A Note on the Bays-Durham Shuffle

Peter Occil

1 A Note on the Bays-Durham Shuffle

This version of the document is dated 2023-06-13.
The Bays-Durham shuffle extends a pseudorandom number generator's (PRNG) maximum cycle length by giving it a bigger state. Generally, for a size of tablesize, this maximum is at most the factorial of tablesize, which is about the number of ways to arrange a list of size tablesize.

The following describes the Bays-Durham shuffle with a size of tablesize. (C++'s shuffle_order_engine implements something similar to the shuffle described below.) For PRNGs that output 32- or 64 -bit integers 0 or greater, a tablesize of 256,512 , or 1024 is suggested.

- To initialize, fill a list with as many numbers from the underlying PRNG as tablesize, then set k to another number from that PRNG.
- For each "random" number, take the entry at position (k \% tablesize) in the list, where '\%' is the remainder operator and positions start at 0 , then set k to that entry, then replace the entry at that position with a new number from the underlying PRNG, then output k .

The following variant of the Bays-Durham shuffle was used in the Kybos PRNG by J. Baagøe ${ }^{1}$:

- Initialize the table with random numbers (such as those from the underlying PRNG), then set k to the first entry of the table.
- For each "random" number, set v to the entry at position ($\mathrm{k} \%$ tablesize) in the list, where '\%' is the remainder operator and positions start at 0 , then replace the entry at that position with v minus a new number from the underlying PRNG (using wraparound subtraction), then set k to the result, then output v .

[^0]
[^0]: ${ }^{1}$ https://web.archive.org/web/20120619002808/http://baagoe.org/en/wiki/Better_random_numbers_for_javascript\#Kybos

