. Run the ExpMinus algorithm, with parameter 0 + 𝜇 (using the 𝜇 input coin), c times. If any of the

runs returns 0, return 0. Otherwise, return 1.

4.5.14 Two-Coin Algorithm (c * 𝜆 * 𝛽 / (𝛽 * (c * 𝜆 + d * 𝜇) − (𝛽 − 1) * (c + d)))

This is the general two-coin algorithm of (Gonçalves et al., 2017)149 and (Vats et al. 2022)150. It takes two
input coins that each output heads (1) with probability 𝜆 or 𝜇 , respectively. It also takes parameters c and
d, each 0 or greater, and 𝛽 in the interval [0, 1], which is a so-called “portkey” or early rejection parameter
(when 𝛽 = 1, the formula simplifies to c * 𝜆 / (c * 𝜆 + d * 𝜇)). In Vats et al. (2022)151, 𝛽 , c, d, 𝜆 and 𝜇
correspond to 𝛽 , c𝑦, c𝑥, p𝑦, and p𝑥, respectively, in the “portkey” algorithm, or to 𝛽 , c̃𝑥, c̃𝑦, p̃𝑥, and p̃𝑦,
respectively, in the “flipped portkey” algorithm.

1. With probability 𝛽 , go to step 2. Otherwise, return 0. (For example, call ZeroOrOne with 𝛽 ’s
numerator and denominator, and return 0 if that call returns 0, or go to step 2 otherwise. ZeroOrOne
is described in my article on random sampling methods152.)

2. With probability c / (c + d), flip the 𝜆 input coin. Otherwise, flip the 𝜇 input coin. If the 𝜆 input
coin returns 1, return 1. If the 𝜇 input coin returns 1, return 0. If the corresponding coin returns 0,
go to step 1.

4.5.15 c * 𝜆 / (c * 𝜆 + d) or (c/d) * 𝜆 / (1 + (c/d) * 𝜆))
This algorithm, also known as the logistic Bernoulli factory (Huber 2016)153, (Morina et al., 2022)154, is
a special case of the two-coin algorithm above, but this time uses only one input coin.

1. With probability d / (c + d), return 0.
2. Flip the input coin. If the flip returns 1, return 1. Otherwise, go to step 1.

Note: Huber (2016) specifies this Bernoulli factory in terms of a Poisson point process, which
seems to require much more randomness on average.

4.5.16 (d + 𝜆) / c

In this algorithm, d and c must be integers, and 0 ≤ d < c.

1. Generate an integer in [0, c) uniformly at random, call it i.
2. If i < d, return 1. If i = d, flip the input coin and return the result. If neither is the case, return 0.

149Gonçalves, F. B., Łatuszyński, K. G., Roberts, G. O. (2017). Exact Monte Carlo likelihood-based inference for jump-diffusion
processes.
150Vats, D., Gonçalves, F. B., Łatuszyński, K. G., Roberts, G. O., “Efficient Bernoulli factory Markov chain Monte Carlo for
intractable posteriors”, Biometrika 109(2), June 2022 (also in arXiv:2004.07471 [stat.CO]).
151Vats, D., Gonçalves, F. B., Łatuszyński, K. G., Roberts, G. O., “Efficient Bernoulli factory Markov chain Monte Carlo for
intractable posteriors”, Biometrika 109(2), June 2022 (also in arXiv:2004.07471 [stat.CO]).
152https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
153Huber, M., “Optimal linear Bernoulli factories for small mean problems”, arXiv:1507.00843v2 [math.PR], 2016.
https://arxiv.org/abs/1507.00843v2
154Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise

via perfect sampling of Markov chains”, Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679

45

https://peteroupc.github.io/randomfunc.html#Boolean_True_False_Conditions
https://arxiv.org/abs/1507.00843v2
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679

4.5.17 d / (c + 𝜆)
In this algorithm, c and d must be rational numbers, c ≥ 1, and 0 ≤ d ≤ c. See also the algorithms for
continued fractions. (For example, when d = 1, this algorithm can simulate a probability of the form 1 / z,
where z is 1 or greater and made up of an integer part (c) and a fractional part (𝜆) that can be simulated
by a Bernoulli factory.)

1. With probability c / (1 + c), return a number that is 1 with probability d/c and 0 otherwise.
2. Flip the input coin. If the flip returns 1, return 0. Otherwise, go to step 1.

Note: A quick proof this algorithm works: Let x be the desired probability. Then—x = (c / (1
+ c)) * (d/c) +(1 − c / (1 + c)) * (𝜆 *0 + (1 − 𝜆)*x),and solving for x leads to x=d/(c+ 𝜆).

4.5.18 (d + 𝜇) / (c + 𝜆)
Combines the algorithms in the previous two sections.

In this algorithm, c and d must be integers, and 0 ≤ d < c.

1. With probability c / (1 + c), do the following:
1. Generate an integer in [0, c) uniformly at random, call it i.
2. If i < d, return 1. If i = d, flip the 𝜇 input coin and return the result. If neither is the case,

return 0.
2. Flip the 𝜆 input coin. If the flip returns 1, return 0. Otherwise, go to step 1.

4.5.19 (d + 𝜇) / ((d + 𝜇) + (c + 𝜆))
In this algorithm, c and d are integers 0 or greater, and 𝜆 and 𝜇 are the probabilities of heads of two different
input coins. In the intended use of this algorithm, 𝜆 and 𝜇 are backed by the fractional parts of two uniform
partially-sampled random numbers (PSRNs), and c and d are their integer parts, respectively.

1. Let D = d and C = c. Run the algorithm for (d + 𝜇) / (c + 𝜆) with 𝜆 and 𝜇 both being the 𝜇 input
coin, with d = D+C, and with c = 1+D + C. If the run returns 1:
1. If c is 0, return 1.
2. Run the algorithm for (d + 𝜇) / (c + 𝜆) with 𝜆 and 𝜇 both being the 𝜇 input coin, with d =

D, and with c = D + C. If the run returns 1, return 1. Otherwise, return 0.
2. Flip the 𝜆 input coin. If the flip returns 1, return 0. Otherwise, go to step 1.

4.5.20 d𝑘 / (c + 𝜆)𝑘, or (d / (c + 𝜆))𝑘

In this algorithm, c and d must be rational numbers, c ≥ 1, and 0 ≤ d ≤ c, and k must be an integer 0 or
greater.

1. Set i to 0.
2. If k is 0, return 1.
3. With probability c / (1 + c), do the following:

1. With probability d/c, add 1 to i and then either return 1 if i is now k or greater, or abort these
substeps and go to step 2 otherwise.

2. Return 0.
4. Flip the input coin. If the flip returns 1, return 0. Otherwise, go to step 2.

46

4.5.21 1/(1+ 𝜆)
This algorithm is a special case of the two-coin algorithm of (Gonçalves et al., 2017)155 and has bounded
expected running time for all 𝜆 parameters.156

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
2. Flip the input coin. If it returns 1, return 0. Otherwise, go to step 1.

Note: In this special case of the two-coin algorithm, 𝛽 =1, c=1, d=1, old 𝜆 equals 1, and 𝜇
equals new 𝜆 .

4.5.22 1/(2 − 𝜆)
1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
2. Flip the input coin. If it returns 0, return 0. Otherwise, go to step 1.

Note: Can be derived from the previous algorithm by observing that 1/(2 − 𝜆) = 1/(1 + (1 −
𝜆)).

4.5.23 1/(1+(m+ 𝜆)2)

This is a rational function (ratio of two polynomials) with variable 𝜆 , and this rational function admits
the following algorithm. In this algorithm, m must be an integer 0 or greater, and 𝜆 is the unknown heads
probability of a coin.

1. Let d be the three-item list [1, 2, 1] (for numerator 1). Let e be the three-item list [1+m2, 2*(1+m2+m),
1+m2+2*m+1] (for denominator). Find the highest number in e, then divide each item in d and in e
by that number (using rational arithmetic).

2. Run the first algorithm for rational functions157 in “Bernoulli Factory Algorithms”, with n = 2, and
with d and e given above.

4.5.24 1 / (1 + (x/y)* 𝜆)
Another special case of the two-coin algorithm. In this algorithm, x/y must be 0 or greater.

1. With probability y/(x+y), return 1.
2. Flip the input coin. If the flip returns 1, return 0. Otherwise, go to step 1.

Note: In this special case of the two-coin algorithm, 𝛽 =1, c=1, d=x/y, old 𝜆 equals 1, and 𝜇
equals new 𝜆 .

Example: ** 𝜇 / (1 + (x/y)* 𝜆)** (takes two input coins that simulate 𝜆 or 𝜇 , respectively):
Run the algorithm for 1 / (1 + (x/y)* 𝜆) using the 𝜆 input coin. If it returns 0, return 0.
Otherwise, flip the 𝜇 input coin and return the result.

4.5.25 𝜆𝑥/𝑦

In the algorithm below, the case where 0 < x/y < 1 is due to Mendo (2019)158. The algorithm works only
when x/y is 0 or greater.
155Gonçalves, F. B., Łatuszyński, K. G., Roberts, G. O. (2017). Exact Monte Carlo likelihood-based inference for jump-diffusion
processes.
156There are two other algorithms for this function, but they both converge very slowly when 𝜆 is very close to 1. One is
the general martingale algorithm (see “More Algorithms for Arbitrary-Precision Sampling”) with 𝑔(𝜆) = 𝜆, 𝑑0 = 1, and
𝑎𝑖 = (−1)𝑖. The other is the so-called “even-parity” construction from Flajolet et al. 2010: “(1) Flip the input coin. If it returns
0, return 1. (2) Flip the input coin. If it returns 0, return 0. Otherwise, go to step 1.”
157https://peteroupc.github.io/bernoulli.html#Certain_Rational_Functions
158Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

47

https://peteroupc.github.io/bernoulli.html#Certain_Rational_Functions

1. If x/y is 0, return 1.
2. If x/y is equal to 1, flip the input coin and return the result.
3. If x/y is greater than 1:

1. Set ipart to floor(x/y) and fpart to rem(x, y) (equivalent to x - y*floor(x/y)).
2. If fpart is greater than 0, subtract 1 from ipart, then call this algorithm recursively with x =

floor(fpart/2) and y = y, then call this algorithm, again recursively, with x = fpart − floor(fpart/2)
and y = y. Return 0 if either call returns 0. (This is done rather than the more obvious approach
in order to avoid calling this algorithm with fractional parts very close to 0, because the algorithm
runs much more slowly than for fractional parts closer to 1.)

3. If ipart is 1 or greater, flip the input coin ipart many times. Return 0 if any of these flips returns
1.

4. Return 1.
4. x/y is less than 1, so set i to 1.
5. Do the following process repeatedly, until this algorithm returns a value:

1. Flip the input coin; if it returns 1, return 1.
2. With probability x/(y*i), return 0. (Note: x/(y*i) = (x/y) * (1/i).)
3. Add 1 to i.

Notes:

1. When x/y is less than 1, the expected number of flips grows without bound as 𝜆 approaches
0. In fact, no fast Bernoulli factory algorithm can avoid this unbounded growth without
additional information on 𝜆 (Mendo 2019)159.

2. The problem of simulating 𝜆𝑥/𝑦 where 0 < 𝑥/𝑦, was also treated by Banerjee and Sinha
(1979)160.

4.5.26 sqrt(𝜆)
Special case of the previous algorithm with 𝜇 = 1/2.

• Set i to 1. Then do the following process repeatedly, until this algorithm returns a value:
1. Flip the input coin. If it returns 1, return 1.
2. With probability 1/(i*2), return 0.
3. Add 1 to i and go to step 1.

4.5.27 arctan(𝜆) / 𝜆
arctan(𝜆) is the inverse tangent of 𝜆 .

Based on the algorithm from Flajolet et al. (2010)161, but uses the two-coin algorithm (which has bounded ex-
pected running time for every 𝜆 parameter) rather than the even-parity construction (which does not).162163

• Do the following process repeatedly, until this algorithm returns a value:
1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return

1.
159Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.
160Banerjee, P. K., & Sinha, B. K. (1979). Generating an Event with Probability 𝑝𝛼, 𝛼 > 0. Sankhyā: The Indian Journal of
Statistics, Series B, 282-285.
161Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

162The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.
163Peres, N., Lee, A.R. and Keich, U., 2021. Exactly computing the tail of the Poisson-Binomial Distribution. ACM Transac-
tions on Mathematical Software (TOMS), 47(4), pp.1-19.

48

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

2. Generate u, a uniform random variate between 0 and 1, if it wasn’t generated yet.
3. Sample from the number u twice, and flip the input coin twice. If all of these calls and flips

return 1, return 0.

4.5.28 arctan(𝜆) / 𝜋
1. Run the algorithm for 1/ 𝜋 . If the run returns 0, return 0.
2. Do the following process repeatedly, until this algorithm returns a value:

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), flip the
input coin and return the result.

2. Generate u, a uniform random variate between 0 and 1, if it wasn’t generated yet.
3. Sample from the number u twice, and flip the input coin twice. If all of these calls and flips

return 1, return 0.

4.5.29 arctan(𝜆)
(Flajolet et al., 2010)164: Call the algorithm for arctan(𝜆) / 𝜆 and flip the input coin. Return 1 if the
call and flip both return 1, or 0 otherwise.

4.5.30 cos(𝜆)
This function can be rewritten as a power series expansion. To simulate it, use the general martingale
algorithm (see “Certain Power Series”), with 𝑔(𝜆) = 𝜆, and with 𝑑0 = 1 and power coefficients 𝑎𝑖 =
(−1)𝑖/2/(𝑖!) if 𝑖 is even165 and 0 otherwise.

4.5.31 sin(𝜆 *sqrt(c)) / (𝜆 *sqrt(c))

This function can be rewritten as a power series expansion. To simulate it, use the general martingale
algorithm (see “Certain Power Series”), with 𝑔(𝜆) = 𝜆, and with 𝑑0 = 1 and power coefficients 𝑎𝑖 =
(−1)𝑖/2𝑐𝑖/2

(𝑖+1)! if 𝑖 is even166 and 0 otherwise. In this algorithm, c must be a rational number in the interval (0,
6].

4.5.32 sin(𝜆)
Equals the previous function times 𝜆 , with c = 1.

• Flip the input coin. If it returns 0, return 0. Otherwise, run the algorithm for sin(𝜆 *sqrt(c)) / (𝜆
*sqrt(c)) with c = 1, then return the result.

164Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

165“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
166“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.

49

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4.5.33 ln(1+ 𝜆)
Based on the algorithm from Flajolet et al. (2010)167, but uses the two-coin algorithm (which has bounded ex-
pected running time for every 𝜆 parameter) rather than the even-parity construction (which does not).168169

• Do the following process repeatedly, until this algorithm returns a value:
1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), flip the

input coin and return the result.
2. Generate u, a uniform random variate between 0 and 1, if u wasn’t generated yet.
3. Sample from the number u, then flip the input coin. If the call and the flip both return 1,

return 0.

4.5.34 ln(c+ 𝜆)/(c+ 𝜆)
In this algorithm:

• c is a rational number and is 1 or greater.
• 𝜆 is the unknown heads probability of a coin.

The algorithm follows.

1. Run the algorithm for d / (c + 𝜆), with d=1 and c=c, repeatedly, until the run returns 1, then set g
to the number of runs that returned 0 this way.

2. If g is 0, return 0. Otherwise, return a number that is 1 with probability 1/g or 0 otherwise.

Note: This algorithm is based on the von Neumann schema170 with the single-cycle permuta-
tion class. In this case, given a coin that shows heads with probability z, the schema will terminate
in one iteration with probability (1 − z)*ln(1/(1 − z)). (In step 2 of the algorithm, returning 0
means that the von Neumann schema would require another iteration.) Thus, if the coin shows
heads with probability 1 − z, the one-iteration probability is z*ln(1/z), so if the coin shows heads
with probability 1 − 1/(m+z), the one-iteration probability is (1/(m+z))*ln(1/(1/(m+z))) =
ln(m+z)/(m+z).

4.5.35 arcsin(𝜆) + sqrt(1 − 𝜆 2) − 1

(Flajolet et al., 2010)171. arcsin(𝜆) is the inverse sine of 𝜆 . The algorithm given here uses the two-coin
algorithm rather than the even-parity construction172.

1. Generate u, a uniform random variate between 0 and 1.
2. Create a secondary coin 𝜇 that does the following: “Sample from the number u twice, and flip the

input coin twice. If all of these calls and flips return 1, return 0. Otherwise, return 1.”
3. Call the algorithm for 𝜇 1/2 using the secondary coin 𝜇 . If it returns 0, return 0.

167Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

168The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.
169Sadowsky, Bucklew, On large deviations theory and asymptotically efficient Monte Carlo estimation, IEEE Transactions on
Information Theory 36 (1990)
170https://peteroupc.github.io/bernoulli.html#Flajolet_s_Probability_Simulation_Schemes
171Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

172The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.

50

https://peteroupc.github.io/bernoulli.html#Flajolet_s_Probability_Simulation_Schemes
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), flip the input
coin and return the result.

5. Sample from the number u once, and flip the input coin once. If both the call and flip return 1,
return 0. Otherwise, go to step 4.

4.5.36 tanh(z)

tanh is the hyperbolic tangent function. In this algorithm, z is 0 or greater and is written in one of the ways
described in the “ExpMinus” section.173

• Do the following process repeatedly, until this algorithm returns a value:
1. Run the ExpMinus algorithm, with parameter z, twice. Let r be a number that is 1 if both runs

returned 1, or 0 otherwise.
2. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1

− r. Otherwise, if r is 1, return 0.

Note: Follows from observing that tanh(z) = (d + (1 − 𝜇)) / (c + 𝜇), where 𝜇 = (exp(− z))2,
d = 0, and c = 1.

4.5.37 Expressions Involving Polylogarithms

The following algorithm simulates the expression Li𝑟(𝜆) * (1 / 𝜆 − 1), where Li𝑟(.) is a polylogarithm of
order r, and r is an integer 1 or greater. However, even with a relatively small r such as 6, the expression
quickly approaches a straight line.

If 𝜆 is 1/2, this expression simplifies to Li𝑟(1/2). See also (Flajolet et al., 2010)174. See also “Convex
Combinations” (the case of 1/2 works by decomposing the series forming the polylogarithmic constant
into g(i) = (1/2)𝑖, which sums to 1, and h𝑖() = 1/i𝑟, where i ≥ 1).

1. Flip the input coin until it returns 0, and let t be 1 plus the number of times the coin returned 1 this
way.

2. Return a number that is 1 with probability 1/t𝑟 and 0 otherwise.

4.5.38 min(𝜆 , 1/2) and min(𝜆 , 1 − 𝜆)
My own algorithm for min(𝜆 , 1/2) is as follows. See the end of this section for the derivation of this
algorithm.

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), flip the input
coin and return the result.

2. Run the algorithm for min(𝜆 , 1 − 𝜆) given later, and return the result of that run.

And the algorithm for min(𝜆 , 1 − 𝜆) is as follows:
1. (Random walk.) Generate unbiased random bits until more zeros than ones are generated this way for

the first time. Then set m to (n − 1)/2+1, where n is the number of bits generated this way.
2. (Build a degree-m*2 polynomial equivalent to (4* 𝜆 *(1 − 𝜆))𝑚/2.) Let z be (4𝑚/2)/choose(m*2,m).

Define a polynomial of degree m*2 whose (m*2)+1 Bernstein coefficients are all zero except the m 𝑡ℎ

Bernstein coefficient (starting at 0), whose value is z. Elevate the degree of this polynomial enough
173There is another algorithm for tanh(z), based on Lambert’s continued fraction for tanh(.), but it works only if 0 ≤ z ≤ 1
and if z is the probability of heads of an input coin. The algorithm begins with k equal to 1. Then: (1) If k is 1, generate
an unbiased random bit, then if that bit is 1, flip the input coin and return the result; (2) If k is greater than 1, then with
probability k/(1+k), flip the input coin twice, and if either or both flips returned 0, return 0, and if both flips returned 1, return
a number that is 1 with probability 1/k and 0 otherwise; (3) Do a separate run of the currently running algorithm, but with k
= k + 2. If the separate run returns 1, return 0; (4) Go to step 2.
174Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

51

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

times so that all its Bernstein coefficients are 1 or less (degree elevation increases the polynomial’s
degree without changing its shape or position; see the derivation at the end of this section). Let d be
the new polynomial’s degree.

3. (Simulate the polynomial, whose degree is d (Goyal and Sigman 2012)175.) Flip the input coin d times
and set h to the number of ones generated this way. Let a be the h 𝑡ℎ Bernstein coefficient (starting
at 0) of the new polynomial. With probability a, return 1. Otherwise, return 0.

I suspected that the required degree d would be floor(m*2/3)+1, as described in the appendix. With help
from the MathOverflow community176, steps 2 and 3 of the algorithm above can be described more
efficiently as follows:

• (2.) Let r be floor(m*2/3)+1, and let d be m*2+r.
• (3.) (Simulate the polynomial, whose degree is d.) Flip the input coin d times and set h to the number

of ones generated this way. Let a be (1/2) * 2 2 *choose(r,h − m)/choose(d, h) (the polynomial’s h
𝑡ℎ Bernstein coefficient starting at 0; the first term is 1/2 because the polynomial being simulated has
the value 1/2 at the point 1/2). With probability a, return 1. Otherwise, return 0.

The min(𝜆 , 1 − 𝜆) algorithm can be used to simulate certain other piecewise linear functions with three
breakpoints, and algorithms for those functions are shown in the following table. In the table, 𝜇 is the
unknown probability of heads of a second input coin, and 𝜈 is the unknown probability of heads of a third
input coin.

Breakpoints Algorithm
0 at 0; 𝜈 /2 at 1/2; and 𝜈 * 𝜇 at 1. Flip the 𝜈 input coin. If it returns 0, return 0.

Otherwise, flip the 𝜇 input coin. If it returns 1, flip
the 𝜆 input coin and return the result. Otherwise,
run the algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆
input coin, and return the result of that run.

(1 − 𝜇)/2 at 0; 1/2 at 1/2; and 𝜇 /2 at 1. Generate an unbiased random bit. If that bit is 1,
run the algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆
input coin, and return the result of that run.
Otherwise, flip the 𝜇 input coin. If it returns 1, flip
the 𝜆 input coin and return the result. Otherwise,
flip the 𝜆 input coin and return 1 minus the result.

0 at 0; 𝜇 /2 at 1/2; and 𝜇 /2 at 1. Flip the 𝜇 input coin. If it returns 0, return 0.
Otherwise, generate an unbiased random bit. If that
bit is 1 (which happens with probability 1/2), flip
the 𝜆 input coin and return the result. Otherwise,
run the algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆
input coin, and return the result of that run.

𝜇 at 0; 1/2 at 1/2; and 0 at 1. Flip the 𝜇 input coin. If it returns 1, flip the 𝜆
input coin and return 1 minus the result. Otherwise,
run the algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆
input coin, and return the result of that run.

1 at 0; 1/2 at 1/2; and 𝜇 at 1. Flip the 𝜇 input coin. If it returns 0, flip the 𝜆 input
coin and return 1 minus the result. Otherwise, run
the algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆 input
coin, and return 1 minus the result of that run.

175Goyal, V. and Sigman, K., 2012. On simulating a class of Bernstein polynomials. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 22(2), pp.1-5.
176https://mathoverflow.net/questions/381419

52

https://mathoverflow.net/questions/381419

Breakpoints Algorithm
𝜇 at 0; 1/2 at 1/2; and 1 at 1. Flip the 𝜇 input coin. If it returns 0, flip the 𝜆

input coin and return the result. Otherwise, run the
algorithm for min(𝜆 , 1 − 𝜆) using the 𝜆 input coin,
and return 1 minus the result of that run.

B at 0; B+(A/2) at 1/2; and B+(A/2) at 1. (A ≤ 1 and B ≤ 1 − A are rational numbers.) With
probability 1 − A, return a number that is 1 with
probability B/(1 − A) and 0 otherwise. Otherwise,
generate an unbiased random bit. If that bit is 1,
flip the 𝜆 input coin and return the result.
Otherwise, run the algorithm for min(𝜆 , 1 − 𝜆)
using the 𝜆 input coin, and return the result of that
run.

Example: Let 𝑓 be 𝜆/2 if 𝜆 ≤ 1/2, and 1/2 − 𝜆/2 otherwise. Then use the algorithm for 0 at 0;
𝜈 /2 at 1/2; and 𝜈 * 𝜇 at 1, where 𝜈 is a coin that returns 1 with probability 1/2 and 0 otherwise,
and 𝜇 is a coin that always returns 0.

Note: The following explains how the algorithm is derived. The function min(𝜆 , 1/2) can be
rewritten as A + B where—

• A = (1/2) * 𝜆 , and
• B = (1/2) * min(𝜆 , 1 − 𝜆) = (1/2) * ((1 − sqrt(1 − 4* 𝜆 *(1 − 𝜆)))/2) = (1/2) *

∑𝑘≥1 ℎ𝑘(𝜆),
revealing that the function is a convex combination, and B is itself a convex combination
where—

• g(k) = choose(2*k,k)/((2*k − 1)*2 2∗), and
• h𝑘(𝜆) = (4* 𝜆 *(1 − 𝜆))𝑘 / 2 = (𝜆 *(1 − 𝜆))𝑘 * 4𝑘 / 2

(see also Wästlund (1999)177; Dale et al. (2015)178). The right-hand side of h, which is the
polynomial built in step 3 of the algorithm for min(𝜆 , 1 − 𝜆), is a polynomial of degree k*2 with
Bernstein coefficients—

• z = (4𝑣/2) / choose(v*2,v) at v=k, and
• 0 elsewhere.

Unfortunately, z can be greater than 1, so that the polynomial can’t be simulated, as is, using the
Bernoulli factory algorithm for polynomials in Bernstein form179. Fortunately, the polyno-
mial’s degree can be elevated to bring the Bernstein coefficients to 1 or less (for degree elevation
and other algorithms, see Tsai and Farouki (2001)180). Moreover, due to the special form of the
Bernstein coefficients in this case, the degree elevation process can be greatly simplified. Given
an even degree d as well as z (as defined above), the degree elevation is as follows:

1. Set r to floor(d/3) + 1. (This starting value is because when this routine finishes, r/d
appears to converge to 1/3 as d gets large, for the polynomial in question.) Let c be
choose(d,d/2).

2. Create a list of d+r+1 Bernstein coefficients, all zeros.
177Wästlund, J., “Functions arising by coin flipping”, 1999.
178Dale, H., Jennings, D. and Rudolph, T., 2015, “Provable quantum advantage in randomness processing”, Nature communi-

cations 6(1), pp. 1-4.
179https://peteroupc.github.io/bernoulli.html#Certain_Polynomials
180Tsai, Yi-Feng, Farouki, R.T., “Algorithm 812: BPOLY: An Object-Oriented Library of Numerical Algorithms for Polyno-
mials in Bernstein Form”, ACM Trans. Math. Softw. 27(2), 2001.

53

https://peteroupc.github.io/bernoulli.html#Certain_Polynomials
http://www.math.chalmers.se/~wastlund/coinFlip.pdf

3. For each integer i satisfying 0 ≤ i ≤ d+r:
• If max(0, i − r) ≤ d/2 and if d/2 ≤ min(d, i), set the i 𝑡ℎ Bernstein coefficient (starting

at 0) to z*c*choose(r,i − d/2)* / choose(d+r, i).
4. If all the Bernstein coefficients are 1 or less, return them. Otherwise, add d/2 to r and go

to step 2.

4.6 Algorithms for Specific Functions of 𝜆 (Probability-Sensitive)
This section describes algorithms for specific functions that require knowing certain information on the
probability of input coins.

4.6.1 𝜆 + 𝜇
(Nacu and Peres 2005, proposition 14(iii))181. This algorithm takes two input coins that simulate 𝜆 or 𝜇 ,
respectively, and a parameter 𝜖 such that 0 < 𝜖 ≤ 1 − 𝜆 − 𝜇 .

1. Create a 𝜈 input coin that does the following: “Generate an unbiased random bit. If that bit is 1
(which happens with probability 1/2), flip the 𝜆 input coin and return the result. Otherwise, flip the
𝜇 input coin and return the result.”

2. Run a linear Bernoulli factory using the 𝜈 input coin, x/y = 2/1, and 𝜖 = 𝜖 , and return the result.

4.6.2 𝜆 − 𝜇
(Nacu and Peres 2005, proposition 14(iii-iv))182. This algorithm takes two input coins that simulate 𝜆 or 𝜇 ,
respectively, and a parameter 𝜖 such that 0 < 𝜖 ≤ 𝜆 − 𝜇 (the greater 𝜖 is, the more efficient).

1. Create a 𝜈 input coin that does the following: “Generate an unbiased random bit. If that bit is 1 (which
happens with probability 1/2), flip the 𝜆 input coin and return 1 minus the result. Otherwise, flip
the 𝜇 input coin and return the result.”

2. Run a linear Bernoulli factory using the 𝜈 input coin, x/y = 2/1, and 𝜖 = 𝜖 , and return 1 minus
the result.

4.6.3 𝜖 / 𝜆
(Lee et al. 2014)183. In the following algorithm:

• 𝜆 is the probability of heads of an input coin.
• 𝜖 is a rational number that satisfies 0 < 𝜖 ≤ 𝜆 ≤ 1.

The algorithm follows.

1. Set 𝛽 to max(𝜖 , 1/2) and set 𝛾 to 1 − (1 − 𝛽) / (1 − (𝛽 / 2)).
2. Create a 𝜇 input coin that flips the input coin and returns 1 minus the result.
3. With probability 𝜖 , return 1.
4. Run a linear Bernoulli factory with the 𝜇 input coin, x/y = 1 / (1 − 𝜖), and 𝜖 = 𝛾 . If the result

is 0, return 0. Otherwise, go to step 3. (Running the linear Bernoulli factory this way simulates the
probability (𝜆 − 𝜖)/(1 − 𝜖) or 1 − (1 − 𝜆)/(1 − 𝜖)).

181Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
182Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
183Lee, A., Doucet, A. and Łatuszyński, K., 2014. “Perfect simulation using atomic regeneration with application to

Sequential Monte Carlo”, arXiv:1407.5770v1 [stat.CO]. https://arxiv.org/abs/1407.5770v1

54

https://projecteuclid.org/euclid.aoap/1106922322
https://projecteuclid.org/euclid.aoap/1106922322
https://arxiv.org/abs/1407.5770v1

4.6.4 𝜇 / 𝜆
(Morina 2021)184. In this division algorithm:

• 𝜇 is the probability of heads of an input coin and represents the dividend.
• 𝜆 is the probability of heads of another input coin, represents the divisor, and satisfies 0 ≤ 𝜇 < 𝜆 ≤ 1.
• 𝜖 is a rational number that satisfies 0 < 𝜖 ≤ 𝜆 − 𝜇 . 𝜖 can be a positive rational number that equals a

lower bound for 𝜆 minus an upper bound for 𝜇 .

The algorithm follows.

• Do the following process repeatedly, until this algorithm returns a value:
1. Generate an unbiased random bit (either 0 or 1 with equal probability).
2. If the bit generated in step 1 is 1, flip the 𝜇 input coin. If it returns 1, return 1.
3. If the bit generated in step 1 is 0, run the algorithm for 𝜆 − 𝜇 with 𝜖 = 𝜖 . If it returns 1,

return 0.

4.6.5 𝜆 * x/y

In general, this function will touch 0 or 1 at some point greater than 0 and less than 1, when x/y > 1. This
makes the function relatively non-trivial to simulate in this case.

Huber has suggested several algorithms for this function over the years.

The first algorithm in this document comes from Huber (2014)185. It uses three parameters:

• x and y are integers such that x/y > 0 and y!=0.
• 𝜖 is a rational number greater than 0 and less than 1. If x/y is greater than 1, 𝜖 must be such that

0 < 𝜖 ≤ 1 − 𝜆 * x/y, in order to bound the function away from 0 and 1. The greater 𝜖 is, the more
efficient.

As a result, some knowledge of 𝜆 has to be available to the algorithm. The algorithm as described below
also includes certain special cases, not mentioned in Huber, to make it more general.

1. Special cases: If x is 0, return 0. Otherwise, if x equals y, flip the input coin and return the result.
Otherwise, if x is less than y, then do the following: “With probability x/y, flip the input coin and
return the result; otherwise return 0.”

2. Set c to x/y, and set k to 23 / (5 * 𝜖).
3. If 𝜖 is greater than 644/1000, set 𝜖 to 644/1000.
4. Set i to 1.
5. While i is not 0:

1. Flip the input coin. If it returns 0, then generate numbers that are each 1 with probability (c −
1) / c and 0 otherwise, until 1 is generated this way, then add 1 to i for each number generated
this way (including the last).

2. Subtract 1 from i.
3. If i is k or greater:

1. Generate i numbers that are each 1 with probability 2 / (𝜖 + 2) or 0 otherwise. If any of
those numbers is 0, return 0.

2. Multiply c by 2 / (𝜖 + 2), then divide 𝜖 by 2, then multiply k by 2.
6. (i is 0.) Return 1.

Huber (2016)186 presented a second algorithm using the same three parameters, but it’s omitted here because
it appears to perform worse than the algorithm given above and the algorithm for (𝜆 * x/y)𝑖 below (see
184Morina, Giulio (2021) Extending the Bernoulli Factory to a dice enterprise. PhD thesis, University of Warwick.
185Huber, M., “Nearly optimal Bernoulli factories for linear functions”, arXiv:1308.1562v2 [math.PR], 2014. https:
//arxiv.org/abs/1308.1562v2

186Huber, M., “Optimal linear Bernoulli factories for small mean problems”, arXiv:1507.00843v2 [math.PR], 2016.
https://arxiv.org/abs/1507.00843v2

55

https://arxiv.org/abs/1308.1562v2
https://arxiv.org/abs/1308.1562v2
https://arxiv.org/abs/1507.00843v2

also Morina 2021187).

Huber (2016) also included a third algorithm that simulates 𝜆 * x / y. The algorithm works only if 𝜆 * x /
y is known to be less than 1/2. This third algorithm takes three parameters:

• x and y are integers such that x/y > 0 and y!=0.
• m is a rational number such that 𝜆 * x / y ≤ m < 1/2.

The algorithm follows.

1. The same special cases as for the first algorithm in this section apply.
2. Run the logistic Bernoulli factory algorithm with c/d = (x/y) / (1 − 2 * m). If it returns 0, return

0.
3. With probability 1 − 2 * m, return 1.
4. Run a linear Bernoulli factory with x/y = (x/y) / (2 * m) and 𝜖 = 1 − m.

Note: For approximate methods to simulate 𝜆 *(x/y), see the page “Supplemental Notes for
Bernoulli Factory Algorithms188”.

4.6.6 (𝜆 * x/y)𝑖

(Huber 2019)189. This algorithm uses four parameters:

• x and y are integers such that x/y > 0 and y!=0.
• i is an integer 0 or greater.
• 𝜖 is a rational number such that 0 < 𝜖 < 1. If x/y is greater than 1, 𝜖 must be such that 0 < 𝜖 ≤ 1 −

𝜆 * x/y.

The algorithm also has special cases not mentioned in Huber 2019.

1. Special cases: If i is 0, return 1. If x is 0, return 0. Otherwise, if x equals y and i equals 1, flip the
input coin and return the result.

2. Special case: If x is less than y and i = 1, then do the following: “With probability x/y, flip the input
coin and return the result; otherwise return 0.”

3. Special case: If x is less than y, then create a secondary coin that does the following: “With probability
x/y, flip the input coin and return the result; otherwise return 0”, then flip the secondary coin i times
until a flip returns 0, whichever comes first, then return a number that is 1 if all the flips, including
the last, return 1, or 0 otherwise.

4. Set t to 355/100 and c to x/y.
5. While i is not 0:

1. While i > t / 𝜖 :
1. Set 𝛽 to (1 − 𝜖 / 2) / (1 − 𝜖).
2. Run the algorithm for (a/b)𝑧 (given in the irrational constants section) with a=1, b= 𝛽 ,

and z = i. If the run returns 0, return 0.
3. Multiply c by 𝛽 , then divide 𝜖 by 2.

2. Run the logistic Bernoulli factory with c/d = c, then set z to the result. Set i to i + 1 − z *
2.

6. (i is 0.) Return 1.

4.6.7 Linear Bernoulli Factories

In this document, a linear Bernoulli factory refers to one of the following:
187Morina, Giulio (2021) Extending the Bernoulli Factory to a dice enterprise. PhD thesis, University of Warwick.
188https://peteroupc.github.io/bernsupp.html
189Huber, M., “Designing perfect simulation algorithms using local correctness”, arXiv:1907.06748v1 [cs.DS], 2019.
https://arxiv.org/abs/1907.06748v1

56

https://peteroupc.github.io/bernsupp.html
https://peteroupc.github.io/bernsupp.html
https://arxiv.org/abs/1907.06748v1

• The first algorithm for ** 𝜆 * x/y** with the stated parameters x, y, and 𝜖 .
• The algorithm for (𝜆 * x/y)𝑖 with the stated parameters x, y, and 𝜖 , and with i = 1 (see previous

section).

4.6.8 𝜆𝜇

This algorithm is based on the algorithm for 𝜆 / , but changed to accept a second input coin (which
outputs heads with probability 𝜇) rather than a fixed value for the exponent. For this algorithm, 𝜆 and 𝜇
may not both be 0.

• Set i to 1. Then do the following process repeatedly, until this algorithm returns a value:
1. Flip the input coin that simulates the base, 𝜆 ; if it returns 1, return 1.
2. Flip the input coin that simulates the exponent, 𝜇 ; if it returns 1, return 0 with probability 1/i.
3. Add 1 to i.

4.6.9 (1 − 𝜆)/cos(𝜆)
(Flajolet et al., 2010)190. Uses an average number of flips that grows without bound as 𝜆 goes to 1.

1. Flip the input coin until the flip returns 0. Then set G to the number of times the flip returns 1 this
way.

2. If G is odd, return 0.
3. Generate u, a uniform random variate between 0 and 1, then set i to 1.
4. While i is less than G:

1. Generate a uniform random variate between 0 and 1 V.
2. If i is odd191 and V is less than U, return 0.
3. If i is even192 and U is less than V, return 0.
4. Add 1 to i, then set U to V.

5. Return 1.

4.6.10 (1 − 𝜆) * tan(𝜆)
(Flajolet et al., 2010)193. Uses an average number of flips that grows without bound as 𝜆 goes to 1.

1. Flip the input coin until the flip returns 0. Then set G to the number of times the flip returns 1 this
way.

2. If G is even, return 0.
3. Generate u, a uniform random variate between 0 and 1, then set i to 1.
4. While i is less than G:

1. Generate a uniform random variate between 0 and 1 V.
2. If i is odd194 and V is less than U, return 0.
3. If i is even195 and U is less than V, return 0.
4. Add 1 to i, then set U to V.

5. Return 1.
190Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

191“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
192“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
193Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

194“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
195“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.

57

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4.6.11 ln((c + d + 𝜆)/c)

In this algorithm, d and c are integers, 0 < c, and c > d ≥ 0, and (c + d + 𝜆)/c ≤ exp(1).

• Do the following process repeatedly, until this algorithm returns a value:
1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), run the

algorithm for (d + 𝜆) / c with d = d and c = c, and return the result.
2. Generate u, a uniform random variate between 0 and 1, if u wasn’t generated yet.
3. Sample from the number u, then run the algorithm for (d + 𝜆) / c with d = d and c = c.

If both calls return 1, return 0.

4.6.12 arcsin(𝜆) / 2

The Flajolet paper doesn’t explain in detail how arcsin(𝜆)/2 arises out of arcsin(𝜆) + sqrt(1 − 𝜆 2) − 1
via Bernoulli factory constructions, but here is an algorithm.196 However, the number of input coin flips is
expected to grow without bound as 𝜆 approaches 1.

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), run the
algorithm for arcsin(𝜆) + sqrt(1 − 𝜆 2) − 1 and return the result.

2. Create a secondary coin 𝜇 that does the following: “Flip the input coin twice. If both flips return 1,
return 0. Otherwise, return 1.” (The coin simulates 1 − 𝜆 2.)

3. Call the algorithm for 𝜇 1/2 using the secondary coin 𝜇 . If it returns 0, return 1; otherwise, return
0. (This step effectively cancels out the sqrt(1 − 𝜆 2) − 1 part and divides by 2.)

4.7 Other Factory Functions
Algorithms in bold are given in this page.

To simulate: Follow this algorithm:
1/sqrt(𝜋) Create 𝜆 coin for algorithm 1/ 𝜋 .Run algorithm for

sqrt(𝜆).
1/sqrt(h+ 𝜆) (𝜆 is unknown heads probability of a coin; h ≥ 1 is a

rational number.)Create 𝜇 coin for algorithm d/(c+ 𝜆)
with c=h and d=1.Run algorithm for sqrt(𝜆) with 𝜆 being
the 𝜇 coin.

1 / (c + 𝜆) (𝜆 is unknown heads probability of a coin; c ≥ 1 is a
rational number.)Run algorithm for d / (c + 𝜆) with d =
1.

1 / (1 + 𝜆 2) (Slope function of arctan(𝜆). 𝜆 is unknown heads
probability of a coin.)Create 𝜇 coin that flips 𝜆 coin twice
and returns either 1 if both flips return 1, or 0
otherwise.Run algorithm for d / (c + 𝜆) with d=1, c=1,
and 𝜆 being the 𝜇 coin.

1 / (c + exp(− z)) (z ≥ 0 is written as described in “ExpMinus” section; c
≥ 1 is a rational number.)Create 𝜇 coin for ExpMinus
algorithm with parameter z.Run algorithm for d / (c + 𝜆)
with d=1, c=c, and 𝜆 being the 𝜇 coin.

1/(2 +𝜆) orexp(− (k + 𝜆)*ln(2)) (𝜆 is unknown heads probability of a coin. k ≥ 0 is an
integer.)Run algorithm 1/(2 (+𝜆)) with k=k and m=1.

196One of the only implementations I could find of this, if not the only, was a Haskell implementation. https://github.c
om/derekelkins/buffon/blob/master/Data/Distribution/Buffon.hs

58

https://github.com/derekelkins/buffon/blob/master/Data/Distribution/Buffon.hs
https://github.com/derekelkins/buffon/blob/master/Data/Distribution/Buffon.hs

To simulate: Follow this algorithm:
1 − exp(− z) = (exp(z) − 1) * exp(− z) =
(exp(z) − 1) / exp(z)

(z ≥ 0 is written as described in “ExpMinus”
section.)Run ExpMinus algorithm with parameter z, and
return 1 minus the result.

exp(− ((1 − 𝜆)1 * c)) ((Dughmi et al. 2021)197; applies an exponential
weight—here, c—to an input coin. 𝜆 is unknown heads
probability of a coin.)(1) If c is 0, return 1.(2) Generate N,
a Poisson random variate with mean c.(3) Flip the input
coin until the flip returns 0 or the coin is flipped N times,
whichever comes first, then return a number that is 1 if N
is 0 or all of the coin flips (including the last) return 1, or 0
otherwise.

exp(𝜆 2) − 𝜆 *exp(𝜆 2) (𝜆 is unknown heads probability of a coin.)Run general
martingale algorithm with 𝑔(𝜆) = 𝜆, 𝑑0 = 1, and
𝑎𝑖 = (−1)𝑖

(floor(𝑖/2))! .
1 − 1 / (1+(𝜇 * 𝜆 /(1 − 𝜇)) =(𝜇 * 𝜆 /(1 −
𝜇) / (1+(𝜇 * 𝜆 /(1 − 𝜇))

(Special case of logistic Bernoulli factory; 0 ≤ 𝜆 ≤ 1, 0
≤ 𝜇 < 1, and both are unknown heads probabilities of two
coins.)(1) Flip the 𝜇 coin. If it returns 0, return 0. (Coin
samples probability 𝜇 /(𝜇 + (1 − 𝜇)) = 𝜇 .) (2) Flip the 𝜆
coin. If it returns 1, return 1. Otherwise, go to step 1.

𝜆 /(1+ 𝜆) (𝜆 is unknown heads probability of a coin.)Run algorithm
for 1/(1+ 𝜆), then return 1 minus the result.

c * 𝜆 / (c * 𝜆 + (d+ 𝜇)) = (c/(d+ 𝜇)) * 𝜆 /
(1 + (c/(d+ 𝜇)) * 𝜆))

(c ≥ 0 is an integer; d ≥ 0 is an integer; 0 ≤ 𝜆 ≤ 1, 0 ≤ 𝜇
< 1, and both are unknown heads probabilities of two
coins.)(1) If c is 0, return 0.(2) Let D = d and C = c, then
run the algorithm for (d + 𝜇) / (c + 𝜆) with 𝜆 and 𝜇
both being the 𝜇 input coin, with d = D, and with c = D +
C. If the run returns 1, return 0.(3) Flip the 𝜆 input coin. If
the flip returns 1, return 1. Otherwise, go to step 2.

(d+ 𝜇) / (c * 𝜆 + (d+ 𝜇)) (c, d, 𝜆 , and 𝜇 are as in the previous algorithm.) Run the
previous algorithm and return 1 minus the result.

exp(z)/(1+exp(z))2 (Equals expit(z)*(1 − expit(z)). z is described in “expit(z)”
section.)Run the algorithm for expit(z) twice, with m=0.
If the first run returns 1 and the second returns 0, return 1.
Otherwise, return 0.

𝜈 * 1 + (1 − 𝜈) * 𝜇 = 𝜈 + 𝜇 − (𝜈 * 𝜇) (Logical OR. Flajolet et al., 2010198. Special case of 𝜈 * 𝜆 +
(1 − 𝜈) * 𝜇 with 𝜆 = 1. 𝜈 and 𝜇 are unknown heads
probabilities of two coins.)Flip the 𝜈 input coin and the 𝜇
input coin. Return 1 if either flip returns 1, and 0
otherwise.

1 − 𝜈 (Complement. Flajolet et al., 2010199. Special case of 𝜈 * 𝜆
+ (1 − 𝜈) * 𝜇 with 𝜆 = 0 and 𝜇 = 1. 𝜈 is unknown heads
probability of a coin.)Flip the 𝜈 input coin and return 1
minus the result.

𝜈 * 𝜆 (Logical AND or Product. Flajolet et al., 2010200. Special
case of 𝜈 * 𝜆 + (1 − 𝜈) * 𝜇 with 𝜇 = 0. 𝜈 and 𝜆 are
unknown heads probabilities of two coins.)Flip the 𝜈 input
coin and the 𝜆 input coin. Return 1 if both flips return 1,
and 0 otherwise.

59

To simulate: Follow this algorithm:
(𝜆 + 𝜇)/2 = (1/2)* 𝜆 + (1/2)* 𝜇 (Mean. Nacu and Peres 2005, proposition 14(iii)201;

Flajolet et al., 2010202. Special case of 𝜈 * 𝜆 + (1 − 𝜈) * 𝜇
with 𝜈 = 1/2. 𝜆 and 𝜇 are unknown heads probabilities of
two coins.) Generate an unbiased random bit. If that bit is
1 (which happens with probability 1/2), flip the 𝜆 input
coin and return the result. Otherwise, flip the 𝜇 input coin
and return the result.

(1+ 𝜆)/2 = (1/2) + (1/2)* 𝜆 (𝜆 is unknown heads probability of a coin.)Generate an
unbiased random bit. If that bit is 1, return 1. Otherwise,
flip the input coin and return the result.

(1 − 𝜆)/2 (𝜆 is unknown heads probability of a coin.)Generate an
unbiased random bit. If that bit is 1, return 0. Otherwise,
flip the input coin and return 1 minus the result.

1 − ln(1+ 𝜆) (𝜆 is unknown heads probability of a coin.)Run algorithm
for ln(1+ 𝜆), then return 1 minus the result.203

sin(sqrt(𝜆)*sqrt(c)) / (sqrt(𝜆)*sqrt(c)) (c is a rational number; 0 < c ≤ 6. 𝜆 is unknown heads
probability of a coin.)Run general martingale
algorithm with 𝑔(𝜆) = 𝜆, and with 𝑑0 = 1 and power
coefficients 𝑎𝑖 = (−1)𝑖𝑐𝑖

(𝑖+𝑖+1)! .
3 − exp(1) Run the algorithm for exp(1) − 2, then return 1 minus

the result.
1/(exp(1) − 1) Run the algorithm for 1/(exp(1)+c − 2) with c = 1.
r/ 𝜋 (r is a rational number; 0 ≤ r ≤ 3.)Create 𝜆 coin for

algorithm ** 𝜋 − 3.Create 𝜇 coin that does: “With
probability r − floor(r), return 1; otherwise return
0.”If r=0, return 0. If r=3, run algorithm for _d_ /
(c + 𝜆)** with d=n and c=3. If 0 < r < 3, run algorithm
for (d + 𝜇) / (c + 𝜆) with d=floor(r) and c=3.

exp(1)/ 𝜋 Create 𝜇 coin for algorithm exp(1) − 2.Create 𝜆 coin for
algorithm ** 𝜋 − 3.Run algorithm for (d + 𝜇) / (c +
𝜆)** with d=2 and c=3.

exp(1)/4 Generate unbiased random bits (each bit is 0 or 1 with
equal probability) until a zero is generated this way, then
set n to the number of ones generated this way.Set n to 2*n
+ 2.With probability 2 𝑛−1 /(n!), return 1. Otherwise
return 0.

r* 𝜆 − r + r*exp(− 𝜆) (r is a rational number greater than 0, but not greater than
2. 𝜆 is the unknown heads probability of a coin.)Run the
general martingale algorithm with 𝑔(𝜆) = 𝜆, and with
𝑑0 = 𝑟/2 and power coefficients 𝑎𝑖 = 𝑟

(𝑖)! (−1)𝑖 if 𝑖 ≥ 2 and
𝑎𝑖 = 0 otherwise.

r*exp(− 1) = r/exp(1) (r is a rational number; 0 ≤ r ≤ 2.)If r=0, return 0. If r=2,
run algorithm for d / (c + 𝜆) with d=n and c=2. If
0<r<2, run algorithm for c* 𝜆 − c + c*exp(− 𝜆) with
r=r and 𝜆 being a coin that always returns 1.

𝜆 /(2 − 𝜆) = (𝜆 /2)/(1 − (𝜆 /2)) (𝜆 is the unknown heads probability of a coin.)(1) Flip 𝜆
coin; return 0 if it returns 0.(2) Run algorithm for 1/(2 −
𝜆).

60

To simulate: Follow this algorithm:
(1 − 𝜆)/(1+ 𝜆) (𝜆 is the unknown heads probability of a coin.)(1) Flip 𝜆

coin; return 0 if it returns 1.(2) Run algorithm for d / (c
+ 𝜆) with d=1 and c=1.

4.8 Algorithms for Specific Constants
This section shows algorithms to simulate a probability equal to a specific kind of irrational number.

4.8.1 1 / 𝜙 (1 divided by the golden ratio)

This algorithm uses the algorithm described in the section on continued fractions to simulate 1 divided
by the golden ratio (about 0.618), whose continued fraction’s partial denominators are 1, 1, 1, 1, ….

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
2. Do a separate run of the currently running algorithm. If the separate run returns 1, return 0. Otherwise,

go to step 1.

Note: The following is a running time analysis of this algorithm. A similar analysis to the one
below can be used to find the expected (“long-run average”) time complexity of many Bernoulli
factory algorithms. Let E[N] be the expected (“long-run average”) number of unbiased random
bits (fair coin flips) generated by the algorithm. Then, since each bit is independent, E[N] = 2*
𝜙 as shown below.

• Each iteration stops the algorithm with probability p = (1/2) + (1 − (1/2)) * (1/ 𝜙) (1/2
for the initial bit and 1/ 𝜙 for the recursive run; (1 − (1/2)) because the (1/2) is being
subtracted earlier on the right-hand side from 1).

• Thus, the expected number of iterations is E[T] = 1/p by a well-known rejection sampling
argument, since the algorithm doesn’t depend on iteration counts.

• Each iteration uses 1 * (1/2) + (1 + E[N]) * (1/2) bits on average, so the whole algorithm
uses E[N] = (1 * (1/2) + (1 + E[N]) * (1/2)) * E[T] bits on average (each iteration consumes
either 1 bit with probability 1/2, or (1 + E[N]) bits with probability 1/2). This equation
has the solution E[N] = 1 + sqrt(5) = 2* 𝜙 .

Also, on average, half of these flips (𝜙) show 1 and half show 0, since the bits are unbiased (the
coin is fair).

4.8.2 sqrt(2) − 1

Another example of a continued fraction is that of the fractional part of the square root of 2, where the
partial denominators are 2, 2, 2, 2, …. The algorithm to simulate this number is as follows:
197Dughmi, Shaddin, Jason Hartline, Robert D. Kleinberg, and Rad Niazadeh. “Bernoulli factories and black-box reductions
in mechanism design.” Journal of the ACM (JACM) 68, no. 2 (2021): 1-30.
198Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

199Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

200Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

201Nacu, Şerban, and Yuval Peres. “Fast simulation of new coins from old”, The Annals of Applied Probability 15, no.
1A (2005): 93-115. https://projecteuclid.org/euclid.aoap/1106922322
202Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

203Another algorithm for this function uses the general martingale algorithm with 𝑔(𝜆) = 𝜆, 𝑑0 = 1 and 𝑎𝑖 = (−1)𝑖+1/𝑖
(except 𝑎0 = 0), but uses more bits on average as 𝜆 approaches 1.

61

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560
https://projecteuclid.org/euclid.aoap/1106922322
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

1. With probability 2/3, generate an unbiased random bit and return that bit.
2. Do a separate run of the currently running algorithm. If the separate run returns 1, return 0. Otherwise,

go to step 1.

4.8.3 1/sqrt(2)

This third example of a continued fraction shows how to simulate a probability 1/z, where z > 1 has a known
simple continued fraction expansion. In this case, the partial denominators are as follows: floor(z), a[1], a[2],
…, where the a[i] are z’s partial denominators (not including z’s integer part). In the example of 1/sqrt(2),
the partial denominators are 1, 2, 2, 2, …, where 1 comes first since floor(sqrt(2)) = 1. The algorithm to
simulate 1/sqrt(2) is as follows:

The algorithm begins with pos equal to 1. Then the following steps are taken.

1. If pos is 1, return 1 with probability 1/2. If pos is greater than 1, then with probability 2/3, generate
an unbiased random bit and return that bit.

2. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate run
returns 1, return 0. Otherwise, go to step 1.

4.8.4 tanh(1/2) or (exp(1) − 1) / (exp(1) + 1)

The algorithm begins with k equal to 2. Then the following steps are taken.

1. With probability k/(1+k), return a number that is 1 with probability 1/k and 0 otherwise.
2. Do a separate run of the currently running algorithm, but with k = k + 4. If the separate run returns

1, return 0. Otherwise, go to step 1.

4.8.5 arctan(x/y) * y/x

(Flajolet et al., 2010)204:

1. Generate u, a uniform random variate between 0 and 1.
2. Generate a number that is 1 with probability x * x/(y * y), or 0 otherwise. If the number is 0, return

1.
3. Sample from the number u twice. If either of these calls returns 0, return 1.
4. Generate a number that is 1 with probability x * x/(y * y), or 0 otherwise. If the number is 0, return

0.
5. Sample from the number u twice. If either of these calls returns 0, return 0. Otherwise, go to step

2.

Observing that the even-parity construction used in the Flajolet paper205 is equivalent to the two-coin
algorithm, which has bounded expected running time for all 𝜆 parameters, the algorithm above can be
modified as follows:

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
2. Generate u, a uniform random variate between 0 and 1, if it wasn’t generated yet.
3. With probability x * x/(y * y), sample from the number u twice. If both of these calls return 1,

return 0.
4. Go to step 1.

204Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

205The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.

62

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4.8.6 𝜋 / 12

Two algorithms:

• First algorithm: Use the algorithm for arcsin(𝜆) / 2, but where the algorithm says to “flip the input
coin”, instead generate an unbiased random bit.

• Second algorithm: With probability 2/3, return 0. Otherwise, run an algorithm for ** 𝜋 / 4** and
return the result.

4.8.7 𝜋 / 4

Three algorithms:

• First algorithm (Flajolet et al., 2010)206: Generate a random integer n satisfying 0 ≤ n ≤ 5, call it
n. If n is less than 3, return the result of the algorithm for arctan(x/y) * y/x with x=1 and y=2.
Otherwise, if n is 3, return 0. Otherwise, return the result of the algorithm for arctan(x/y) * y/x
with x=1 and y=3.

• Second algorithm (since arctan(1) = 𝜋 / 4): Run the second algorithm for arctan(x/y) * y/x with
x=1 and y=1.

• Third algorithm: See the appendix.

A fourth algorithm to sample 𝜋 /4 is based on the section “Uniform Distribution Inside N-Dimensional
Shapes207”, especially its Note 5, in “More Algorithms for Arbitrary-Precision Sampling”. In effect, it
samples a 2-dimensional point with coordinates between 0 and 1 and determines if that point is within 1
unit of the origin (0, 0), which will happen with probability 𝜋 /4.

1. Set S to 2. Then set c1 and c2 to 0.
2. Do the following process repeatedly, until the algorithm returns a value:

1. Set c1 to 2*c1 plus an unbiased random bit (either 0 or 1 with equal probability). Then, set c2
to 2*c2 plus an unbiased random bit.

2. If ((c1+1)2 + (c2+1)2) < S2, return 1. (Point is inside the quarter disk, whose area is 𝜋 /4.)
3. If ((c1)2 + (c2)2) > S2, return 0. (Point is outside the quarter disk.)
4. Multiply S by 2.

4.8.8 𝜋 /4 − 1/2 or (𝜋 − 2)/4

Follows the 𝜋 /4 algorithm, except it samples from a quarter disk with an area equal to 1/2 removed.

1. Set S to 2. Then set c1 and c2 to 0.
2. Do the following process repeatedly, until the algorithm returns a value:

1. Set c1 to 2*c1 plus an unbiased random bit (either 0 or 1 with equal probability). Then, set c2
to 2*c2 plus an unbiased random bit.

2. Set diamond to MAYBE and disk to MAYBE.
3. If ((c1+1) + (c2+1)) < S, set diamond to YES.
4. If ((c1) + (c2)) > S, set diamond to NO.
5. If ((c1+1)2 + (c2+1)2) < S2, set disk to YES.
6. If ((c1)2 + (c2)2) > S2, set disk to NO.
7. If disk is YES and diamond is NO, return 1. Otherwise, if diamond is YES or disk is NO, return

0.
8. Multiply S by 2.

206Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

207https://peteroupc.github.io/exporand.html#Uniform_Distribution_Inside_N_Dimensional_Shapes

63

https://peteroupc.github.io/exporand.html#Uniform_Distribution_Inside_N_Dimensional_Shapes
https://peteroupc.github.io/exporand.html#Uniform_Distribution_Inside_N_Dimensional_Shapes
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

4.8.9 (𝜋 − 3)/4

Follows the 𝜋 /4 algorithm, except it samples from a quarter disk with enough boxes removed from it to
total an area equal to 3/4.

1. Set S to 32. Then set c1 to a uniform random integer in the half-open interval [0, S) and c2 to another
uniform random integer in that interval.

2. (Retained boxes.) If c1 is 0 and c2 is 0, or if c1 is 0 and c2 is 1, return 1.
3. (Removed boxes.) If ((c1+1)2 + (c2+1)2) < 1024, return 0.
4. Multiply S by 2.
5. (Sample the modified quarter disk.) Do the following process repeatedly, until the algorithm returns a

value:
1. Set c1 to 2*c1 plus an unbiased random bit (either 0 or 1 with equal probability). Then, set c2

to 2*c2 plus an unbiased random bit.
2. If ((c1+1)2 + (c2+1)2) < S2, return 1. (Point is inside the quarter disk, whose area is 𝜋 /4.)
3. If ((c1)2 + (c2)2) > S2, return 0. (Point is outside the quarter disk.)
4. Multiply S by 2.

4.8.10 𝜋 − 3

Similar to the 𝜋 /4 algorithm. First it samples a point inside an area covering 1/4 of the unit square, then
inside that area, it determines whether that point is inside another area covering (𝜋 − 3)/4 of the unit square.
Thus, the algorithm acts as though it samples ((𝜋 − 3)/4) / (1/4) = 𝜋 − 3.

1. Set S to 2. Then set c1 and c2 to 0.
2. Do the following process repeatedly, until the algorithm aborts it or returns a value:

1. Set S to 32. Then set c1 to a uniform random integer in the half-open interval [0, S) and c2 to
another uniform random integer in [0, S).

2. (Return 1 if in retained boxes.) If c1 is 0 and c2 is 0, or if c1 is 0 and c2 is 1, return 1.
3. (Check if outside removed boxes.) If ((c1+1)2 + (c2+1)2) >= 1024, abort this process and go to

step 3. (Otherwise, c1 and c2 are rejected and this process continues.)
3. Set S to 64.
4. (Sample the modified quarter disk.) Do the following process repeatedly, until the algorithm returns a

value:
1. Set c1 to 2*c1 plus an unbiased random bit (either 0 or 1 with equal probability). Then, set c2

to 2*c2 plus an unbiased random bit.
2. If ((c1+1)2 + (c2+1)2) < S2, return 1. (Point is inside the quarter disk, whose area is 𝜋 /4.)
3. If ((c1)2 + (c2)2) > S2, return 0. (Point is outside the quarter disk.)
4. Multiply S by 2.

Note: Only a limited set of (c1, c2) pairs, including (0, 0) and (0, 1), will pass step 2 of this
algorithm. Thus it may be more efficient to choose one of them uniformly at random, rather
than do step 2 as shown. If (0, 0) or (0, 1) is chosen this way, the algorithm returns 1.

4.8.11 4/(3* 𝜋)
Given that the point (x, y) has positive coordinates and lies inside a disk of radius 1 centered at (0, 0), the
mean value of x is 4/(3* 𝜋). This leads to the following algorithm to sample that probability:

1. Set S to 2. Then set c1 and c2 to 0.
2. Do the following process repeatedly, until the algorithm returns a value:

1. Set c1 to 2*c1 plus an unbiased random bit (either 0 or 1 with equal probability). Then, set c2
to 2*c2 plus an unbiased random bit.

2. If ((c1+1)2 + (c2+1)2) < S2, do the following. (Point is inside the quarter disk, whose area is 𝜋
/4. Now c1, the point’s x coordinate, is treated as a uniform random variate between c1/S and

64

(c1+1)/S, and the following substeps return 1 with probability equal to that variate.)
1. Generate z, a uniform random integer in the interval [0, S). If z is less than c1, return 1. If z

is greater than c1, return 0.
2. Generate two unbiased random bits (each either 0 or 1 with equal probability). If the bits

are different, return the first bit. Otherwise, repeat this substep.
3. If ((c1)2 + (c2)2) > S2, abort these substeps and go to step 1 (“Set S…”). (Point is outside the

quarter disk.)
4. Multiply S by 2.

Note: The mean value 4/(3* 𝜋) can be derived as follows. The relative probability that x is
“close” to z, where 0 ≤ 𝑧 ≤ 1, is p(z) = sqrt(1 − z*z). Now find the integral of z*p(z)/c (where
c= 𝜋 /4 is the integral of p(z) on the closed unit interval); see “Integrals”. The result is the
mean value 4/(3* 𝜋). The following code in the Python programming language prints this mean
value using the SymPy computer algebra library: p=sqrt(1-z*z); c=integrate(p,(z,0,1));
print(integrate(z*p/c,(z,0,1)));.

4.8.12 1 / 𝜋
(Flajolet et al., 2010)208:

1. Set t to 0.
2. With probability 1/4, add 1 to t and repeat this step. Otherwise, go to step 3.
3. With probability 1/4, add 1 to t and repeat this step. Otherwise, go to step 4.
4. With probability 5/9, add 1 to t.
5. Generate 2*t unbiased random bits (that is, either 0 or 1, chosen with equal probability), and return 0

if there are more zeros than ones generated this way or more ones than zeros. (In fact, this condition
can be checked even before all the bits are generated this way.) Do this step two more times.

6. Return 1.

For a sketch of how this algorithm is derived, see the appendix.

4.8.13 (a/b)𝑧

In the algorithm below:

• a ≥ 0 is an integer.
• b > 0 is an integer.
• z is a number (positive or not), and its absolute value (abs(z)) is written as a rational number (case

1), as an integer and fractional part (case 2), or as a sum of positive numbers (case 3), as described in
the “ExpMinus” section.

• If z is known to be 0 or greater then it must be that 0 ≤ a/b ≤ 1, or
• If z is known to be less than 0, then it must be that a/b ≥ 1.

The algorithm follows.

• In case 1 (z = x/y):
1. If z is known to be less than 0, swap a and b, and remove the sign from z. If a/b is now less than

0 or greater than 1, return an error.
2. If x equals y, return 1 with probability a/b and 0 otherwise.
3. If x is 0, return 1. Otherwise, if a is 0, return 0. Otherwise, if a equals b, return 1.
4. If x/y is greater than 1:

1. Set ipart to floor(x/y) and fpart to rem(x, y) (equivalent to x - y*floor(x/y)).
208Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

65

https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

2. If fpart is greater than 0, subtract 1 from ipart, then call this algorithm recursively with
x = floor(fpart/2) and y = y, then call this algorithm, again recursively, with x = fpart −
floor(fpart/2) and y = y. Return 0 if either call returns 0. (This is done rather than the more
obvious approach in order to avoid calling this algorithm with fractional parts very close to
0, because the algorithm runs much more slowly than for fractional parts closer to 1.)

3. If ipart is 1 or greater, generate at random a number that is 1 with probability a𝑖𝑝𝑎𝑟𝑡/b𝑖𝑝𝑎𝑟𝑡 or
0 otherwise. (Or generate, at random, ipart many numbers that are each 1 with probability
a/b or 0 otherwise, then multiply them all into one number.) If that number is 0, return 0.

4. Return 1.
5. (Note on steps 5 to 8: This case where 0 < x/y < 1 is due to recent work by Mendo (2019)209.)

Set i to 1.
6. With probability a/b, return 1.
7. Otherwise, with probability x/(y*i), return 0.
8. Add 1 to i and go to step 6.

• In case 2 (abs(z) = m + 𝜈 ; here, 0 < 𝜈 ≤ 1 unless a/b is not zero):
1. If z is known to be less than 0, swap a and b, and remove the sign from z. If a/b is now less than

0 or greater than 1, return an error.
2. If a is 0 and m is not 0, return 0. If a equals b, return 1.
3. If m is 1 or greater, generate at random a number that is 1 with probability a𝑚/b𝑚 or 0 otherwise.

(Or generate, at random, m many numbers that are each 1 with probability a/b or 0 otherwise,
then multiply them all into one number.) If that number is 0, return 0.

4. (Note on steps 4 to 7: This case where 0 < z < 1 is due to recent work by Mendo (2019)210.) Set
i to 1.

5. With probability a/b, return 1.
6. Flip the 𝜈 input coin. If it returns 0, return 0 with probability 1/i.
7. Add 1 to i and go to step 6.

• In case 3:
1. If z is known to be less than 0, swap a and b, and remove the sign from z. If a/b is now less than

0 or greater than 1, return an error.
2. If a is 0, return 0 (z will be positive here). If a equals b, return 1.
3. Rewrite the z parameter’s absolute value as a sum of positive numbers. For each number, run

either case 1 or case 2 (depending on how the number is written) of this algorithm with that
number as the parameter. If any of these runs returns 0, return 0; otherwise, return 1.

4.8.14 1/(exp(1) + c − 2)

Involves the continued fraction expansion and Bernoulli Factory algorithm 3 for continued fractions. In this
algorithm, c ≥ 1 is a rational number.

The algorithm begins with pos equal to 1. Then the following steps are taken.

• Do the following process repeatedly until this run of the algorithm returns a value:
1. If pos is divisible by 3 (that is, if rem(pos, 3) equals 0): Let k be (pos/3)*2. With probability

k/(1+k), return a number that is 1 with probability 1/k and 0 otherwise.
2. If pos is 1: With probability c/(1+c), return a number that is 1 with probability 1/c and 0

otherwise.
3. If pos is greater than 1 and not divisible by 3: Generate an unbiased random bit. If that bit is 1

(which happens with probability 1/2), return 1.
4. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate

run returns 1, return 0.
209Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.
210Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

66

4.8.15 exp(1) − 2

Involves the continued fraction expansion and Bernoulli Factory algorithm 3 for continued fractions. Run
the algorithm for 1/(exp(1)+c − 2) above with c = 1, except the algorithm begins with pos equal to 2
rather than 1 (because the continued fractions are almost the same).

4.8.16 𝜁 (3) * 3 / 4 and Other Zeta-Related Constants

(Flajolet et al., 2010)211. It can be seen as a triple integral of the function 1/(1 + a * b * c), where a, b,
and c are uniform random variates between 0 and 1. This algorithm is given below, but using the two-coin
algorithm instead of the even-parity construction212. Here, 𝜁 (x) is the Riemann zeta function.

1. Generate three uniform random variates between 0 and 1.
2. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
3. Sample from each of the three numbers generated in step 1. If all three calls return 1, return 0.

Otherwise, go to step 2. (This implements a triple integral involving the uniform random variates.)

Note: The triple integral in section 5 of the paper is 𝜁 (3) * 3 / 4, not 𝜁 (3) * 7 / 8.

This can be extended to cover any constant of the form 𝜁 (k) * (1 − 2 −(−1)) where k ≥ 2 is an integer, as
suggested slightly by the Flajolet paper when it mentions 𝜁 (5) * 31 / 32 (which should probably read 𝜁 (5)
* 15 / 16 instead), using the following algorithm.

1. Generate k uniform random variates between 0 and 1.
2. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return 1.
3. Sample from each of the k numbers generated in step 1. If all k calls return 1, return 0. Otherwise,

go to step 2.

4.8.17 erf(x)/erf(1)

In the following algorithm, x is a real number that is 0 or greater and 1 or less.

1. Generate a uniform random variate between 0 and 1, call it ret.
2. Set u to point to the same value as ret, and set k to 1.
3. (In this and the next step, v is created, which is the maximum of two uniform random variates between

0 and 1.) Generate two uniform random variates between 0 and 1, call them a and b.
4. If a is less than b, set v to b. Otherwise, set v to a.
5. If v is less than u, set u to v, then add 1 to k, then go to step 3.
6. If k is odd213, return 1 if ret is less than x, or 0 otherwise. (If ret is implemented as a uniform PSRN,

this comparison should be done via the URandLessThanReal algorithm, which is described in my
article on PSRNs214.)

7. Go to step 1.

In fact, this algorithm takes advantage of a theorem related to the Forsythe method of random sampling
(Forsythe 1972)215. See the section “Probabilities Arising from Certain Permutations” in the appendix
for more information.
211Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

212The “even-parity” construction (Flajolet et al. 2010) is so called because it involves flipping the input coin repeatedly until
it returns zero, then counting the number of ones. The final result is 1 if that number is even, or 0 otherwise. However, the
number of flips needed by this method grows without bound as 𝜆 (the probability the input coin returns 1) approaches 1. See
also the note for Algorithm CC.
213“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
214https://peteroupc.github.io/exporand.html
215Forsythe, G.E., “Von Neumann’s Comparison Method for Random Sampling from the Normal and Other Distributions”,

Mathematics of Computation 26(120), October 1972.

67

https://peteroupc.github.io/exporand.html
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

Note: If the last step in the algorithm reads “Return 0” rather than “Go to step 1”, then the
algorithm simulates the probability erf(x)*sqrt(𝜋)/2 instead.

4.8.18 Ratio of Lower Gamma Functions (𝛾 (m, x)/ 𝛾 (m, 1)).

In this algorithm, m must be greater than 0, and x is a real number that is 0 or greater and 1 or less.

1. Set ret to a number distributed as the maximum of m uniform random variates between 0 and 1. (See
note 1 below.)

2. Set k to 1, then set u to point to the same value as ret.
3. Generate a uniform random variate between 0 and 1, call it v.
4. If v is less than u: Set u to v, then add 1 to k, then go to step 3.
5. If k is odd216, return a number that is 1 if ret is less than x and 0 otherwise. If k is even217, go to step

1. (If ret is implemented as a uniform partially-sampled random number, this comparison should be
done via the URandLessThanReal algorithm, which is described in my article on PSRNs218.)

Notes:

1. In step 1 of the algorithm above, ret is distributed as u, where u 1/ where u is a uniform
random variate between 0 and 1.(Devroye 1986, p. 431)219 (This formula works for every
m greater than 0, not just integers.) Alternatively, ret can be generated using the kths-
mallest algorithm with the two parameters m and m (see “Partially-Sampled Random
Numbers”220), but then m must be an integer. Alternatively, ret can be generated as
follows, but then m must be an integer:

1. Generate x and y, two uniform random variates between 0 and 1.
2. Do the following m times. If x is less than y, set x to point to y; either way, set y to a

new uniform random variate between 0 and 1.
3. Set ret to point to x.

2. Derivation: See Formula 1 in the section “Probabilities Arising from Certain Permu-
tations221”, where:

• ECDF(x) is the probability that a uniform random variate between 0 and 1 is x or less,
namely x if x is greater than 0 and less than 1; 0 if x is 0 or less; and 1 otherwise.

• DPDF(x) is the probability density function for the maximum of m uniform random
variates between 0 and 1, namely m*x −1 if x is greater than 0 and less than 1, and 0
otherwise.

4.8.19 Euler–Mascheroni constant 𝛾
The following algorithm to simulate the Euler–Mascheroni constant 𝛾 (about 0.5772) is due to Mendo
(2020/2021)222. This solves an open question given in (Flajolet et al., 2010)223. An algorithm for the
Euler–Mascheroni constant appears here even though it is not yet known whether this constant is irrational.
Sondow (2005)224 described how the Euler–Mascheroni constant can be rewritten as an infinite sum, which
216“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
217“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
218https://peteroupc.github.io/exporand.html
219Devroye, L., Non-Uniform Random Variate Generation, 1986.
220https://peteroupc.github.io/exporand.html
221https://peteroupc.github.io/bernoulli.html#Probabilities_Arising_from_Certain_Permutations
222Mendo, L., “Simulating a coin with irrational bias using rational arithmetic”, arXiv:2010.14901 [math.PR],
2020/2021. https://arxiv.org/abs/2010.14901
223Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

224Sondow, Jonathan. “New Vacca-Type Rational Series for Euler’s Constant and Its ‘Alternating’ Analog ln 4/ 𝜋 .”, 2005.

68

https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/exporand.html
https://peteroupc.github.io/bernoulli.html#Probabilities_Arising_from_Certain_Permutations
https://peteroupc.github.io/bernoulli.html#Probabilities_Arising_from_Certain_Permutations
http://luc.devroye.org/rnbookindex.html
https://arxiv.org/abs/2010.14901
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

is the form used in this algorithm.

1. Set 𝜖 to 1, then set n, lamunq, lam, s, k, and prev to 0 each.
2. Add 1 to k, then add s/(2𝑘) to lam.
3. If lamunq+ 𝜖 ≤ lam + 1/(2𝑘), go to step 8.
4. If lamunq > lam + 1/(2𝑘), go to step 8.
5. If lamunq > lam + 1/(2 +1) and lamunq+ 𝜖 < 3/(2 +1), go to step 8.
6. (This step adds a term of the infinite sum for 𝛾 to lamunq, and sets 𝜖 to an upper bound on the error

that results if the infinite sum is “cut off” after summing this and the previous terms.) If n is 0, add
1/2 to lamunq and set 𝜖 to 1/2. Otherwise, add B(n)/(2*n*(2*n+1)*(2*n+2)) to lamunq and set 𝜖 to
min(prev, (2+B(n)+(1/n))/(16*n*n)), where B(n) is the minimum number of bits needed to store n
(or the smallest integer b ≥ 1 such that n < 2𝑏).

7. Add 1 to n, then set prev to 𝜖 , then go to step 3.
8. Let bound be lam+1/(2𝑘). If lamunq+ 𝜖 ≤ bound, set s to 0. Otherwise, if lamunq > bound, set s to 2.

Otherwise, set s to 1.
9. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), go to step 2.

Otherwise, return a number that is 0 if s is 0, 1 if s is 2, or an unbiased random bit (either 0 or 1 with
equal probability) otherwise.

Note: The following is another algorithm for this constant. As I learned225, the fractional part
of 1/U, where U is a uniform random variate between 0 and 1, has a mean equal to 1 minus the
Euler–Mascheroni constant 𝛾 , about 0.5772.226 This leads to the following algorithm to sample
a probability equal to 𝛾 :

1. Generate a random variate of the form 1/U − floor(1/U), where U is a uniform random
variate between 0 and 1. This can be done by generating a uniform PSRN for the reciprocal
of a uniform random variate227, then setting that PSRN’s integer part to 0. Call the
variate (or PSRN) f.

2. Sample from the number f (for example, call SampleGeometricBag on f if f is
implemented as a uniform PSRN). Return 0 if the run returns 1, or 1 otherwise.

4.8.20 exp(− x/y) * z/t

This algorithm is again based on an algorithm due to Mendo (2020/2021)228. The algorithm takes integers
x ≥ 0, y > 0, z ≥ 0, and t > 0, such that 0 ≤ exp(− x/y) * z/t ≤ 1.

1. If z is 0, return 0. If x is 0, return a number that is 1 with probability z/t and 0 otherwise.
2. Set 𝜖 to 1, then set n, lamunq, lam, s, and k to 0 each.
3. Add 1 to k, then add s/(2𝑘) to lam.
4. If lamunq+ 𝜖 ≤ lam + 1/(2𝑘), go to step 9.
5. If lamunq > lam + 1/(2𝑘), go to step 9.
6. If lamunq > lam + 1/(2 +1) and lamunq+ 𝜖 < 3/(2 +1), go to step 8.
7. (This step adds two terms of exp(− x/y)’s well-known infinite sum, multiplied by z/t, to lamunq, and

sets 𝜖 to an upper bound on how close the current sum is to the desired probability.) Let m be n*2.
Set 𝜖 to z*x𝑚/(t*(m!)*y𝑚). If m is 0, add z*(y − x)/(t*y) to lamunq. Otherwise, add z*x𝑚*(m*y −
x+y) / (t*y +1 *((m+1)!)) to lamunq.

8. Add 1 to n and go to step 4.
9. Let bound be lam+1/(2𝑘). If lamunq+ 𝜖 ≤ bound, set s to 0. Otherwise, if lamunq > bound, set s to 2.

Otherwise, set s to 1.
225https://stats.stackexchange.com/a/539564
226It can also be said that the integral (see “Integrals”) of x − floor(1/x), where x is greater than 0 but not greater than 1,
equals 1 minus 𝛾 . See, for example, Havil, J., Gamma: Exploring Euler’s Constant, 2003.
227https://peteroupc.github.io/exporand.html#Reciprocal_of_Uniform_Random_Variate
228Mendo, L., “Simulating a coin with irrational bias using rational arithmetic”, arXiv:2010.14901 [math.PR],
2020/2021. https://arxiv.org/abs/2010.14901

69

https://stats.stackexchange.com/a/539564
https://peteroupc.github.io/exporand.html#Reciprocal_of_Uniform_Random_Variate
https://peteroupc.github.io/exporand.html#Reciprocal_of_Uniform_Random_Variate
https://arxiv.org/abs/2010.14901

10. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), go to step 3.
Otherwise, return a number that is 0 if s is 0, 1 if s is 2, or an unbiased random bit (either 0 or 1 with
equal probability) otherwise.

4.8.21 Certain Numbers Based on the Golden Ratio

The following algorithm given by Fishman and Miller (2013)229 finds the continued fraction expansion of
certain numbers described as—

• G(m, _ 𝑙) = (m + sqrt(m2 + 4 * 𝑙))/2 or (m − sqrt(m2 + 4 * 𝑙 _))/2,

whichever results in a real number greater than 1, where m is a positive integer and _ 𝑙 _ is either 1 or −
1. In this case, G(1, 1) is the golden ratio.

First, define the following operations:

• **Get the previous and next Fibonacci-based number given k, m, and _ 𝑙 _**:
1. If k is 0 or less, return an error.
2. Set g0 to 0, g1 to 1, x to 0, and y to 0.
3. Do the following k times: Set y to m * g1 + _ 𝑙 _ * g0, then set x to g0, then set g0 to g1, then

set g1 to y.
4. Return x and y, in that order.

• **Get the partial denominator given pos, k, m, and _ 𝑙 _** (this partial denominator is part of the
continued fraction expansion found by Fishman and Miller):
1. **Get the previous and next Fibonacci-based number given k, m, and _ 𝑙 _**, call them p and n,

respectively.
2. If _ 𝑙 _ is 1 and k is odd230, return p + n.
3. If _ 𝑙 _ is − 1 and pos is 0, return n − p − 1.
4. If _ 𝑙 _ is 1 and pos is 0, return (n + p) − 1.
5. If _ 𝑙 _ is − 1 and pos is even231, return n − p − 2. (The paper had an error here; the correction

given here was verified by Miller via personal communication.)
6. If _ 𝑙 _ is 1 and pos is even232, return (n + p) − 2.
7. Return 1.

An application of the continued fraction algorithm is the following algorithm that generates 1 with probability
G(m, _ 𝑙 _) − and 0 otherwise, where k is an integer that is 1 or greater (see “Continued Fractions” in my
page on Bernoulli factory algorithms). The algorithm starts with pos = 0, then the following steps are taken:

1. **Get the partial denominator given pos, k, m, and _ 𝑙 _**, call it kp.
2. Do the following process repeatedly, until this run of the algorithm returns a value:

1. With probability kp/(1 + kp), return a number that is 1 with probability 1/kp and 0 otherwise.
2. Do a separate run of the currently running algorithm, but with pos = pos + 1. If the separate

run returns 1, return 0.

4.8.22 ln(1+y/z)

See also the algorithm given earlier for ln(1+ 𝜆). In this algorithm, y/z is a rational number that is 0 or
greater and 1 or less. (Thus, the special case ln(2) results when y/z = 1/1.)
229Fishman, D., Miller, S.J., “Closed Form Continued Fraction Expansions of Special Quadratic Irrationals”, ISRN Combina-
torics Vol. 2013, Article ID 414623 (2013).
230“x is odd” means that x is an integer and not divisible by 2. This is true if x − 2*floor(x/2) equals 1, or if x is an integer
and the least significant bit of abs(x) is 1.
231“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.
232“x is even” means that x is an integer and divisible by 2. This is true if x − 2*floor(x/2) equals 0, or if x is an integer and
the least significant bit of abs(x) is 0.

70

1. If y is 0, return 0.
2. Do the following process repeatedly, until this algorithm returns a value:

1. Generate an unbiased random bit. If that bit is 1 (which happens with probability 1/2), return
a number that is 1 with probability y/z and 0 otherwise.

2. Generate u, a uniform random variate between 0 and 1, if u wasn’t generated yet.
3. Sample from the number u, then generate a number that is 1 with probability y/z and 0

otherwise. If the call returns 1 and the number generated is 1, return 0.

4.8.23 ln(𝜋)/ 𝜋
Special case of the algorithm for ln(c+ 𝜆)/(c+ 𝜆).

1. Run the algorithm for 1/ 𝜋 repeatedly, until the run returns 1, then set g to the number of runs that
returned 0 this way.

2. If g is 0, return 0. Otherwise, return a number that is 1 with probability 1/g or 0 otherwise.

5 Requests and Open Questions
See my page “Open Questions on the Bernoulli Factory Problem233” for open questions, answers to
which will greatly improve my articles on Bernoulli factories. Other questions:

• Probabilities arising from permutations234.
• Is there a simpler or faster way to implement the base-2 or natural logarithm of binomial coefficients?

See the example in the section “Certain Converging Series”.

6 Correctness and Performance Charts
Charts showing the correctness and performance of some of these algorithms are found in a separate
page235.

7 Acknowledgments
I acknowledge Luis Mendo, who responded to one of my open questions, as well as C. Karney. Due to a
suggestion by Michael Shoemate who suggested it was “easy to get lost” in this and related articles, some
sections that related to Bernoulli factories and were formerly in “More Algorithms for Arbitrary-Precision
Sampling” were moved here.

8 Notes

9 Appendix

9.1 Using the Input Coin Alone for Randomness
A function f (𝜆) is strongly simulable (Keane and O’Brien 1994)236 if there is a Bernoulli factory algorithm
for that function that uses only the input coin as its source of randomness.
233https://peteroupc.github.io/bernreq.html
234https://peteroupc.github.io/requestsother.html#Probabilities_arising_from_permutations
235https://peteroupc.github.io/bernoullicorrect.html
236Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.

71

https://peteroupc.github.io/bernreq.html
https://peteroupc.github.io/requestsother.html#Probabilities_arising_from_permutations
https://peteroupc.github.io/bernoullicorrect.html
https://peteroupc.github.io/bernoullicorrect.html

If a Bernoulli factory algorithm uses a fair coin, it can often generate flips of the fair coin using the input
coin instead, with the help of randomness extraction237 techniques.

Example: If a Bernoulli factory algorithm would generate an unbiased random bit, instead it
could flip the input coin twice until the flip returns 0 then 1 or 1 then 0 this way, then take the
result as 0 or 1, respectively (von Neumann 1951)238. But this trick works only if the input coin’s
probability of heads is neither 0 nor 1.

When Keane and O’Brien (1994)239 introduced Bernoulli factories, they showed already that f (𝜆) is strongly
simulable whenever it admits a Bernoulli factory and its domain includes neither 0 nor 1 (so the input coin
doesn’t show heads every time or tails every time) — just use the von Neumann trick as in the example above.
But does f remain strongly simulable if its domain includes 0, 1, or both? That’s a complexer question; see
the supplemental notes240.

9.2 The Entropy Bound
There is a lower bound on the average number of coin flips needed to turn a coin with one probability of
heads (𝜆) into a coin with another (𝜏 = f (𝜆)). It’s called the entropy bound (see, for example, (Pae 2005)241,
(Peres 1992)242) and is calculated as—

• ((𝜏 − 1) * ln(1 − 𝜏) − 𝜏 * ln(𝜏)) / ((𝜆 − 1) * ln(1 − 𝜆) − 𝜆 * ln(𝜆)).
For example, if f (𝜆) is a constant, an algorithm whose only randomness comes from the input coin will
require more coin flips to simulate that constant, the more strongly that coin leans towards heads or tails.
But this formula works only for such algorithms, even if f isn’t a constant.

For certain values of 𝜆 , Kozen (2014)243 showed a tighter lower bound of this kind, but in general, this
bound is not so easy to describe and assumes 𝜆 is known. However, if 𝜆 is 1/2 (the input coin is unbiased),
this bound is simple: at least 2 flips of the input coin are needed on average to simulate a known constant
𝜏 , except when 𝜏 is a multiple of 1/(2 𝑛) for some integer n.

9.3 Bernoulli Factories and Unbiased Estimation
If an algorithm—

• takes flips of a coin with an unknown probability of heads (𝜆), and
• produces heads with a probability that depends on 𝜆 (f (𝜆)) and tails otherwise,

the algorithm acts as an unbiased estimator of f (𝜆) that produces estimates in [0, 1] with probability 1
(Łatuszyński et al. 2009/2011)244. (And an estimator like this is possible only if f is a factory function; see
Łatuszyński.) Because the algorithm is unbiased, its expected value (or mean or “long-run average”) is f (𝜆).
Since the algorithm is unbiased and outputs only 0 or 1, this leads to the following: With probability 1, given
an infinite sequence of independent outputs of the algorithm, the average of the first n outputs approaches
f (𝜆) as n gets large (as a result of the law of large numbers).

On the other hand—

• estimating 𝜆 as _ 𝜆 ′ _ (for example, by averaging multiple flips of a 𝜆 -coin), then
237https://peteroupc.github.io/randextract.html
238von Neumann, J., “Various techniques used in connection with random digits”, 1951.
239Mendo, Luis. “An asymptotically optimal Bernoulli factory for certain functions that can be expressed as power series.”
Stochastic Processes and their Applications 129, no. 11 (2019): 4366-4384.
240https://peteroupc.github.io/bernsupp.html#Which_functions_don_t_require_outside_randomness_to_simulate
241Pae, S., “Random number generation using a biased source”, dissertation, University of Illinois at Urbana-Champaign, 2005.
242Peres, Y., “Iterating von Neumann’s procedure for extracting random bits”, Annals of Statistics 1992,20,1, p. 590-597.
243Kozen, D., “Optimal Coin Flipping”, 2014.
244Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via

reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2

72

https://peteroupc.github.io/randextract.html
https://peteroupc.github.io/bernsupp.html#Which_functions_don_t_require_outside_randomness_to_simulate
http://www.cs.cornell.edu/~kozen/Papers/Coinflip.pdf
https://arxiv.org/abs/0907.4018v2

• calculating f (_ 𝜆 ′ _),
is not necessarily an unbiased estimator of f (𝜆), even if _ 𝜆 ′ _ is an unbiased estimator.

This page focuses on unbiased estimators because “exact sampling” depends on being unbiased. See also
(Mossel and Peres 2005, section 4)245.

Note: Bias and variance are the two sources of error in a randomized estimation algorithm. An
unbiased estimator has no bias, but is not without error. In the case at hand here, the variance
of a Bernoulli factory for f (𝜆) equals f (𝜆) * (1 − f (𝜆)) and can go as high as 1/4. (“Variance
reduction” methods are outside the scope of this document.) An estimation algorithm’s mean
squared error equals variance plus square of bias.

9.4 Correctness Proof for the Continued Logarithm Simulation Algorithm
Theorem. If the algorithm given in “Continued Logarithms” terminates with probability 1, it returns 1 with
probability exactly equal to the number represented by the continued logarithm c, and 0 otherwise.

Proof. This proof of correctness takes advantage of Huber’s “fundamental theorem of perfect simulation”
(Huber 2019)246. Using Huber’s theorem requires proving two things:

• The algorithm finishes with probability 1 by assumption.
• Second, we show the algorithm is locally correct when the recursive call in the loop is replaced with a

“black box” that simulates the correct “continued sub-logarithm”. If step 1 reaches the last parameter,
the algorithm obviously passes with the correct probability. Otherwise, we will be simulating the
probability (1 / 2 []) / (1 + x), where x is the “continued sub-logarithm” and will be at most 1
by construction. Step 2 defines a loop that divides the probability space into three pieces: the first
piece takes up one half, the second piece (in the second substep) takes up a portion of the other half
(which here is equal to x/2), and the last piece is the “rejection piece” that reruns the loop. Since this
loop changes no variables that affect later iterations, each iteration acts like an acceptance/rejection
algorithm already proved to be a perfect simulator by Huber. The algorithm will pass at the first
substep with probability p = (1 / 2 []) / 2 and fail either at the first substep of the loop with
probability f1 = (1 − 1 / 2 []) / 2, or at the second substep with probability f2 = x/2 (all these
probabilities are relative to the whole iteration). Finally, dividing the passes by the sum of passes and
fails (p / (p + f1 + f2)) leads to (1 / 2 []) / (1 + x), which is the probability we wanted.

Since both conditions of Huber’s theorem are satisfied, this completes the proof. []

9.5 Correctness Proof for Continued Fraction Simulation Algorithm 3
Theorem. Suppose a generalized continued fraction’s partial numerators are b[i] and all greater than 0, and
its partial denominators are a[i] and all 1 or greater, and suppose further that each b[i]/a[i] is 1 or less.
Then the algorithm given as Algorithm 3 in “Continued Fractions” returns 1 with probability exactly equal to
the number represented by that continued fraction, and 0 otherwise.

Proof. We use Huber’s “fundamental theorem of perfect simulation” again in the proof of correctness.

• The algorithm finishes with probability 1 because with each recursion, the method does a recursive run
with no greater probability than not; observe that a[i] can never be more than 1, so that a[i]/(1+a[i]),
that is, the probability of finishing the run in each iteration, is always 1/2 or greater.

• If the recursive call in the loop is replaced with a “black box” that simulates the correct “sub-fraction”,
the algorithm is locally correct. If step 1 reaches the last element of the continued fraction, the algorithm

245Mossel, Elchanan, and Yuval Peres. New coins from old: computing with unknown bias. Combinatorica, 25(6), pp.707-724,
2005.
246Huber, M., “Designing perfect simulation algorithms using local correctness”, arXiv:1907.06748v1 [cs.DS], 2019.
https://arxiv.org/abs/1907.06748v1

73

https://arxiv.org/abs/1907.06748v1

obviously passes with the correct probability. Otherwise, we will be simulating the probability b[i] /
(a[i] + x), where x is the “continued sub-fraction” and will be at most 1 by assumption. Step 2 defines
a loop that divides the probability space into three pieces: the first piece takes up a part equal to h
= a[i]/(a[i] + 1), the second piece (in the second substep) takes up a portion of the remainder (which
here is equal to x * (1 − h)), and the last piece is the “rejection piece”. The algorithm will pass at
the first substep with probability p = (b[i] / a[pos]) * h and fail either at the first substep of the loop
with probability f1 = (1 − b[i] / a[pos]) * h, or at the second substep with probability f2 = x * (1 −
h) (all these probabilities are relative to the whole iteration). Finally, dividing the passes by the sum
of passes and fails leads to b[i] / (a[i] + x), which is the desired probability wanted, so that both of
Huber’s conditions are satisfied and the proof is complete. []

9.6 Proof of the General Martingale Algorithm
This proof of the general martingale algorithm is similar to the proof for certain alternating series with
only nonzero power coefficients, given in Łatuszyński et al. (2019/2011)247, section 3.1. Suppose a coin that
shows heads with probability 𝑔(𝜆) is flipped repeatedly and the following results are achieved: 𝑋1, 𝑋2, ...,
where each result is either 1 if the coin shows heads or 0 otherwise. Then define two sequences U and L as
follows:

• 𝑈0 = 𝑑0 and 𝐿0 = 0.
• For each 𝑛 > 0, 𝑈𝑛 is 𝐿𝑛−1 + |𝑎𝑛| × 𝑋1 × ... × 𝑋𝑛 if 𝑎𝑛 > 0, otherwise 𝑈𝑛−1 − |𝑎𝑛| × 𝑋1 × ... × 𝑋𝑛 if

no nonzero power coefficients follow 𝑎𝑛 and 𝑎𝑛 < 0, otherwise 𝑈𝑛−1.
• For each 𝑛 > 0, 𝐿𝑛 is 𝑈𝑛−1 − |𝑎𝑛| × 𝑋1 × ... × 𝑋𝑛 if 𝑎𝑛 < 0, otherwise 𝐿𝑛−1 + |𝑎𝑛| × 𝑋1 × ... × 𝑋𝑛 if

no nonzero power coefficients follow 𝑎𝑛 and 𝑎𝑛 > 0, otherwise 𝐿𝑛−1.

Then it’s clear that with probability 1, for every 𝑛 ≥ 1—
• 𝐿𝑛 ≤ 𝑈𝑛,
• 𝑈𝑛 is 0 or greater and 𝐿𝑛 is 1 or less, and
• 𝐿𝑛−1 ≤ 𝐿𝑛 and 𝑈𝑛−1 ≥ 𝑈𝑛.

Moreover, if there are infinitely many nonzero power coefficients, the U and L sequences have expected
values (“long-run averages”) converging to 𝑓(𝜆) with probability 1; otherwise 𝑓(𝜆) is a polynomial in 𝑔(𝜆),
and 𝑈𝑛 and 𝐿𝑛 have expected values that approach 𝑓(𝜆) as 𝑛 gets large. These conditions are required for
the paper’s Algorithm 3 (and thus the general martingale algorithm) to be valid.

9.7 Algorithm for sin(𝜆 * 𝜋 /2)
The following algorithm returns 1 with probability sin(𝜆 * 𝜋 /2) and 0 otherwise, given a coin that shows
heads with probability 𝜆 . However, this algorithm appears in the appendix since it requires manipulating
irrational numbers, particularly numbers involving 𝜋 .

1. Choose at random an integer n (0 or greater) with probability (𝜋 /2) 4+2 /((4*n+2)!) − (𝜋 /2) 4+4

/((4*n+4)!).
2. Let v = 16*(n+1)*(4*n+3).
3. Flip the input coin 4*n+4 times. Let tails be the number of flips that returned 0 this way. (This would

be the number of heads if the probability 𝜆 were 1 − 𝜆 .)
4. If tails = 4*n+4, return 0.
5. If tails = 4*n+3, return a number that is 0 with probability 8*(4*n+3)/(v − 𝜋 2) and 1 otherwise.
6. If tails = 4*n+2, return a number that is 0 with probability 8/(v − 𝜋 2) and 1 otherwise.
7. Return 1.

Notes:
247Łatuszyński, K., Kosmidis, I., Papaspiliopoulos, O., Roberts, G.O., “Simulating events of unknown probabilities via

reverse time martingales”, arXiv:0907.4018v2 [stat.CO], 2009/2011. https://arxiv.org/abs/0907.4018v2

74

https://arxiv.org/abs/0907.4018v2

1. The following is a derivation of this algorithm. Write—

𝑓(𝜆) = sin(𝜆𝜋/2) = 1 − 𝑔(1 − 𝜆),

where—
𝑔(𝜇) = 1 − sin((1 − 𝜇)𝜋/2)

= ∑
𝑛≥0

(𝜇𝜋/2)4𝑛+2

(4𝑛 + 2)! − (𝜇𝜋/2)4𝑛+4

(4𝑛 + 4)!

= ∑
𝑛≥0

𝑤𝑛(𝜇) = ∑
𝑛≥0

𝑤𝑛(1)𝑤𝑛(𝜇)
𝑤𝑛(1) .

This is a convex combination of 𝑤𝑛(1) and 𝑤𝑛(𝜇)
𝑤𝑛(1) — to simulate 𝑔(𝜇), first an integer n

is chosen with probability 𝑤𝑛(1) and then a coin that shows heads with probability 𝑤𝑛(𝜇)
𝑤𝑛(1) is

flipped. Finally, to simulate 𝑓(𝜆), the input coin is “inverted” (𝜇 = 1 − 𝜆), 𝑔(𝜇) is simulated
using the “inverted” coin, and 1 minus the simulation result is returned.As given above, each
term 𝑤𝑛(𝜇) is a polynomial in 𝜇, and is strictly increasing and equals 1 or less everywhere
on the closed unit interval, and 𝑤𝑛(1) is a constant so that 𝑤𝑛(𝜇)

𝑤𝑛(1) remains a polynomial.
Each polynomial 𝑤𝑛(𝜇)

𝑤𝑛(1) can be transformed into a polynomial with the following Bernstein
coefficients:

(0, 0, ..., 0, 8/(𝑣 − 𝜋2), 8(4𝑛 + 3)/(𝑣 − 𝜋2), 1),
where the polynomial is of degree 4𝑛 + 4 and so has 4𝑛 + 5 Bernstein coefficients, and
𝑣 = ((4𝑛+4)!)×24𝑛+4

((4𝑛+2)!)×24𝑛+2 = 16(𝑛 + 1)(4𝑛 + 3). These are the Bernstein coefficients used in steps 4
through 7 of the algorithm above.

2. sin(𝜆 * 𝜋 /2) = cos((1 − 𝜆)* 𝜋 /2).

3. The problem of simulating sin(𝜆 * 𝜋 /2), it seems, was first raised by Basu (1975, p. 12)248.

9.8 Probabilities Arising from Certain Permutations
Certain interesting probability functions can arise from permutations.

Inspired by the von Neumann schema, the following algorithm can be described:

Let a permutation class (defined in “Flajolet’s Probability Simulation Schemes”) and two distributions
D and E, which are both continuous with probability density functions, be given. Consider the following
algorithm: Generate a sequence of independent random variates (where the first is distributed as D and the
rest as E) until the sequence no longer follows the permutation class, then return n, which is how many
numbers were generated this way minus 1.

Then the algorithm’s behavior is given in the tables below.

Permutation Class
Distributions D and
E

The algorithm returns n
with this probability: The probability that n is …

Numbers sorted in
descending order

Arbitrary; D = E n / ((n + 1)!). Odd is 1 − exp(− 1); even
is exp(− 1). See note 3.

248Basu, D., “Statistical information and likelihood”, Sankhyā A 37 (1975).

75

Permutation Class
Distributions D and
E

The algorithm returns n
with this probability: The probability that n is …

Numbers sorted in
descending order

Each arbitrary (�(− ∞,∞) DPDF(z) *
((ECDF(z)) −1 /((n − 1)!)
− (ECDF(z))𝑛/(n!)) dz),
for every n > 0 (see also
proof of Theorem 2.1 of
(Devroye 1986, Chapter
IV)249. DPDF and ECDF
are defined later.

Odd is denominator of
formula 1 below.

Alternating numbers Arbitrary; D = E (a𝑛 * (n + 1) − an + 1) /
(n + 1)!, where a𝑖 is the
integer at position i
(starting at 0) of the
sequence A000111250 in
the On-Line Encyclopedia
of Integer Sequences.

Odd is 1 −
cos(1)/(sin(1)+1); even is
cos(1)/(sin(1)+1). See note
3.

Any Arbitrary; D = E (�[0, 1] 1 * (z −1 *V(n)/((n
− 1)!) − z𝑛*V(n+1)/(n!))
dz), for every n > 0. V (n) is
the number of permutations
of size n that belong in the
permutation class. For this
algorithm, V (n) must be
greater than 0 and less than
or equal to n factorial; this
algorithm won’t work, for
example, if there are 0
permutations of odd size.

Odd is 1 − 1 / EGF(1);
even is 1/EGF(1).Less than
k is (V (0) − V (k)/(k!)) /
V (0). See note 3.

Permutation Class Distributions D and E
The probability that the first number in the
sequence is x or less given that n is …

Numbers sorted in
descending order

Each arbitrary Odd is �(x) = (�(− ∞, x) exp(− ECDF(z)) *
DPDF(z) dz) / (�(− ∞, ∞) exp(− ECDF(z))
* DPDF(z) dz) (Formula 1; see Theorem
2.1(iii) of (Devroye 1986, Chapter IV)251; see
also Forsythe 1972252). Here, DPDF is the
probability density function (PDF) of D, and
ECDF is the cumulative distribution function
for E.If x is a uniform random variate greater
than 0 and less than 1, this probability
becomes the integral of �(z) over the closed
unit interval.

249Devroye, L., Non-Uniform Random Variate Generation, 1986.
250https://oeis.org/A000111

76

https://oeis.org/A000111
http://luc.devroye.org/rnbookindex.html

Permutation Class Distributions D and E
The probability that the first number in the
sequence is x or less given that n is …

Numbers sorted in
descending order

Each arbitrary Even is (�(− ∞, x) (1 − exp(− ECDF(z))) *
DPDF(z) dz) / (�(− ∞, ∞) (1 − exp(−
ECDF(z))) * DPDF(z) dz) (Formula 2; see
also Monahan 1979253). DPDF and ECDF
are as above.

Numbers sorted in
descending order

Both uniform variates
between 0 and 1

Odd is ((1 − exp(− x)))/(1 − exp(− 1)).
Therefore, the first number in the sequence is
distributed as exponential with rate 1 and
“cut off” to be not less than 0 and not greater
than 1 (von Neumann 1951)254.

Numbers sorted in
descending order

D is a uniform variate
between 0 and 1; E is max.
of two uniform variates
between 0 and 1.

Odd is erf(x)/erf(1) (uses Formula 1, where
DPDF(z) = 1 and ECDF(z) = z2 for 0 ≤ z ≤
1; see also erf(x)/erf(1)).

Permutation Class Distributions D and E
The probability that the first number in the
sequence is…

Numbers sorted in
descending order

D is an exponential variate
with rate 1; E is a uniform
variate between 0 and 1.

1 or less given that n is even is 1 − 2 / (1 +
exp(2)) = 1 − (1 + exp(0)) / (1 + exp(1)) =
(exp(1) − 1)/(exp(1)+1) (uses Formula 2,
where DPDF(z) = exp(− z) and ECDF(z) =
min(1,z) for z ≥ 0).

Numbers sorted in
descending order

D is an exponential variate
with rate 1; E is a uniform
variate between 0 and 1.

1/2 or less given that n is odd is 1 − (1 +
exp(1)) / (1 + exp(2)) = (exp(2) − exp(1)) /
(exp(2)+1) (uses Formula 1, where DPDF(z)
= exp(− z) and ECDF(z) = min(1,z) for z ≥
0).

Notes:

1. All the functions possible for formulas 1 and 2 are nowhere decreasing functions. Both
formulas express what are called cumulative distribution functions, namely F𝐷(x given that
n is odd) or F𝐷(x given that n is even), respectively.

2. EGF(z) is the exponential generating function (EGF) for the kind of permutation involved
in the algorithm. For example, the class of alternating permutations (permutations whose
numbers alternate between low and high, that is, X1 > X2 < X3 > …) uses the EGF
tan(𝜆)+1/cos(𝜆). Other examples of EGFs were given in the section on the von Neumann
schema.

3. The results that point to this note have the special case that both D and E are uniform
random variates between 0 and 1. Indeed, if each variate x in the sequence is transformed
with CDF(x), where CDF is D’s cumulative distribution function, then with probability 1, x

251Devroye, L., Non-Uniform Random Variate Generation, 1986.
252Forsythe, G.E., “Von Neumann’s Comparison Method for Random Sampling from the Normal and Other Distributions”,

Mathematics of Computation 26(120), October 1972.
253Monahan, J.. “Extensions of von Neumann’s method for generating random variables.” Mathematics of Computation 33
(1979): 1065-1069.

254von Neumann, J., “Various techniques used in connection with random digits”, 1951.

77

http://luc.devroye.org/rnbookindex.html

becomes a uniform random variate greater than 0 and less than 1, with the same numerical
order as before. See also this Stack Exchange question255.

9.9 Derivation of an Algorithm for 𝜋 / 4
The following is a derivation of the Madhava–Gregory–Leibniz (MGL) generator for simulating the proba-
bility 𝜋/4 (Flajolet et al. 2010)256. It works as follows. Let 𝑆 be a set of non-negative integers. Then:

1. Generate a uniform random variate between 0 and 1, call it 𝑈 .
2. Sample from the number 𝑈 repeatedly until the sampling “fails” (returns 0). Set 𝑘 to the number

of “successes”. (Thus, this step generates 𝑘 with probability 𝑔(𝑘, 𝑈) = (1 − 𝑈)𝑈𝑘.)
3. If 𝑘 is in 𝑆, return 1; otherwise, return 0.

This can be seen as running Algorithm CC with an input coin for a randomly generated probability (a
uniform random variate between 0 and 1). Given that step 1 generates 𝑈 , the probability this algorithm
returns 1 is—

∑
𝑘 in 𝑆

𝑔(𝑘, 𝑈) = ∑
𝑘 in 𝑆

(1 − 𝑈)𝑈𝑘,

and the overall algorithm uses the “integral method”, so that the overall algorithm returns 1 with
probability—

∫
1

0
∑

𝑘 in 𝑆
(1 − 𝑈)𝑈𝑘 𝑑𝑈,

which, in the case of the MGL generator (where 𝑆 is the set of non-negative integers with a remainder of 0
or 1 after division by 4), equals ∫1

0
1

𝑈2+1 𝑑𝑈 = 𝜋/4.
The derivation below relies on the following fact: The probability satisfies—

∫
1

0
∑

𝑘 in 𝑆
𝑔(𝑘, 𝑈) 𝑑𝑈 = ∑

𝑘 in 𝑆
∫

1

0
𝑔(𝑘, 𝑈) 𝑑𝑈.

Swapping the integral and the sum is not always possible, but it is in this case because the conditions of
so-called Tonelli’s theorem are met: 𝑔(𝑘, 𝑈) is continuous and non-negative whenever 𝑘 is in 𝑆 and 0 ≤ 𝑈 ≤ 1;
and 𝑆 and the closed unit interval have natural sigma-finite measures.

Now to show how the MGL generator produces the probability 𝜋/4. Let 𝐶(𝑘) be the probability that this
algorithm’s step 2 generates a number 𝑘, namely—

𝐶(𝑘) = ∫
1

0
𝑔(𝑘, 𝑈) 𝑑𝑈 = ∫

1

0
(1 − 𝑈)𝑈𝑘 𝑑𝑈 = 1

𝑘2 + 3𝑘 + 2.

Then the MGL series for 𝜋/4 is formed by—

𝜋/4 = (1/1 − 1/3) + (1/5 − 1/7) + ... = 2/3 + 2/35 + 2/99 + ...

= (𝐶(0) + 𝐶(1)) + (𝐶(4) + 𝐶(5)) + (𝐶(8) + 𝐶(9)) + ...

= ∑
𝑘≥0

𝐶(4𝑘) + 𝐶(4𝑘 + 1),

where the last sum takes 𝐶(𝑘) for each 𝑘 in the set 𝑆 given for the MGL generator.
255https://stats.stackexchange.com/questions/550847
256Flajolet, P., Pelletier, M., Soria, M., “On Buffon machines and numbers”, arXiv:0906.5560 [math.PR], 2010. https:
//arxiv.org/abs/0906.5560

78

https://stats.stackexchange.com/questions/550847
https://arxiv.org/abs/0906.5560
https://arxiv.org/abs/0906.5560

9.10 Sketch of Derivation of the Algorithm for 1 / 𝜋
The Flajolet paper presented an algorithm to simulate 1 / 𝜋 but provided no derivation. Here is a sketch of
how this algorithm works.

The algorithm is an application of the convex combination technique. Namely, 1 / 𝜋 can be seen as a
convex combination of two components:

• g(n): 2 6∗ * (6 * n + 1) / 2 8∗+2 = 2 −2∗ * (6 * n + 1) / 4 = (6 * n + 1) / (2 2∗+2), which is the
probability that the sum of the following independent random variates equals n:

– Two random variates that each express the number of failures before the first success, where
the chance of a success is 1 − 1/4 (the paper calls these two numbers geometric(1/4) random
variates, but this terminology is avoided in this article because it has several conflicting meanings
in academic works).

– One Bernoulli random variate with mean 5/9.

This corresponds to step 1 of the convex combination algorithm and steps 2 through 4 of the 1 / 𝜋
algorithm. (This also shows that there is an error in the identity for 1 / 𝜋 given in the Flajolet paper:
the “8 n + 4” should read “8 n + 2”.)

• h𝑛(): (choose(n * 2, n) / 2 𝑛∗2)3, which is the probability of heads of the “coin” numbered n. This
corresponds to step 2 of the convex combination algorithm and step 5 of the 1 / 𝜋 algorithm.

Notes:

1. 9 * (n + 1) / (2 2∗+4) is the probability that the sum of two independent random variates
equals n, where each of the two variates expresses the number of failures before the first
success and the chance of a success is 1 − 1/4.

2. p𝑚 * (1 − p)𝑛 * choose(n + m − 1, m − 1) is the probability that the sum of m independent
random variates equals n (a negative binomial distribution), where each of the m variates
expresses the number of failures before the first success and the chance of a success is p.

3. p * f (z − 1) + (1 − p) * f (z) is the probability that the sum of two independent random
variates — a Bernoulli variate with mean p as well as an integer that equals x with probability
f (x) — equals z.

9.11 Preparing Rational Functions
This section describes how to turn a single-variable rational function (ratio of polynomials) into an array
of polynomials needed to apply the “Dice Enterprise” special case described in “Certain Rational
Functions”. In short, the steps to do so can be described as separating, homogenizing, and augmenting.

Separating. If a rational function’s numerator (D) and denominator (E) are written—

• as a sum of terms of the form z* 𝜆 𝑖*(1 − 𝜆)𝑗, where z is a real number and i ≥ 0 and j ≥ 0 are integers
(called form 1 in this section),

then the function can be separated into two polynomials that sum to the denominator. (Here, i+j is the
term’s degree, and the polynomial’s degree is the highest degree among its terms.) To do this separation,
subtract the numerator from the denominator to get a new polynomial (G) such that G = E − D (or D +
G = E). (Then D and G are the two polynomials that will be used.) Similarly, if we have multiple rational
functions with a common denominator, namely (D1/E), …, (DN/E), where D1, …, DN and E are written
in form 1, then they can be separated into N + 1 polynomials by subtracting the numerators from the
denominator, so that G = E − D1 − … − DN. (Then D1, …, DN and G are the polynomials that will be
used.) To use the polynomials in the algorithm, however, they need to be homogenized, then augmented, as
described next.

79

Example: Take the rational function (4* 𝜆 1*(1 − 𝜆)2) / (7 − 5* 𝜆 1*(1 − 𝜆)2). Subtracting
the numerator from the denominator leads to: 7 − 1* 𝜆 1*(1 − 𝜆)2.

Homogenizing. The next step is to homogenize the polynomials so they have the same degree and a par-
ticular form. For this step, choose n to be an integer no less than the highest degree among the polynomials.

Suppose a polynomial—

• is 0 or greater for every 𝜆 0 or greater, but not greater than 1,
• has degree n or less, and
• is written in form 1 as given above.

Then the polynomial can be turned into a homogeneous polynomial of degree n (all its terms have degree n)
as follows. (Homogeneous polynomials are also known as polynomials in scaled Bernstein form (Farouki and
Rajan 1988)257.)

• For each integer m satisfying 0 ≤ m ≤ n, the new polynomial’s homogeneous coefficient at m is found
as follows:
1. Set r to 0.
2. For each term (in the old polynomial) of the form z* 𝜆 𝑖*(1 − 𝜆)𝑗:

– If i ≤ m, and (n − m) ≥ j, and i + j ≤ n, add z*choose(n − (i+j), (n − m) − j) to r.
3. Now, r is the new homogeneous coefficient (corresponding to the term r* 𝜆 𝑚*(1 − 𝜆) −).

If the polynomial is written in so-called “power form” as c[0] + c[1]* 𝜆 + c[2]* 𝜆 2 + … + c[n]* 𝜆 𝑛, then
the method is instead as follows:

• For each integer m satisfying 0 ≤ m ≤ n, the new polynomial’s homogeneous coefficient at m is found
as follows:
1. Set r to 0.
2. For each integer i satisfying 0 ≤ i ≤ m, if there is a homogeneous coefficient c[i], add c[i]*choose(n

− i, n − m) to r.
3. Now, r is the new homogeneous coefficient (corresponding to the term r* 𝜆 𝑚*(1 − 𝜆) −).

Example: Let the following polynomial be given: 3* 𝜆 2 + 10* 𝜆 1*(1 − 𝜆)2. This is a degree-3
polynomial, and we seek to turn it into a degree-5 homogeneous polynomial. The result becomes
the sum of the terms—

• 0 * 𝜆 0*(1 − 𝜆)5;
• 10*choose(2, 2) * 𝜆 1*(1 − 𝜆)4 = 10* 𝜆 1*(1 − 𝜆)4;
• (3*choose(3, 3) + 10*choose(2, 1)) * 𝜆 2*(1 − 𝜆)3 = 23* 𝜆 2*(1 − 𝜆)3;
• (3*choose(3, 2) + 10*choose(2, 0)) * 𝜆 3*(1 − 𝜆)2 = 19* 𝜆 3*(1 − 𝜆)2;
• 3*choose(3, 1) * 𝜆 4*(1 − 𝜆)1 = 9* 𝜆 4*(1 − 𝜆)1; and
• 3*choose(3, 0) * 𝜆 5*(1 − 𝜆)0 = 3* 𝜆 5*(1 − 𝜆)0,

resulting in the homogeneous coefficients (0, 10, 23, 19, 9, 3) for the new homogeneous polynomial.

Augmenting. If we have an array of homogeneous single-variable polynomials of the same degree, they are
ready for use in the Dice Enterprise special case if—

• the polynomials have the same degree, namely n,
• their homogeneous coefficients are all 0 or greater, and
• the sum of j 𝑡ℎ homogeneous coefficients is greater than 0, for each j starting at 0 and ending at n,

except that the list of sums may begin with zeros, end with zeros, or both.

If those conditions are not met, then each polynomial can be augmented as often as necessary to meet the
257Farouki, Rida T., and V. T. Rajan. “Algorithms for polynomials in Bernstein form”. Computer Aided Geometric
Design 5, no. 1 (1988): 1-26. https://www.sciencedirect.com/science/article/pii/0167839688900167

80

https://www.sciencedirect.com/science/article/pii/0167839688900167

conditions (Morina et al., 2022)258. For polynomials of the kind relevant here, augmenting a polynomial
amounts to degree elevation similar to that of polynomials in Bernstein form (see also Tsai and Farouki
2001259). It is implemented as follows:

• Let n be the polynomial’s old degree. For each integer k satisfying 0 ≤ k ≤ n+1, the new polynomial’s
homogeneous coefficient at k is found as follows:
– Let c[j] be the old polynomial’s j 𝑡ℎ homogeneous coefficient (starting at 0). Calculate c[j] *

choose(1, k − j) for each integer j satisfying max(0, k − 1) ≤ j ≤ min(n, k), then add them
together. The sum is the new homogeneous coefficient.

According to the Morina paper, it’s enough to do n augmentations on each polynomial for the whole array
to meet the conditions above (although fewer than n will often suffice).

Note: For best results, the input polynomials’ homogeneous coefficients should be rational num-
bers. If they are not, then special methods are needed to ensure exact results, such as interval
arithmetic that calculates lower and upper bounds.

10 License
Any copyright to this page is released to the Public Domain. In case this is not possible, this page is also
licensed under Creative Commons Zero260.

258Giulio Morina. Krzysztof Łatuszyński. Piotr Nayar. Alex Wendland. “From the Bernoulli factory to a dice enterprise
via perfect sampling of Markov chains”, Ann. Appl. Probab. 32 (1) 327 - 359, February 2022. https://doi.org/10.1214/21-
AAP1679
259Tsai, Yi-Feng, Farouki, R.T., “Algorithm 812: BPOLY: An Object-Oriented Library of Numerical Algorithms for Polyno-
mials in Bernstein Form”, ACM Trans. Math. Softw. 27(2), 2001.
260https://creativecommons.org/publicdomain/zero/1.0/

81

https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1214/21-AAP1679
https://doi.org/10.1214/21-AAP1679

	Introduction
	About This Document

	Contents
	About Bernoulli Factories
	Algorithms
	Implementation Notes
	Algorithms for General Functions of \lambda
	Certain Polynomials
	Certain Rational Functions
	Certain Power Series
	General Factory Functions

	Algorithms for General Irrational Constants
	Digit Expansions
	Continued Fractions
	Continued Logarithms
	Certain Algebraic Numbers
	Certain Converging Series

	Other General Algorithms
	Convex Combinations
	Bernoulli Race and Generalizations
	Flajolet’s Probability Simulation Schemes
	Integrals

	Algorithms for Specific Functions of \lambda
	ExpMinus (exp(- z))
	LogisticExp (1 - expit(z/2^{prec}))
	exp(- (\lambda * z))
	exp(- exp(m + \lambda))
	exp(- (m + \lambda)^{k})
	exp(\lambda)*(1 - \lambda)
	(1 - exp(- (m + \lambda))) / (m + \lambda)
	expit(z) or 1 - 1/(1+exp(z)) or exp(z)/(1+exp(z)) or 1/(1+exp(- z))
	expit(z)*2 - 1 or tanh(z/2) or (exp(z) - 1)/(exp(z)+1)
	\lambda *exp(z) / (\lambda *exp(z) + (1 - \lambda)) or \lambda *exp(z) / (1 + \lambda *(exp(z) - 1))
	(1 + exp(z - w)) / (1 + exp(z))
	1/(2^{m(k+\lambda)}) or exp(-(k+\lambda)\cdot\ln(2^m))
	1/(2^{(x/y)\cdot\lambda}) or exp(-\lambda\cdot\ln(2^{x/y}))
	Two-Coin Algorithm (c * \lambda * \beta / (\beta * (c * \lambda + d * \mu) - (\beta - 1) * (c + d)))
	c * \lambda / (c * \lambda + d) or (c/d) * \lambda / (1 + (c/d) * \lambda))
	(d + \lambda) / c
	d / (c + \lambda)
	(d + \mu) / (c + \lambda)
	(d + \mu) / ((d + \mu) + (c + \lambda))
	d^{k} / (c + \lambda)^{k}, or (d / (c + \lambda))^{k}
	1/(1+ \lambda)
	1/(2 - \lambda)
	1/(1+(m+ \lambda)^{2})
	1 / (1 + (x/y)* \lambda)
	\lambda^{x/y}
	sqrt(\lambda)
	arctan(\lambda) / \lambda
	arctan(\lambda) / \pi
	arctan(\lambda)
	cos(\lambda)
	sin(\lambda *sqrt(c)) / (\lambda *sqrt(c))
	sin(\lambda)
	ln(1+ \lambda)
	ln(c+ \lambda)/(c+ \lambda)
	arcsin(\lambda) + sqrt(1 - \lambda ^{2}) - 1
	tanh(z)
	Expressions Involving Polylogarithms
	min(\lambda , 1/2) and min(\lambda , 1 - \lambda)

	Algorithms for Specific Functions of \lambda (Probability-Sensitive)
	\lambda + \mu
	\lambda - \mu
	\epsilon / \lambda
	\mu / \lambda
	\lambda * x/y
	(\lambda * x/y)^{i}
	Linear Bernoulli Factories
	\lambda^{\mu}
	(1 - \lambda)/cos(\lambda)
	(1 - \lambda) * tan(\lambda)
	ln((c + d + \lambda)/c)
	arcsin(\lambda) / 2

	Other Factory Functions
	Algorithms for Specific Constants
	1 / \phi (1 divided by the golden ratio)
	sqrt(2) - 1
	1/sqrt(2)
	tanh(1/2) or (exp(1) - 1) / (exp(1) + 1)
	arctan(x/y) * y/x
	\pi / 12
	\pi / 4
	\pi /4 - 1/2 or (\pi - 2)/4
	(\pi - 3)/4
	\pi - 3
	4/(3* \pi)
	1 / \pi
	(a/b)^{z}
	1/(exp(1) + c - 2)
	exp(1) - 2
	\zeta (3) * 3 / 4 and Other Zeta-Related Constants
	erf(x)/erf(1)
	Ratio of Lower Gamma Functions (\gamma (m, x)/ \gamma (m, 1)).
	Euler–Mascheroni constant \gamma
	exp(- x/y) * z/t
	Certain Numbers Based on the Golden Ratio
	ln(1+y/z)
	ln(\pi)/ \pi

	Requests and Open Questions
	Correctness and Performance Charts
	Acknowledgments
	Notes
	Appendix
	Using the Input Coin Alone for Randomness
	The Entropy Bound
	Bernoulli Factories and Unbiased Estimation
	Correctness Proof for the Continued Logarithm Simulation Algorithm
	Correctness Proof for Continued Fraction Simulation Algorithm 3
	Proof of the General Martingale Algorithm
	Algorithm for sin(\lambda * \pi /2)
	Probabilities Arising from Certain Permutations
	Derivation of an Algorithm for \pi / 4
	Sketch of Derivation of the Algorithm for 1 / \pi
	Preparing Rational Functions

	License

